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Abstract Infection of the heart muscle with cardiotropic viruses is one of the major aetiologies of myocarditis and acute and
chronic inflammatory cardiomyopathy (DCMi). However, viral myocarditis and subsequent dilated cardiomyopathy is
still a challenging disease to diagnose and to treat and is therefore a significant public health issue globally. Advances in
clinical examination and thorough molecular genetic analysis of intramyocardial viruses and their activation status have
incrementally improved our understanding of molecular pathogenesis and pathophysiology of viral infections of the
heart muscle. To date, several cardiotropic viruses have been implicated as causes of myocarditis and DCMi. These in-
clude, among others, classical cardiotropic enteroviruses (Coxsackieviruses B), the most commonly detected parvovi-
rus B19, and human herpes virus 6. A newcomer is the respiratory virus that has triggered the worst pandemic in a
century, SARS-CoV-2, whose involvement and impact in viral cardiovascular disease is under scrutiny. Despite exten-
sive research into the pathomechanisms of viral infections of the cardiovascular system, our knowledge regarding their
treatment and management is still incomplete. Accordingly, in this review, we aim to explore and summarize the cur-
rent knowledge and available evidence on viral infections of the heart. We focus on diagnostics, clinical relevance and
cardiovascular consequences, pathophysiology, and current and novel treatment strategies.
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This article is part of the Spotlight Issue on Cardiovascular Immunology.

1. Introduction

Infectious agents are the major causes of myocarditis and inflammatory
cardiomyopathy (DCMi).1–4 The clinical presentation is extremely het-
erogeneous, the natural history is unpredictable, and prognosis also
varies according to the underlying aetiology, environmental factors—
most commonly initiated by a virus—and genetic predispositions.5,6 This
fact, in conjunction to the lack of non-invasive specific diagnostic meth-
ods, makes it an underdiagnosed entity.

To date, several cardiotropic viruses have been implicated as causes of
myocarditis and DCMi. The main viruses associated are enteroviruses

(EVs), including Coxsackievirus B3 (CVB3), and adenoviruses (ADVs),
the most commonly detected parvovirus B19 (B19V), influenza (A, B),
human herpesvirus 6 (HHV6), human immunodeficiency virus (HIV),
hepatitis C virus (HCV), human cytomegalovirus (CMV), and Epstein–
Barr virus (EBV) (Table 1).7,8 All these viruses can cause myocarditis with
similar inflammatory features (Figure 1).5,10

In December 2019, severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) was identified as the causative agent of a cluster of suspi-
cious pneumonia cases in Wuhan, Hubei, China. The incredible fast
worldwide spread of the coronavirus disease 2019 (COVID-19)
prompted the World Health Organization to declare COVID-19 a
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pandemic on 11 March 2020. Epidemiological data from the present co-
ronavirus pandemic demonstrate a significant relationship between
COVID-19 and cardiovascular disease (CVD). Whether there is direct
myocardial damage caused by SARS-CoV-2 or if it is primarily an endo-
thelial disease is currently under investigation.11–14 A recent landmark
study by Bailey et al.15 employing human autopsy tissues, human pluripo-
tent stem cell-derived cardiomyocytes, and engineered heart tissues has
provided evidence that SARS-CoV-2 directly infects cardiomyocytes and
does not infect cardiac macrophages, fibroblasts, or endothelial cells.
They also found that infection of cardiomyocytes resulted in cytokine in-
duction, sarcomere disassembly, and cell death. Beyond a broad spec-
trum of previous clinical studies into the multiple other aspects of
COVID-19, these data provide important additional insight into specific
SARS-CoV-2 pathology within the heart.

To better understand the frequently unpredictable progression of viral
myocarditis and DCMi, one has to address the underlying pathophysio-
logical processes.16,17 Currently, there is consensus that both—immune-
mediated and viral cytotoxic mechanisms—play a significant role in this
regard.7 Beyond virus cytotoxicity, chronic immune stimulation or auto-
immunity in DCMi results from incompletely cleared virus infection, or in
response to the preceding virus- or immune-mediated chronic tissue
damage, respectively, even in the absence of infectious viral particles.5,6

It is considered possible that at some point in progression, multiple
aetiologic types confluence into a common autoimmune pathogenic

process that leads to chronic inflammation, tissue remodelling, and fibro-
sis, ultimately progressing to the clinical phenotype of dilated cardiomy-
opathy (DCM). A consistent progression from myocarditis to DCM is
described in about 30% of myocarditis patients. Any diagnostics started
at this time often cannot elucidate the initial causes of the disease.18–24

Understanding the underlying molecular mechanisms is required in or-
der to be able to estimate the prognosis of the patients and is fundamen-
tal to proper management and specific treatments.20,25 Viral diagnostics
and antiviral treatment should be started early before irreversible myo-
cardial damage has developed.25,26

In this review, we discuss common viral infections and various stages
of disease. We assess pathogenesis and mechanisms, clinical relevance
and consequences, and outline patient-specific therapeutic options that
are based on an accurate diagnosis, covering current and novel treatment
strategies.

2. SARS-CoV-2

SARS-CoV-2 is a novel coronavirus that was identified as the cause of
COVID-19 in early 2020 (Coronaviridae Study Group of the International
Committee on Taxonomy of Viruses27). Infection with SARS-CoV-2 can lead
to viral pneumonia and acute respiratory distress syndrome and is ac-
companied by an increased risk of morbidity and mortality.28 Besides re-
spiratory complications, SARS-CoV-2 can trigger cytokine storm and
coagulation abnormalities, leading to thromboembolic events up to mul-
tiorgan damage.14,29 Strikingly, there is a strong connection between
CVD and severity of COVID-19. Initial clinical data suggested that both,
susceptibility and clinical cause are highly dependent on cardiovascular
comorbidities.30

2.1 Virological background
SARS-CoV-2 is a membrane-enveloped positive-sense, single-stranded
RNA virus with a diameter of �80–140 nm. Infection with human coro-
naviruses mainly results in respiratory and enteric diseases ranging from
mild ‘cold-like’ symptoms up to severe life-threatening respiratory pa-
thologies and lung injuries.27 The infection of host cells with SARS-CoV-
2 involves specific binding of viral spike (S) protein to the cellular entry
receptor angiotensin-converting enzyme 2 (ACE2).31 In addition, fusion
of viral particles is dependent on the proteolytic cleavage of the S protein
by the host cell surface serine protease TMPRSS2.

Host organism’s innate immune response plays a major role in the
cause of COVID-19. Thus, several SARS-CoV-2 accessory proteins
have been suggested to affect the innate immune response.32

Abnormal pro-inflammatory cytokine levels and immune cell infiltra-
tion have been associated with the severity of tissue damage and mor-
bidity of coronavirus infection.33,34 Aberrant infiltration of pro-
inflammatory macrophages, cytotoxic T-cells, and neutrophils has
been observed in COVID-19.35,36 Thus, dysregulation of host im-
mune response and elevated cytokine release seem to be crucial fac-
tors for the severity of COVID-19.

2.2 Cardiovascular involvement
A meta-analysis involving more than 6000 COVID-19 patients indicates
an incidence of cardiac injury ranging from 15% to 42% depending on age
and disease severity.37 Post-mortem analysis of cardiac tissue of 39
patients who died as a consequence of coronavirus infection, revealed an
incidence of 61.5% positive SARS-CoV-2 RNA detection in the heart.38

A recent meta-analysis and literature screening revealed hypertension

......................................................................................................

Table 1 List of viral species detected in EMB samples

Viruses in EMB Viral genome organization

Adenovirus dsDNA

Arenavirus ssRNA

Coronavirus (including Sars-CoV-2) ssRNA

Coxsackievirus (A, B) ssRNA

Cytomegalovirus dsDNA

Dengue virus ssRNA

Echovirus ssRNA

Encephalomyocarditis virus ssRNA

Epstein–Barr virus dsDNA

Hepatitis B virus dsDNA

Hepatitis C virus ssRNA

Herpes simplex virus dsDNA

Human herpesvirus-6 dsDNA

Human immunodeficiency virus ssRNA

Influenza (A, B) virus ssRNA

Measles virus ssRNA

Metapneumovirus ssRNA

Mumps virus ssRNA

Parvovirus B19 ssDNA

Polio virus ssRNA

Rabies virus ssRNA

Respiratory syncytial virus ssRNA

Rubella virus ssRNA

Vaccinia virus dsDNA

Varicella-zoster virus dsDNA

Variola virus dsDNA

Zika virus ssRNA

ds, double stranded; ss, single stranded.

Cardiovascular consequences of viral infections 2611
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(28%), diabetes (14%), and CVD (12%) to be the most prevalent comor-
bidities in COVID-19 patients and thus, independent risk factors for mor-
tality.39 Moreover, a study including 40 SARS-CoV-2 positive patients
confirmed the relationship between the presence of COVID-19 and
acute cardiac damage.40 However, whether cardiac injury is directly in-
duced by SARS-CoV-2 infection is not clarified yet.41 There are numer-
ous hypotheses assessing the impact of SARS-CoV-2 infection on
cardiovascular manifestations. These range from direct myocardial injury
by disturbance of the ACE2 signalling, over systemic inflammatory

damage (including cytokine storm) to cardiometabolic issues, arrhyth-
mias, and ischaemia.13

Infection has been proven for SARS-CoV-2 in cardiomyocytes and
organoids.15 Noteworthy, endotheliitis has been suggested to be in-
volved in SARS-CoV-2-mediated cardiac damage.13,42,43 A study on car-
diac autopsy tissue from COVID-19 positive patients identified strong
ACE2/TMPRSS2 expression in capillaries of the heart and endotheliitis of
small vessels with prevalence of CD4þ and CD68þ inflammatory cells.44

Another post-mortem analysis of nine COVID-19 patients, who died

Figure 1 (Immuno-)Histological manifestations of myocarditis and inflammatory cardiomyopathy. (A) CVB3-positive patient, histological analysis of active
myocarditis with massively infiltrating cells and myocytolysis. Azan staining. Scale bars: 50mm. (B) Active myocarditis in a case of EBV infection with dense in-
filtration of inflammatory cells, necrosis, and dissolution of myocytes in the centre of the panel. Azan stain. Scale bars: 50mm. (C) Detection of B19V in the en-
dothelial layer of an intramyocardial vessel in the heart (radioactive in situ hybridization, original high-power magnification, haematoxylin, and eosin) obtained
at autopsy from an infant who died from myocarditis. Reprinted with permission from Bock et al.9 (D) Enhanced fibrosis in a B19V positive patient with tran-
scriptional activity. H&E stain. Scale bars: 50mm. (E) Histological analysis in a patient with positive proof of SARS-CoV-2 genomes in EMB. In the periphery of
a fibrosis (f) capillaries (white arrow) with sinus-like structure contain aggregated erythrocytes (blue arrows), unstructured protein, and lack endothelial cells.
Adjacent some round cells (white triangle). Myocytes distended without signs of damage. Azan stain. Scale bars: 50mm. (F) Enhanced focal post-infectious au-
toimmune inflammation, IH staining of focal infiltration of CD3-positive T-lymphocytes. Scale bars: 50mm. (G) Post-infectious autoimmune inflammation, IH
staining of diffuse infiltration of CD45R0-positive T-memory cells. Scale bars: 50mm. (H) Post-infectious autoimmune inflammation, IH staining of increased
HLA-DR isotype—expression. Scale bars: 100mm. (I) Post-infectious autoimmune inflammation, IH staining of increased VCAM-1 expression. Scale bars:
25mm. B19V, parvovirus B19; EBV, Epstein–Barr virus; HLA-DR, human leukocyte antigen-DR; IH, immunohistochemistry; VCAM-1, vascular cell adhesion
protein 1.

2612 H.-P. Schultheiss et al.
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due to cardiogenic shock, revealed the involvement of all compartments
of the heart including intramural vessels, conduction tissue, and subepi-
cardial ganglia.45 There is accumulating evidence that SARS-CoV-2 S pro-
tein directly interacts with myocardial Toll-Like Receptor (TLR)4 leading
to activation of the TLR4 signalling cascade (including pro-inflammatory
cytokines and type I interferons) and even to up-regulation of ACE2 sur-
face expression.46

2.3 Myocarditis and inflammatory
cardiomyopathy
First detection of SARS-CoV-2 genomes was provided in endomyocar-
dial biopsies (EMBs) of patients with suspected myocarditis or unex-
plained heart failure.47 Ultrastructural analysis of EMB of a 69-year-old
patient positively tested for SARS-CoV-2 identified viral particles within
the interstitial cells of the myocardium.48 Cardiac magnetic resonance
imaging in patients recently recovered from Sars-CoV-2 infection identi-
fied 78% with cardiac involvement and 60% with an ongoing myocardial
inflammation.49 Further studies must show how long the effects last.
EMB analysis of two patients with a history of upper airway infection of
unknown origin and clinical signs of myocarditis revealed positive detec-
tion of SARS-CoV-2 genome in combination with elevated inflammatory
cell infiltration.50 Since nasopharyngeal swabs tested negative for SARS-
CoV-2 in these patients, it is likely that cardiac inflammation develop-
ment is delayed following previous infection. Further case reports docu-
mented left ventricular dysfunction and inflammation of the heart related
to direct Sars-CoV-2-infection with a latency period of 4 weeks after the
onset of pulmonary symptoms.51 Autopsy cases from COVID-19 victims
confirm lymphomononuclear infiltrates in the myocardium with focal ne-
crosis of adjacent myocytes, in the pericardium as well as in intramural
vessels with necrosis of the vascular wall.45

2.4 Acute coronary syndrome
As known for other infectious diseases, SARS-CoV-2 is assumed to trig-
ger acute coronary syndrome (ACS). However, the incidence of ASC in
COVID-19 patients is still illusive and detailed mechanisms of SARS-
CoV-2 contribution remain speculative. Putative involvement of
COVID-19 in the development of ACS includes plaque rupture,
coronary spasm or micro-thrombi induced by cytokine storm, and
endothelial or vascular injury by direct infection of these cells with SARS-
CoV-2.52

3. Human B19V

Human parvovirus (B19V) genomes are the most frequently detected
viral species in EMBs of patients with suspected heart failure (Figure
2).53–55 Infection with B19V can start during childhood and continues
throughout adulthood, such that between 70% and 88% of adults
show serologic evidence of past infections (Table 1).

3.1 Virological background
B19V is a non-enveloped single-stranded linear DNA virus of 20–24 nm
in diameter. Its �5.6 kb genome encodes for two major proteins, the
non-structural protein (NS1) and VP1/2 protein (capsid protein), and the
small accessory 11 and 7.5 kDa proteins of largely unknown function.
The NS1 protein transactivates viral transcription and host genes, indu-
ces cell cycle arrest and DNA damage response, in order to facilitate viral
replication and host cell apoptosis to release viral progeny.56,57 Various

molecular mechanisms, such as NS1 induced apoptosis may be responsi-
ble for direct cytotoxicity.58

3.2 Cardiovascular involvement
The association of myocardial B19V genome detection to heart diseases
is still a matter of controversial discussion.9,55,59 B19V DNA genomes
were detected in �73% of patients EMBs (Figure 2) and were also found
in 55% of healthy donor hearts suggesting no causal relationship.60

However, these studies did not differentiate between latent (inactive)
and transcriptional active (positive mRNA) viral infection. In contrast to
latent B19V infection, expression of B19V viral mRNA and proteins in
the myocardium was demonstrated to be of significance,61 and replica-
tive active B19V in the myocardium is related to adverse clinical
outcome.9,54

We identified different cell types belonging to the heterogenous group
of bone marrow-derived circulating angiogenic cells with similarities to
endothelial and erythroid lineage, to be targets for B19V infection.62 In
chronic B19V-associated disease, cardiomyocytes, which are devoid of
B19V receptors, are precluded from infection.63 Endothelial dysfunction
is a consequence of impaired endothelial regeneration during cardiac
B19V infection, leading to impaired coronary microcirculation and results
in secondary cardiac myocyte damage.62,64,65 Besides direct cytopathic
effects, B19V potentially induces autoimmunity66 possibly triggered by
phospholipase activity of VP1u domain.67,68

4. Further cardiotropic viral
pathogens

Besides B19V, primary cardiotropic viruses are EV including CVB3 and
echoviruses, ADV, the Herpesviridae genus, such as HHV6, EBV, and

Figure 2 Distribution of viral genomes in EMBs of n = 1132 consecu-
tive patients in 2020 with suspicion of myocarditis or unexplained heart
failure. B19V infection is divided into latent (lB19V) and transcriptional
active (taB19V) infection. For SARS-CoV-2, n = 364 EMBs were ana-
lysed, of which n = 5 (1.4%) were positive for SARS-CoV-2 genomes.
B19V, parvovirus B19; ciHHV6, chromosomal integrated human her-
pesvirus 6; CMV, cytomegalovirus; EBV, Epstein–Barr virus; EMB, endo-
myocardial biopsy; EV, enterovirus; HHV6, human herpesvirus 6.

Cardiovascular consequences of viral infections 2613
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CMV, all of which may cause or trigger myocarditis and DCMi53,69 (Figure
2). Influenza-(IAV/IBV), HCV, and HIV infections are associated with an
increased incidence of cardiac complications.70–72 In addition to the car-
diotropic viruses mentioned above, there are sporadic reports, most of-
ten as case reports, identifying varicella zoster virus (VZV), Zika virus,
Dengue virus, and Chikungunya virus being linked to viral myocarditis.
Similar observations have been made for rabies, rubella, mumps, and
measles virus.8 In general, proof of viral genomes in the myocardium is in-
dependent from the severeness of myocardial dysfunction.53 Whether
all of these viruses can be causative for the development of viral myocar-
ditis or just being an incidental finding has to be determined.

4.1 Enteroviruses
EVs (Picornaviridae) are small, single-stranded, positive-sense RNA vi-
ruses. Non-enveloped EVs are common human pathogens responsible
for lower and upper respiratory tract infections that are transmitted
via the faecal–oral route targeting the heart secondarily. Twenty years
ago, frequency of enteroviral infection accounts for up to 10% of
heart failure patients who underwent EMB. However, recent studies
report less frequent finding of CVB-3, which might be associated with
regional and temporal patterns.73,74 EV and ADV enter cardiomyo-
cytes via binding the transmembrane Coxsackievirus and adenovirus
receptor (CAR), which represents a potential antiviral target.75,76

Direct cardiac damage during acute phase is a consequence of viral
replication and impaired cellular translation, induction of apoptosis,
and oxidative stress followed by cell lysis.75,77,78 During sub-acute
phase of CVB-3 infection, an unbalanced immune response and
immune-mediated destruction of cardiac tissue or induction of auto-
immune processes may occur.79,80 EV persistence in the myocardium
is associated to a significant higher mortality.81 Genotyping revealed a
strong correlation between the CCR5 mutation and spontaneous vi-
rus clearance with improved outcomes.82

During the chronic phase, CVB-3 might be eliminated or viral persis-
tence may result in the progression to DCM characterized by cytoskele-
tal disruption and compromised contractility often associated with virus
mediated immune response80, 83 (Figure 3).

4.2 Human herpesviruses
HHV6 (subtype A and B), as the most frequently found herpesvirus in the
myocardium (Figure 2), primarily infects CD4þ T lymphocytes.84,85 HHV6
is a double stranded enveloped DNA virus with a genome of �170 kb
that encodes for various viral proteins, including a viral DNA polymerase,
further proteins and microRNAs (miRNAs), that are involved in the con-
trol of viral latency, host cell cycle and evasion of immune response.
Infection is usually acquired during childhood in the absence of clinical
symptoms or it may manifest as Exanthema subitum and results in lifelong
persistence with a seroprevalence of >90%.84 Re-activation after latency
occurs by unknown mechanisms and is mostly asymptomatic in immuno-
competent individuals while leading to sub-acute clinical symptoms in the
immunocompromised patients. Clinical relevance of HHV6 infection of
the myocardium has been shown in particular for paediatric patients after
heart transplantation.86 There is strong evidence that co-infection with
other viruses, in particular with B19V, contributes to cardiac dysfunction
since exclusive cardiac infection with HHV6 occurs only rarely.87

The HHV6 genome may integrate into the telomere region of somatic
cells or germ line cells [chromosomally integrated HHV6 (ciHHV6)].
The prevalence of ciHHV6 is�0.8–1.5% of HHV-6-positive EMBs.88

4.3 CMV, EBV, and VZV
Only few case reports describe findings of CMV, EBV, and VZV in the
myocardium that are associated with a pathological phenotype.69,89,90

Molecular mechanism of CMV and EBV infection of the myocardium re-
main to be elucidated, however pathophysiological effects most probably
result from immune-mediated damage or endothelial dysfunction as a
consequence of CMV replication (Figure 3).

4.4 Hepatitis C virus
Accumulating evidence suggests that HCV, a globally widespread RNA
virus that mainly affects the liver, may also play a role in the pathogenesis
of heart diseases including myocarditis and DCM.72,91 Besides hepatitis
C, chronic HCV infection is associated with various extrahepatic mani-
festations, like glomerulonephritis, myositis, and others. Extrahepatic
manifestations are believed to be due to the lymphotropism of HCV
with accumulation of circulating immune complexes, modulation of host
immune response, and activation of autoimmune responses.92 In recent
multicentric studies, Matsumori et al.72,93 identified a significant higher se-
roprevalence of anti-HCV antibodies in patients suffering from myocardi-
tis, DCM, and heart failure than in the general population. Additionally,
HCV RNA genomes could be also detected in anti-HCV positive sera
and EMBs from patients with myocarditis and DCM. The pathogenesis of
HCV-induced myocarditis and DCM is still poorly investigated; however,
a recent study provides evidence that of mononuclear cells a major tar-
get of HCV could be leukocytes and especially CD68 positive mono-
cytes/macrophages.94 These cells induced by HCV infection may cause
inflammation in the organs including the heart muscle leading to myocar-
ditis, DCM, and other cardiomyopathies.

5. Clinical presentation

Myocarditis und DCMi present with heterogeneous clinical signs and
symptoms, ranging from subclinical disease to refractory cardiogenic
shock with substantial morbidity and mortality.17,95 A virus-specific phe-
notype of myocardial diseases does not exist. Patients present with un-
characteristic complaints, such as angina, dyspnoea, fatigue, reduced
physical ability, or arrhythmias in the presence of a preserved or impaired
systolic or diastolic ventricular function.96 A viral infection of the respira-
tory or the gastrointestinal tract, may precede the onset of cardiac symp-
toms, although the occurrence of such a viral syndrome is highly variable.
In acute disease, sudden onset of chest pain, dyspnoea, and heart failure
with normal or enlarged ventricular chambers, ventricular arrhythmias,
and abnormal ST-elevation changes in the presence of elevated cardiac
enzymes are highly suspicious for an acute viral myocarditis, if a coronary
artery disease has been excluded.1,2,4,10

6. Diagnostics of viral infections

The initial evaluation of acute myocarditis and DCMi includes a detailed
history and physical examination in which possible features suggestive of
aetiology may provide clues.

Cardiac serum biomarkers, specifically troponin I and troponin T, can
help to confirm the diagnosis, but lack sensitivity. Other inflammatory se-
rum markers, including white blood cell count, erythrocyte sedimenta-
tion rate, and C-reactive protein levels, may be elevated in acute
myocarditis, but are neither sensitive nor specific in terms of determining
the presence or absence of active myocardial inflammation with or
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Figure 3 Most abundant cardiotropic viruses and their target cells in the heart. CVB-3 and ADV enter cardiomyocytes via binding the transmembrane
CAR. In addition, decay-accelerating factor serves as CVB-3 receptor. Integrins (avb3 and avb5) promote ADV internalization. B19V targets endothelial cells
by binding to erythrocyte P antigen and integrin avb1 as co-receptor. EBV efficiently infects resting human B lymphocytes, whereas HHV6 primarily targets
CD4þ T lymphocytes. Using CD46 as cellular receptor, HHV6 can directly infect endothelial cells and subsequently enter adjacent tissues. SARS-CoV-2 cel-
lular entry involves specific binding to the ACE2 receptor as well as proteolytic cleavage by the host cell surface serine protease TMPRSS2. For SARS-CoV-2,
several cardiac targets including vascular endothelial cells and cardiomyocytes are proposed. Moreover, pulmonary-derived macrophages are suggested car-
rying the virus into the myocardium. As a consequence of viral infection, TLR3, 4, 7, 8, and 9 signalling cascade is initiated, followed by infiltration of several in-
flammatory cells including T and B lymphocytes, natural killer cells and bone-marrow derived monocytes, which differentiate into M1 and M2 macrophages.
B19V infection can be differentiated into latent infection without myocardial damage and active infection characterized by VP1 and/or NS1 mRNA detection.
The later can result in severe endothelial dysfunction, followed by immune cell infiltration and development of DCMi. ds, double stranded; ss, single
stranded.
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..without viral infection.8,97 Serologic testing has often been used in the
past to identify pathogens in viral myocarditis. However, these methods
lack direct correlation between viral infection and myocarditis.10,98

Electrocardiographic findings in myocarditis patients include T-wave
and ST-segment changes, including ST-segment elevation mimicking
acute myocardial infarction. However, these changes are neither sensi-
tive nor specific for the diagnosis of myocarditis and DCMi.
Echocardiography is a valuable tool in detecting global or regional wall
motion abnormalities, with myocardial strain patterns adding a special
value.10

Magnet resonance imaging (MRI) with extracellular contrast agent can
be valuable for mapping tissue hyperaemia associated with the intense in-
flammatory response of acute myocarditis. Imaging techniques, such as
MRI provide accurate non-invasive tissue characterization but not gene-
sis clarification of an infectious agent because they cannot detect or
quantify different viral types and loads or subtypes of immune
response.99

EMB is the gold- standard method to distinguish directly infectious
agent-mediated from multiple types of immune-mediated injury of tissue
and can provide specific aetiologic information with significant conse-
quences for management and differential therapy.1,8,10,97 The 2013
European Society of Cardiology position paper recommends characteri-
zation of cardiac inflammation and infection by immunohistochemistry
and viral analysis using quantitative PCR methods (real-time PCR and
nested PCR with reverse transcription).

Viral presence does not always satisfy the Dallas criteria of myocarditis
perhaps due to different timepoints in diagnosing. Therefore, beside his-
tological and immunohistological evaluation, molecular analysis of EMB is
a prerequisite to establish viral infection and persistence.100,101

State-of-the-art molecular virological diagnostics of EMBs for patho-
gen detection should not be restricted to the PCR proof of viral RNA or
DNA genomes alone, but further include the quantification of viral loads
and transcriptional activity.1,53 Recent data show that testing of replica-
tive status is clinically relevant and is, therefore, a prerequisite for further
therapeutic decisions.54,61 Additionally, virus genotypes and variants may
be detected by next-generation sequencing.102miRNAs are important
epigenetic regulators of the immune response in the heart. Epigenetic
factors influence the expression of different genes as well as the genetic
susceptibility to the development of myocarditis and DCMi.103,104 A
panel of miRNAs in serum provides a new non-invasive diagnostic per-
spective to identify patients with unexplained heart failure, who should
undergo an EMB due to intramyocardial inflammation and/or viral
persistence.105

The expression of eight miRNAs was significantly increased in samples
from patients with advanced heart failure and viral persistence with or
without inflammation.106 Thus, miRNAs can serve as a non-invasive, ad-
ditional tool for indication of EMB decision making.

7. Treatment options

Symptomatic heart failure therapy may improve clinical symptoms and
hemodynamic situation. However, a specific antiviral or anti-
inflammatory therapy is not covered by this.17

7.1 SARS-CoV-2
Several antiviral therapies are currently being investigated for patients
with COVID-19, including strategies to prevent viral entry into the host

cell (e.g. chloroquine and hydroxychloroquine), protease inhibitors (lopi-
navir-ritonavir and darunavir), RNA polymerase inhibitors (remdesivir),
and anti-cytokine agents [e.g. interleukin (IL)-6 receptor antagonists], all
of which relate to general treatment strategies.107

Negative results were obtained for clinical trials of newly developed
HIV protease inhibitors, such as lopinavir/ritonavir [Randomized
Evaluation of COVid-19 thERapY (RECOVERY) Trial] and darunavir/
cobicistat for COVID-19, with no significant impact on mortality or
length of hospital stay.108 Clinical trials with ribavirin against MERS
showed high levels of toxicity.109 In a Phase 3 clinical trial, remdesivir was
not associated with clinical improvement.110 Chloroquine or hydroxy-
chloroquine does not seem to show significant improvement in mortal-
ity. In COVID-19, elevated IL-6 levels have been correlated with
increased mortality, sparking interest in the use of tocilizumab—a re-
combinant, monoclonal antibody against the IL-6 receptor—for COVID-
19 therapy. A randomized, placebo-controlled trial in patients with se-
vere COVID-19 demonstrated that tocilizumab did not reduce mortality
or intubation rates.111 Convalescent plasma from recovered COVID-19
patients contains naturally produced antibodies that can provide tempo-
rary protection against the worst effects of the disease. Synthetic anti-
SARS-CoV-2 antibody cocktails are highly enriched specific antibodies
against the SARS-CoV-2 S glycoprotein that prevent cell entry. The anti-
body cocktails are currently being clinically tested as part of the
RECOVERY Collaborative Group Trials. As COVID-19 triggers a pro-
coagulatory state that increases the risk for thromboembolic events, first
studies indicate an improved outcome under antithrombotic
treatment.112,113

7.2 EV, ADV, and B19V
Spontaneous enteroviral clearance is associated with significant improve-
ment of LVEF while persistence leads to progressive heart failure and is
associated with significantly higher risk of death.17,74 A non-randomized
study was started treating EV and ADV positive patients with interferon-
ß (IFN-ß). Upon IFN-ß treatment complete elimination of EV and ADV
genome was proved by follow-up EMBs after finishing of the antiviral
therapy.81 Virus clearance was paralleled by an improvement of mean
LVEF and an amelioration of heart failure symptoms and improvement of
survival. Thereafter, a Phase 2 study—betaferon in a chronic viral cardio-
myopathy—trial was initiated.114 Patients with symptoms of heart failure
and biopsy-proven EV, ADV, and/or B19V genomes were randomly
assigned to double-blinded treatment. Compared to the placebo, virus
elimination and/or virus load reduction was higher in the IFN-ß groups.
IFN-ß treatment was associated with significant improvement on NYHA
functional class improvement and in quality of life. IFN-b treatment has
proven less effective in clearing B19V infection. However, no differentia-
tion between latent B19V infection and viral transcriptional activity was
made in this study. In a pilot study, endothelial dysfunction improved
with treatment of IFN-ß due to suppression of viral replicative intermedi-
ates, suggesting that this treatment option may improve endothelial via-
bility.63 Innovative therapy and prevention strategies to control B19V
transcriptional activity are currently under investigation. Telbivudine is an
antiviral nucleoside analogue reverse transcriptase inhibitor with pleio-
tropic immunomodulatory effects that has been described to be effective
in retroviral and pararetroviral (hepatitis B virus) infections by preventing
dysregulation of BIRC3 and thus suppresses induction of apoptotic path-
ways.115 Clinical improvement and reduction of transcriptional activity
has been shown after Telbivudine treatment in a non-randomized
study.116 Intravenous immunoglobulin therapy did not result in clinical
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improvement of B19V-associated chronic DCM, however, transcrip-
tional activity was not evaluated.117

7.3 HIV, HCV, and HHV6
Patients with HIV-associated myocarditis or DCMI are treated by antire-
troviral therapy with clear survival benefits although with cardiac side
effects of medication.118,119 Patients with HCV-associated DCMi were
treated by combination therapies employing ombitasvir, paritaprevir, ri-
tonavir, and dasabuvir.70,120

Treatment with aciclovir, ganciclovir, or valaciclovir might be consid-
ered for herpesvirus infections, although their efficacy has not been di-
rectly evaluated in patients with myocarditis. Persistently high loads of
HHV6 genomes in blood cells or tissues confirm the presence of
ciHHV6. Elimination of the chromosomally integrated virus is impossible,
but the transcriptional activity of ciHHV6 may be reduced by treatment
with valganciclovir.88

7.4 Post-viral autoimmunity
Myocardial inflammation or systemic autoimmunity persisting despite vi-
rus elimination warrants immunosuppressive treatment, in order to pre-
vent later immune-mediated myocardial injury. However, viral genomes
have to be excluded prior to immunosuppressive therapy as analysis of
patients with DCMi showed that patients with persistent viruses did not
improve or even deteriorated upon immunosuppressive therapy, while
virus-negative patients improved significantly.121,122 Treatment
approaches for these patients with post-infectious chronic myocarditis/
inflammatory cardiomyopathy consist of corticosteroids, azathioprine,
or cyclosporine A, in addition to optimal heart failure medication.123

TH17 cell response seems to be one of the keys in the progression to
chronic damage, cardiac fibrosis, and loss of cardiac function in autoim-
mune processes.5 The potential of an anti-IL-17 therapy still needs to be
evaluated.

The Phase 3, multicentre double-blind, placebo-controlled, rando
mized-withdrawal study RHAPSODY provided evidence of the potential
efficacy and safety of rilonacept, an IL-1a and b inhibitor in chronic peri-
carditis.124 This agent may also be considered as a potential therapeutic
option for post-viral inflammation processes.

8. Perspectives

8.1 Prophylaxis
Whereas conventional antiviral vaccine development methods125 have
proven efficient against SARS-CoV-2, the most recent virus of immense
medical impact, novel, and entirely RNA-based vaccines have yielded ex-
ceptionally good results against this agent.126–128 The revolutionary
method successfully used to develop the BioNTecVC and ModernaVC vac-
cine was never before employed at scale, and indeed the RNA modifica-
tion/stabilization/purification methods129,130 as well as the associated
nanoparticle delivery tools131 are of recent origin. Importantly, as em-
phasized by the authors of the landmark paper reporting the results of
the BioNTecVC vaccine trial,126 they could start the development of the
vaccination RNA sequence immediately after the publication of the ge-
nome sequence of the new virus,28 which was derived soon after the rec-
ognition of COVID-19 as a new disease entity.132,133 Speed and
adaptation to entirely new or variant viruses, which unfortunately are
most likely to emerge in the future, are significant advantages beyond the
current pandemic.134

8.2 New treatment strategies
Whereas prophylaxis was and will of course always be superior to any
possible treatment, a spectrum of novel nucleic acid-based therapeutics
against molecular targets that cannot be sufficiently or optimally addressed
using traditional small molecule drugs or antibodies, has recently success-
fully entered the clinical arena. In the field of cardiovascular medicine,135,136

several large-scale clinical trials have proven clinical efficacy of RNA-
targeted therapeutics for gene silencing (ASO antisense oligonucleotides;
RNA interference-inducing siRNAs). Long-acting ASO and/or siRNA mol-
ecules lower apo(a), PCSK9, apoCIII, ANGPTL3, or transthyretin (TTR)
for the prevention and treatment of patients with atherosclerotic CVD or
TTR amyloidosis. Further approaches of interest are miRNA-modulating
and epigenetic therapies, as well as methods based on CRISPR-Cas sys-
tems. The latter are of particular interest for the field of virology, too, since
they are highly adaptable to essentially all viruses and their individual key
molecular therapeutic targets. While below, we focus on SARS-CoV-2, all
other cardiotropic viruses are amenable to the same strategies.

It is also important to note that the incidence of cardiovascular/myo-
cardial infections with several viruses is known to be highly variable over
decades. Since detection of myocardial viral infections is far more difficult
compared to systemic ones, this epidaemia-like rise and fall of viruses,
such as CVB3 could only be detected by large-scale in-depth myocardial
diagnostics, which are not commonly conducted.74 This is an unfortunate
situation since at times CVB3 or ADVs caused a large fraction of all heart
failure cases among children and adults, whereas their incidence is cur-
rently low. Conversely, if a large epidemic or even pandemic with a highly
cardiotropic virus ‘free’ of systemic signs on infection would be rapidly
spreading, clinical recognition of this wave could be critically delayed until
a rather high number of heart failure cases arises in a population without
recognizable risk factors. In fact, this was the way by which the first viral
myocarditis/heart failure ‘outbreak’ with CVB3 was discovered in the
small city of Coxsackie, in New York state. On the other hand, recent
CRISPR-based technological breakthroughs including massively multi-
plexed nucleic acid detection using the CARMEN-Cas13 system137 now
enable more comprehensive virome screening than prior PCR-based
approaches.

8.2.1 CRISPR-based methods
A recent landmark paper reported the development of CRISPR as an
antiviral strategy to combat SARS-CoV-2 and influenza.138 The authors
demonstrate a CRISPR-Cas13-based strategy, prophylactic antiviral
CRISPR in human cells (PAC-MAN), for viral inhibition that can degrade
RNA from both SARS-CoV-2 sequences and live influenza A viruses in
human lung epithelial cells. Importantly, their bioinformatic analysis
showed that a group of only six crRNAs can target more than 90% of all
coronaviruses. They conclude that with the development of a safe and ef-
fective system for respiratory tract delivery, PAC-MAN has the potential
to become an important pan-coronavirus inhibition strategy.

8.2.2 ASO- and RNAi-based methods
siRNA molecules for silencing nucleocapsid phosphoprotein and surface
glycoprotein gene of SARS-CoV-2 have been designed.139,140 Other
groups141,142 have determined the structural landscape of SARS-CoV-2
RNA and regulatory untranslated regions of SARS-CoV-2 and other coro-
naviruses. They found ASOs targeting the structural elements and FDA-
approved drugs inhibiting the SARS-CoV-2 RNA-binding proteins dramat-
ically reduced SARS-CoV-2 infection in cells derived from human liver and
lung tumours. These studies shed light on ASO candidate therapeutics.
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..Cardiomyocyte-targeted RNAi has been investigated to inhibit cardio-
tropic viruses143,144 including human CVB3145,146 and human ADV147 in
cardiomyocytes. Of note, B19V may be transactivated by adenoviral
helper functions in vascular endothelial cells148 illustrating the impact of
intercurrent viral co-infections upon clinical course. In addition to di-
rectly antiviral approaches, RNAi was also evaluated regarding its

potential to suppress pathogenic cardiac inflammation.149 RNAi against a
single cellular target was able to block multiple interacting pro-inflamma-
tory and profibrotic pathways in cardiac fibroblasts. Successful clinical
translation of these approaches, as well as of recombinant expression of
virus receptor traps150 critically depends on the availability of clinically
safe and efficient drug delivery systems (Figure 4).

Figure 4 Innovative antiviral strategies. The continuing need for the development of innovative antiviral strategies is strikingly illustrated by the cata-
strophic SARS-CoV-2 pandemic, which suddenly arose by transmission of an animal virus to man and is difficult to control, amongst other problems, due to
sequential accumulation of mutations. The recent introduction of novel therapeutic approaches based on biological antiviral defence systems (RNA interfer-
ence, CRISPR-Cas) or antisense drugs (ASOs) is most welcome in this context. Although technically demanding, RNAi and ASO drugs have entered cardio-
vascular clinical practice when the key problem of their liver-directed targeting was solved by ligand-coupling and nanoparticle encapsulation (to the left).
Further development of ASO, RNAi 141, 142 and CRISPR-Cas 140, 163 antiviral drugs justifies major efforts since essentially any viral or cellular target
(examples are given for Cosackieviruses and SARS-CoV-2) may be addressed by these highly flexible tools once efficient delivery to the affected tissue is en-
abled. In that regard, a recent pioneering study by Bailey et al.15 is of interest. Decades after similar work on CVB3 myocarditis in humans, this article dealing
with SARS-CoV-2 finds similarly restricted cellular tropism (cardiomyocytes but not cardiac macrophages, fibroblasts, or endothelial cells) and mechanistic
sequelae of SARS-CoV-2 infection (innate immune activation with cytokine induction, sarcomere disassembly, and cell death). Whereas recombinant AAV
vectors (to the right) were successfully employed for RNAi and anti-miR therapy of myocardial disorders in animal models, this approach has not yet entered
the clinical arena. Global efforts, significantly driven by the current pandemic, are currently being devoted to fully exploit the clinical potential of these new
antiviral strategies.
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8.2.3 Non-coding RNA (ncRNA) targets
ncRNAs including miRNAs are deeply involved in the host cells’ innate
antiviral immune response.151 There are multiple targets for human
miRNAs on SARS-CoV-2 RNA, most of which are located in the 5’ and
3’ untranslated regions. Mutations of the viral genome that result in the
creation or loss of miRNA-binding sites may therefore have substantial
effects on the pathogenicity of SARS-CoV-2.152 Thus, Alam et al.153 have
shown that human miRNA-122, a previously known cofactor of another
RNA virus, HCV, whose genome it binds as a prerequisite for pathogen-
esis, can also bind the RNA genome of SARS-CoV-2 with high affinity.
This opens the possibility of using RNA-based drugs against HCV, such
as Miravirsen, to treat COVID-19.

Relevance of miRNAs for the clinical course of infections has also
been documented for human cardiomyopathies associated with B19V154

or CVB3. In the latter, differential cardiac miRNA expression closely pre-
dicted the clinical course. The most highly expressed miRNAs associated
with rapid progression and an adverse outcome could possibly consti-
tute RNAi targets.

8.2.4 Remaining challenges
We recently discussed that the high potential of CRISPR and other nu-
cleic acid drugs needs to be weighed against potential risks, but from the
clinical practice viewpoint the delivery issue of the nucleic acid drugs to
target organs is only partially solved. Current nanoparticle vehicles
employing the Gal-NAc system have efficiently delivered ASO and RNAi
drugs to the liver as documented in several landmark trials in the cardio-
vascular field.135 Progress has also been achieved towards aerosol deliv-
ery of nucleic acid drugs to the lung including a combination treatment
using an inhalable GapmeR oligonucleotide and recombinant ACE2 for
COVID-19.155,156

Biologically efficient delivery of nucleic acid therapeutics (siRNAs) to
the myocardium has been achieved by recombinant expression from
AAV viral vectors in animal models.157,158 Whereas this delivery ap-
proach has not yet entered the clinical arena.159,160 AAV-based as well as
non-viral delivery of a broad spectrum of novel antiviral nucleic acids
drugs would thus become available for treatment trials of viral cardiomy-
opathies. In summary and synopsis with a recent comprehensive review
by Le et al.161 on nucleic acid-based technologies targeting coronaviruses,
it is evident that possible clinical success of any nucleic acid drug is criti-
cally dependent on the technological challenge of efficient and focused
drug delivery.

8.3 Need for highly versatile antiviral tools
Importantly, the above new therapeutic approaches offer extremely high
versatility to adapt to essentially any coding or non-coding, viral or host
cell, molecular target. Further, their large-scale production will follow
similar (i.e. RNA, DNA, and XNA) synthetic pathways, enabling massive
up-scaling of therapeutics production if required.

The current pandemic, originating from transmission of a mutated ani-
mal virus to man, has heightened concerns and awareness that amongst
the vast number of animal viruses others may cross the species barrier to
humans.162,163 Therefore, foresighted expansion of our antiviral arsenal
appears warranted.

The combination of genetic factors that increase susceptibility to car-
diomyopathy combined with acquired causes of cardiomyopathy, such as
viral infection and/or autoimmunity, may be an explanation for the vari-
able penetrance and severity of DCMi. The availability of novel techni-
ques and novel insights into pathophysiology will help to address
knowledge gaps in the future. Efficacy of therapeutic approaches needs

to be evaluated in large, controlled, randomized trials to facilitate the de-
velopment of personalized treatment options.
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Schiergens TS, Herrler G, Wu N-H, Nitsche A, Müller MA, Drosten C, Pöhlmann S.
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42. Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J
2020;41:3038–3044.

43. Becker RC. COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis
2020;50:499–511.

44. Maccio U, Zinkernagel AS, Shambat SM, Zeng X, Cathomas G, Ruschitzka F,
Schuepbach RA, Moch H, Varga Z. SARS-CoV-2 leads to a small vessel endotheliitis
in the heart. EBioMedicine 2021;63:103182.

45. Del Nonno F, Frustaci A, Verardo R, Chimenti C, Nicastri E, Antinori A, Petrosillo
N, Lalle E, Agrati C, Ippolito G. Virus-negative myopericarditis in human coronavirus
infection: report from an autopsy series. Circ Heart Fail 2020;13:doi:
10.1161/CIRCHEARTFAILURE.120.007636.

46. Aboudounya MM, Heads RJ. COVID-19 and toll-like receptor 4 (TLR4): SARS-CoV-
2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and
causing hyperinflammation. Mediators Inflamm 2021;2021:1–18.

47. Escher F, Pietsch H, Aleshcheva G, Bock T, Baumeier C, Elsaesser A, Wenzel P,
Hamm C, Westenfeld R, Schultheiss M, Gross U, Morawietz L, Schultheiss H.
Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyo-
cardial biopsies. ESC Heart Fail 2020;7:2440–2447.

48. Tavazzi G, Pellegrini C, Maurelli M, Belliato M, Sciutti F, Bottazzi A, Sepe PA,
Resasco T, Camporotondo R, Bruno R, Baldanti F, Paolucci S, Pelenghi S, Iotti GA,
Mojoli F, Arbustini E. Myocardial localization of coronavirus in COVID-19 cardio-
genic shock. Eur J Heart Fail 2020;22:911–915.

49. Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J,
Shchendrygina A, Escher F, Vasa-Nicotera M, Zeiher AM, Vehreschild M, Nagel E.
Outcomes of cardiovascular magnetic resonance imaging in patients recently recov-
ered from coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020;5:1265–1273.
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60. Hjalmarsson C, Liljeqvist J-Å, Lindh M, Karason K, Bollano E, Oldfors A, Andersson
B. Parvovirus B19 in endomyocardial biopsy of patients with idiopathic dilated car-
diomyopathy: foe or bystander? J Card Fail 2019;25:60–63.

61. Pietsch H, Escher F, Aleshcheva G, Lassner D, Bock C-T, Schultheiss H-P. Detection
of parvovirus mRNAs as markers for viral activity in endomyocardial biopsy-based
diagnosis of patients with unexplained heart failure. Sci Rep 2020;10:22354.

62. Schmidt-Lucke C, Zobel T, Schrepfer S, Kuhl U, Wang D, Klingel K, Becher PM,
Fechner H, Pozzuto T, Van Linthout S, Lassner D, Spillmann F, Escher F, Holinski S,
Volk H-D, Schultheiss H-P, Tschope C. Impaired endothelial regeneration through
human parvovirus B19-infected circulating angiogenic cells in patients with cardio-
myopathy. J Infect Dis 2015;212:1070–1081.

63. Schmidt-Lucke C, Spillmann F, Bock T, Kühl U, Van Linthout S, Schultheiss H-P,
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SE, Madden TD, Hope MJ, Karikó K, Santra S, Graham BS, Lewis MG, Pierson TC,
Haynes BF, Weissman D. Zika virus protection by a single low-dose nucleoside-
modified mRNA vaccination. Nature 2017;543:248–251.

132. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R,
Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel
Coronavirus Investigating and Research Team. A novel coronavirus from patients
with pneumonia in China, 2019. N Engl J Med 2020;382:727–733.

133. Combes AJ, Courau T, Kuhn NF, Hu KH, Ray A, Chen WS, Chew NW, Cleary SJ,
Kushnoor D, Reeder GC, Shen A, Tsui J, Hiam-Galvez KJ, Mu~noz-Sandoval P, Zhu
WS, Lee DS, Sun Y, You R, Magnen M, Rodriguez L, Im KW, Serwas NK,
Leligdowicz A, Zamecnik CR, Loudermilk RP, Wilson MR, Ye CJ, Fragiadakis GK,
Looney MR, Chan V, Ward A, Carrillo S, Matthay M, Erle DJ, Woodruff PG,
Langelier C, Kangelaris K, Hendrickson CM, Calfee C, Rao AA, Krummel MF, UCSF
COMET Consortium. Global absence and targeting of protective immune states in
severe COVID-19. Nature 2021;591:124–130.

134. Izda V, Jeffries MA, Sawalha AH. COVID-19: a review of therapeutic strategies and
vaccine candidates. Clin Immunol 2021;222:108634.

135. Landmesser U, Poller W, Tsimikas S, Most P, Paneni F, Lüscher TF. From traditional
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159. Poller W, Fechner H, Kühl U, Pauschinger M, Schultheiss HP. New therapeutics tar-
gets in chronic viral cardiomyopathy. Ernst Schering Res Found Workshop 2006;55:
287–303.

160. Hinkel R, Ramanujam D, Kaczmarek V, Howe A, Klett K, Beck C, Dueck A, Thum T,
Laugwitz K-L, Maegdefessel L, Weber C, Kupatt C, Engelhardt S. AntimiR-21 pre-
vents myocardial dysfunction in a pig model of ischemia/reperfusion injury. J Am Coll
Cardiol 2020;75:1788–1800.

161. Le TK, Paris C, Khan KS, Robson F, Ng W-L, Rocchi P. Nucleic acid-based technolo-
gies targeting coronaviruses. Trends Biochem Sci 2021;46:351–365.

162. Morens DM, Fauci AS. Emerging pandemic diseases: how we got to COVID-19. Cell
2020;182:1077–1092.

163. Latinne A, Hu B, Olival KJ, Zhu G, Zhang L, Li H, Chmura AA, Field HE, Zambrana-
Torrelio C, Epstein JH, Li B, Zhang W, Wang L-F, Shi Z-L, Daszak P. Origin and
cross-species transmission of bat coronaviruses in China. bioRxiv Prepr Serv Biol
2020. 10.1101/2020.05.31.116061.

Cardiovascular consequences of viral infections 2623


	tblfn1

