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The segmentation of brain lesions from a brain magnetic resonance (MR) image is of great significance for the clinical diagnosis
and follow-up treatment. An automatic segmentation method for brain lesions is proposed based on the low-rank repre-
sentation (LRR) and the sparse representation (SR) theory. The proposed method decomposes the brain image into the
background part composed of brain tissue and the brain lesion part. Considering that each pixel in the brain tissue can be
represented by the background dictionary, a low-rank representation that incorporates sparsity-inducing regularization term is
adopted to model the part. Then, the linearized alternating direction method with adaptive penalty (LADMAP) was selected to
solve the model, and the brain lesions can be obtained by the response of the residual matrix. The presented model not only
reflects the global structure of the image but also preserves the local information of the pixels, thus improving the repre-
sentation accuracy. The experimental results on the data of brain tumor patients and multiple sclerosis patients revealed that
the proposed method is superior to several existing methods in terms of segmentation accuracy while realizing the
segmentation automatically.

1. Introduction

In recent years, brain diseases have become one of the most
important diseases that endanger the health of human be-
ings. The segmentation of brain lesions from brain images
can be a valuable reference for the follow-up treatment of
patients [1]. In the diagnosis of brain diseases, magnetic
resonance (MR) imaging is the most commonly used im-
aging modality. Clinically, MR images of different sequences
can be obtained by adjusting parameters so that brain
diseases can be detected from multiple angles. Figure 1
shows two sets of multisequence MR images. It can be
seen from these images that each sequence has a different
effect on the display of the brain lesion regions. As such,

the complete segmentation of brain lesions according to
multisequence MR images has become a research hotspot
recently.

One of the most important tasks in clinical practice is to
analyse multisequence MR images and segment the brain
lesions to calculate the shape and volume of the lesion regions.
However, having radiologists segment multiple three-di-
mensional (3D) images manually is time-consuming, and
the segmentation results are generally not repeatable [2].
Therefore, automatic or semiautomatic segmentation
methods for brain lesions are important. At present, the image
segmentation methods mainly include Atlas-based methods
[3-5], curve/surface evolution methods [6-8], learning-based
methods [9-13], and the methods based on sparse
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FIGURE 1: Multisequence MR images of a brain tumor patient (a) and a multiple sclerosis patient (b). (a) Multisequence images of a brain
tumor, from left to right: FLAIR, T1-enhancement, and T2 sequences. (b) Multisequence images of multiple sclerosis, from left to right: T1,

T2, and FLAIR sequences.

representation (SR) [14-17] and low-rank representation
(LRR) [18-21]. The results of the Atlas-based methods depend
on the registration algorithm, and, to date, there is no general
registration algorithm that can register the target image with
the standard image accurately. Therefore, such methods are
commonly used to provide geometric priors for subsequent
studies. The methods based on curve/surface evolution are
slow when applied to 3D image segmentation. In addition,
there are so many parameters that there is no good way to
balance them for different target images at this time. The
learning-based methods mainly search for the optimal clas-
sifier by learning the features of samples, in which the pa-
rameters are calculated by the optimization methods without
manual settings. Moreover, most of them classify the pixel
points by using multidimensional features, so they are suitable
for the segmentation of multisequence MR images. However,
the learning-based methods only use the features of the pixels
themselves, which lack spatial correlation, and the training
samples often need to be labelled manually by the experts
according to their clinical experience, promoting subjectivity
and nonrepeatability. Although the above methods can
segment the lesion regions to some extent, it is necessary to
know the prior information of the lesions in advance.
Therefore, they are only applicable to detect certain brain
diseases. The purpose of the batch detection for brain images
and the automatic segmentation of brain lesions cannot be
achieved.

Because of these factors and concerns, we propose a
novel automatic segmentation approach for brain lesions
based on the joint constraints of LRR and SR (JCLRRSR) in
this paper. Since the LRR model is able to describe the whole

structure of the brain tissues in image, while the SR model is
good at characterizing the local information of the pixels, the
proposed method can improve the representation accuracy
of the image, thereby increasing the segmentation accuracy
of the brain lesions.

The rest of the paper is organized into four sections.
Section 2 introduces the SR model and the LRR model in
brief. Section 3 presents the key schemes of the proposed
JCLRRSR method for segmenting the brain lesions. The
experiments and discussions on the data of patients with
brain tumors and multiple sclerosis are given in Section 4.
Finally, the conclusions are offered in Section 5.

2. SR and LRR Models

2.1. SR Model. The SR model was derived from the re-
quirements of signal representation, compression, and
coding and was first applied only in the field of signal
processing. As images have become the main expression of
information, the SR model has become more widely used in
the field of image processing in recent years. Here, it can not
only achieve good results in classical low-level image pro-
cessing problems, such as image compression, denoising,
restoration, and super-resolution processing, but also per-
form satisfactorily regarding the problems of feature ex-
traction, image segmentation, pattern recognition, machine
learning, and some other issues. In image segmentation
applications, the extracted image features of training sam-
ples are used to construct the dictionary. Then, the dictio-
nary is used to approximate the testing sample. The class of
testing sample is decided by approximate residuals in each



Computational Intelligence and Neuroscience

class. At last, the classes of all testing samples generate the
image segmentation results.

The basic idea of SR theory is that signals of the same
class can be sparsely represented under an overcomplete
dictionary [22]. The model can be expressed as follows:

min 1Ally,
st X, = DA,

(1)

where X; € RNMM is the signal matrix; D = [d,,d,,---,dg]

€ RN is the dictionary matrix of the signal; DA is the
dictionary atom; and S is the number of atoms in the dic-
tionary, S>> N. In addition, A = [a;, a,,---,a,,] € R"M is
the representation coefficient matrix of the signal and de-
notes the zero norm of the matrix—that is, the number of
nonzero elements in the matrix. Due to the nonconvexity of
the zero norm, solving problem (1) is NP-hard. Considering
that A is sparse enough, existing studies have shown that the
convex relaxation method can be used for convex re-
placement, resulting in the following problem:

min |Al;,
A (2)
s.t. X, = DA,
where | - ||; denotes the /; norm of the matrix, defined as

Al = Zf:lz?ﬁﬁaiﬂ’ and a;; is the (i, j) element of A.

2.2. LRR Model. With the development of the representa-
tion learning theory, the LRR [23, 24] has become a classic
theory in the field of image processing and also has been
widely used in the medical image processing and research
[25-27]. Tt aims to search for the lowest rank representation
of data under an appropriate dictionary and is good at
mining data dependencies in multiple subspaces. Moreover,
as compared with the subspace recovery methods based on
SR, LRR is robust to noise and conducive to describing the
global structure of the data, which is often unavailable in
other methods. At present, the LRR model has been widely
used in video patching; face recognition; and image resto-
ration, detection, and segmentation.

For the observed signal X € RV with noise, it can be
mapped to its true value signal X, € RV*M without noise
through low-dimensional subspace in high-dimensional
space, where X, is of a low-rank [23]. Let E=
(€i)nwm € RN*M be the noise signal, where e;; is the (i, j)
element of E, and then X = X, + E. Since the noise signals
usually account for a small part of the observed signals, the
representation model of robust principal component anal-
ysis (RPCA) [28, 29] can be constructed as follows:

min rank (X,) + a|Elly
X,E (3)
s.t. X = Xl + E:

where rank(-) denotes the rank function and « is a co-
efficient to adjust the weight of the noise term. As X is
low-rank and E is sparse, the following optimization
problem can be obtained by relaxing problem (3) to its
convex hull:

min [ X, + alElL, "
st. X=X,+E,

where || - ||, denotes the kernel norm of the matrix.

However, RPCA assumes that the data are in a single
low-rank subspace, which is not suitable for the cases in
which the data are in multiple subspaces. Subsequent de-
velopment led to the formation of LRR theory, and the
relevant model is as follows:

{ min IAll. + «llEll,;

st. X =DA+E,

(5)

where || - ||, denotes the I, ; norm of the matrix, defined as

(6)

3. Brain Lesion Segmentation
Based on JCLRRSR

3.1. Data Preprocessing. We first registered the multi-
sequence brain MR images by the registration method in the
MIPAYV software and corrected the grey level of the images by
the method of N4ITK. The purpose of these operations was to
remove the skull of the T1 sequence image and then use the
remaining part as a template to remove the skull of other
sequence images. After that, we adjusted the greyscale range
of the images to [0, 255] by means of the following equation:

1™ —min (1)
max (IT) — min (IT1)’

X" =255 x (7)
where It denotes the original image of T, sequence and X
denotes the corresponding image after preprocessing. A
similar preprocessing is applied on the images of other
sequences.

3.2. Background Dictionary Construction. In order to seg-
ment the whole brain lesion regions, we regarded all of the
brain tissues as background and treated brain lesions as
abnormalities in the background distribution, respectively.
Therefore, the background dictionary plays an important
part in the proposed method and directly affects the sub-
sequent segmentation performance of the brain lesions. In
general, the background dictionary needs to meet three
requirements, as follows: first, only the pixels of the brain
tissue feature should be selected as the atoms, while the
pixels in the lesion regions cannot be chosen; second, all
categories of the brain tissue in the image should be in-
cluded; and third, the number of atoms in the dictionary
should be sufficient. Considering that the greyscale distri-
bution of healthy brain tissue is relatively simple, the pre-
processed normal human brain images were first classified
and a certain number of pixels were extracted from the white
matter, grey matter, and cerebrospinal fluid, respectively, as
training samples. Then, the neighborhood of each training



sample in each sequence image (the size of the neighborhood
was w x w) was selected and converted into a greyscale
vector (the length of the vector was w?). The greyscale
vectors of k sequences were combined to form the feature
vector of each training sample (the length of the feature
vector was kw?). At last, all feature vectors were combined to
construct the background dictionary matrix required for the
proposed method (the number of training samples was S,
and the size of the dictionary was kw? x S).

3.3. JCLRRSR Model. Each pixel in the brain image may
correspond to one kind of brain tissue or the mixture of
several kinds of brain tissue. The greyscale features of each
kind of tissue can be expressed in a certain subspace, and the
greyscale features of all pixels in the image should be con-
sidered in multiple subspaces. Meanwhile, the brain lesions
are regarded as an abnormal form within the normal brain
tissue background, which exists independently outside of all
subspaces. Thus, only the pixels belonging to normal brain
tissue can be represented by the background dictionary, while
the pixels in lesion regions cannot be. Because of this, if we let
Y be the high-dimensional feature matrix of the brain image
to be measured, Y can be divided into two parts according to
the LRR model (5)—that is, the background part composed of
brain tissue and the brain lesion part. In model (5), D is the
background dictionary matrix, A is the representation co-
efficient matrix, and E corresponds to the brain lesions.

The LRR model can effectively characterize the overall
structural of the image, while the SR model is good at
maintaining the local features of the pixels. Because of the
different advantages of these two models, we introduced a
sparse constraint for matrix A to the LRR model in this
paper, and a new representation model for brain lesions was
proposed as follows:

in |A A El,;,
{lgl,lbp IAll, + BIANL + «lEll,,,
st. Y=DA+E,

(8)

where « and f3 are the coefficients to adjust the weight of the
brain abnormalities and the sparse term, respectively.

By solving model (8) and obtaining the optimal solutions
A" and E*, corresponding to A and E, respectively, the
response value of the jth pixel in Y belonging to the ab-
normal regions can be defined as follows:

)
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where e? and e are the jth column and the (i, j) element of
E”, respectively. If T (x;) is greater than a predetermined
threshold, x; can be determined as a pixel within the lesion
regions.

3.4. Model Solving. Since the alternating direction method
requires two auxiliary variables and asks for a complex
matrix inverse operation in each iteration, we choose the
linearized alternating direction method with adaptive
penalty (LADMAP) [18, 30] to solve problem (8).

To make the objective function in problem (8) separable,
we introduced an auxiliary variable U which satisfies U = A;
then, we can replace the second term || A, in the objective
function with [[U],. After that, problem (8) can be converted
to the following problem:

{ min Al + BIUl, + alEll;,,
st. Y=DA+EA=U.

(10)

The Lagrange equation is as follows:
L(AU,E Zy, Zy,y) =IAl, + BIUI, + «lEll,,,

+(Z,Y ~DA-E) +{Z,, A~U)
+ g(IIY—DA— EJ2 +1A-UI2)

=[All. + BIUI, + «llEll,,

+ f(AU,E Z,,Z,,y)

1
Al 1zl
(11)

where Z, and Z, are the Lagrange multipliers, y >0 is the
penalty parameter, and
2
)

(12)

2

+
F

V4
A-U+2

Z
f(AU,E Z,,Z,,y) =%<HY—DA—E+—1
14

Y

The above multivariable optimization problem can be
solved by alternately updating one variable while fixing the
remaining variables. In the kth iteration, problem (10) can be
divided into the following three subproblems:

(1) Fix U and E and update A, and the objective function
becomes

0
Apyy = argmin Al +<V 7 (A Ugo B Zy o Zogo Vi )y A= Ag) + %"A_Ak"i’
A

0
Vi A-A+

[—DT(Y - DAk - Ek + Zl,k/yk) +(Ak - Uk + Zz,k/Yk)]

(13)
2

= argmin |A], + —
A 2

[
; |

F
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where the quadratic term f is replaced by a first-
order approximation in the kth step plus a neigh-
boring operator [30, 31], V 4 is the derivative of f to

A, and 6 = ||D|3.
(2) Fix A and E and update U, and the objective function
becomes
A ~U + Zy|
Uy = argmin U], + 26 [SE— =222 (14)
U 2 Yk F

(3) Fix A and U and update E, and the objective function
becomes

Y-DA,..—-E+2Z, |
Ek+1 = arg min « ||E||2,1 + Y ll k+1 + l,k“ .
’ 2| Ve I+

(15)

The steps of LADMAP are shown in Algorithm 1 where
the order of step 2, step 3, and step 4 can be exchanged and
© and V¥ are the singular value contraction operator [32] and
the soft threshold contraction operator [33], respectively. ©
is defined as follows:

0, (1) = PDy( Y )", (16)

where D, (}) = diag({max(0;—A,0)}) and P, ), and Q are
the matrices obtained by SVD of Y; that is, Y = PY QT.
Y is defined as follows:

X—& x> &,
Y. [x] =4 x+¢ X< —& (17)
0, otherwise,

where x € R and £>0. When operating on a matrix or a
vector, ¥ means to operate on the elements in the matrix or
vector, respectively.

According to Yang et al. [34], step 4 can be solved as
follows: let Q=Y —DA;,, + Z,/y, and then the jth
column of the optimal solution E,, is

1@ - (ari)

Qd, <)
o] e

[Een); = &

0, otherwise,
(18)

where [Ek+1]j and [Qk]j are the jth column of the matrices.
In summary, the general algorithm of the proposed
method in this paper is given in Algorithm 2.

4. Experiments and Discussions

4.1. Experimental Data. To evaluate the effectiveness of the
JCLRRSR, we performed experiments on the data of two
groups of patients with brain diseases. The first dataset is the
multisequence MR images of patients with brain tumors,
provided by the MICCAI 2012 Brain Tumor Segmentation
Challenge (BraTS 2012). There are 25 patients’ MR data, and

each patient’s data include four sequences of MR images,
which are T1, T2, FLAIR, and Tl-enhancement, respectively,
as well as the real-world results of brain tumor regions and
edema regions. The image size is 240 x240x 155 and the
resolution is 1 x 1 x 1 mm. In the experimental comparison in
this section, both tumor and edema were regarded as brain
lesions. The second dataset is the multisequence MR images of
patients with multiple sclerosis, provided by the ACCORD-
MIND database. There are 50 patients’ MR data, and each
patient’s data include four sequences of MR images, specifi-
cally T1, T2, PD, and FLAIR, as well as the lesion regions
labelled by radiologists manually. The image size is
256 x 256 x 46 and the resolution is 0.95 x 0.95 x 3 mm. Due to
the influence of the image preprocessing effect, the JCLRRSR
will segment the brain lesions as well as the skull which has not
been removed completely. To this end, we postprocessed the
segmentation results, in which we only retained the part
belonging to the brain tissue and removed the others. In the
analysis of the experimental results, the Dice Score indicator
was adopted to verify the accuracy of the segmentation.

4.2. Number of Training Samples. The number of training
samples in the dictionary is a key factor in the JCLRRSR. More
training samples means there are more normal brain tissue
samples and so the segmentation results will be better, but the
computational efficiency will be lower. Conversely, the fewer
the training samples, the higher the model computational
efficiency but the lower the segmentation accuracy. Therefore,
a clear trade-off between segmentation accuracy and com-
putational efficiency exists. Because only the samples be-
longing to normal brain tissue, such as white matter, grey
matter, and cerebrospinal fluid, are needed in the background
dictionary and the greyscale characteristics of the three types of
brain tissue are relatively close, the segmentation accuracy will
reach a stable state when the training sample capacity reaches a
certain number. It can be seen from the brain image that the
area of white matter is larger than those of grey matter and
cerebrospinal fluid. Therefore, the number of training samples
we selected from the white matter was three times the number
of selections made from the other two tissues. Figure 2 shows
the relationship between the total number of training samples
and the segmentation accuracy of brain tumor and multiple
sclerosis lesions. It can be seen from the figure that, with the
increase in the number of training samples, the segmentation
accuracy also increases and that when the number increases to
a certain extent, the segmentation accuracy reaches a stable
state. In addition, the total number of training samples needed
in brain tumor segmentation is less than that in multiple
sclerosis injury region segmentation, which is mainly due to
the fact that the brain tumor occupies a much larger area than
the multiple sclerosis injury regions. In order to balance the
segmentation efficiency, the total number of training samples
was set to 500 when segmenting the brain tumor and 2000
when segmenting multiple sclerosis lesions in the experiment.

4.3. Size of Neighborhood. When constructing high-di-
mensional features of pixels, we transformed the neigh-
borhoods of each pixel into a vector and then merged the
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Input: high-dimensional feature matrix of the brain MR image Y, « >0, and3>0
Output: optimal solution A*, U*, and E*
Initialize: Ay = U, = Ey = Z, 3 = Z,4, Vo = 0.01, Yoo = 10, po = 1.1, & =107, &, =102, 6 = |D|}3, andk = 0
Step 1: while (||Y —-DA, - Eyll/IY ) > ¢, or
Vi max ( \/E ||Ak - Ak_1 ||F, ||Uk -U; ||p, ||Ek -E, ||F)/||Y||F 2 azdo

Step 2: update A,

Apr = O gy )1 (Ag + [DT (Y = DA = B + Zy ilyi) = (A = U + Zoilyi)1/0)
Step 3: update U,

Ukt = Yoy (At + (Zog/y0))
Step 4: update E;

Egyy = argmin (a/y)IEl + (U2)|E - (Y = DAy, + Zy/yd)I2
Step 5: update Z £ Z,

Zyjnn = Zig+ vk (Y = DAy, —Epy)

Zajert = Zog + Vi (A = Up)
Step 6: update y

Vier = M0 (Vg PV,
po if (e max(VOI Ak, = Adllp Uk =Ukllps | Egear = Ecll/IY ) < &5,

where p =
P 1, otherwise.

Step 7: update k
ke—k+1

Step 8: end while
optimum solutionA* = A;, U* =U,, andE* = E,

ALGORITHM 1: LADMAP steps.

Input: multisequence MR image X = (x1, X, -+, X)), where x; € RN

Output: lesion region marker

Step 1: multisequence image fusion; establish the feature vector y; of each pixel and construct the high-dimensional feature matrix Y
Step 2: construct dictionary D using the method in Section 3.2

Step 3: solve model (8) according to Algorithm 1 and obtain the optimal solution A* and E*

Step 4: calculate the response value T'(x;) of the pixel x; according to equation (9)

Step 5: extract the brain lesions

ALGORITHM 2: Brain lesion segmentation based on JCLRRSR.

1 1 T T T T T T T T
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FIGURE 2: Correlation diagram between the segmentation accuracy and the total number of training samples. (a) Brain tumor segmentation.
(b) Multiple sclerosis injury region segmentation.

vectors from the different sequence images. When the image ~ well. Conversely, when the image block is too small, the
block is too large, the categories included will be inconsistent ~ features are less and the discrimination between different
and the extracted features cannot represent the current pixel ~ pixels will not be enough. Therefore, the size of image block
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FiGUure 3: Correlation diagram between the segmentation accuracy and the size of the neighborhood.

is another key factor in the JCLRRSR. Figure 3 shows the
effect of the neighborhood size on the segmentation accu-
racy of the brain tumor and the multiple sclerosis lesions. It
can be seen from the figure that when the neighborhood size
is set to 7 x 7, the segmentation accuracy of both the brain
tumor and the multiple sclerosis lesions is optimal. The
reason for this may be that the grey matter and the cere-
brospinal fluid both present an elongated structure in the
brain image. When the image block is too large, the central
pixel and other pixels in the image block will belong to
different brain tissue types. This will affect the accuracy of
feature extraction and then affect the final segmentation.

4.4. Parameter Settings. There are two parameters, « and f,
involved in the JCLRRSR. Figure 4 shows the effects of &« and f3
on the segmentation accuracy of the brain tumor and the
multiple sclerosis injury regions, where « takes the value in
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5} and f takes the value in
{0.001, 0.01, 0.05, 0.1, 0.5, 1}. As can be seen from the figure,
the algorithm is greatly affected by a both for brain tumor
data and multiple sclerosis data. This is mainly because, al-
though the brain tumor area is much larger than the multiple
sclerosis injury regions, it contains multiple subclasses such as
tumor and edema, and there are differences in the charac-
teristics of the pixels in these regions. In this experiment, we
established a = 0.005 and f = 0.05 for brain tumor data and
a = 0.1 and § = 0.05 for multiple sclerosis data, respectively.

4.5. Lesion Segmentation Results. Figures 5 and 6 show the
segmentation results of the brain tumor and the multiple
sclerosis injury regions, respectively. In the segmentation of
the brain tumor, since the lesion regions in the image include
the brain tumor and the edema around it, the JCLRRSR
would detect them as a whole. If a subsequent quantitative
analysis of the brain tumor is required, the test results will be
turther processed. The figures show that the segmentation

results obtained by the JCLRRSR are close to the real-world
results, which therefore meet the clinical needs. For better
comparative analysis, different data subjects and different
numbers of training samples are used to test several seg-
mentation algorithms. In the brain tumor dataset, the
samples are divided into high-grade and low-grade gliomas
according to the degree of tumor malignancy. Separately, in
the multiple sclerosis dataset, the samples are divided into
big multiple sclerosis and small multiple sclerosis lesions
according to the size of lesions. From Table 1, we can see that
the average accuracies of SRD, LRR, and the proposed
JCLRRSR method executed on different datasets and sub-
jects have a strong correlation with the number of training
samples, but the Global-RX method is not sensitive to the
number of training samples. In general, these methods
achieve better accuracy on HGG and BMSL because of the
large targets present for these two subjects. Beside these, the
JCLRRSR method can achieve optimal segmentation accu-
racy with different datasets and different subjects. This
comparison demonstrates the superiority of the proposed
method on multisequence MR images.

5. Conclusions

This paper presents an improved segmentation method for
brain lesions. The multisequence MR images were first fused
to form a high-dimensional feature matrix, during which
time the neighborhood information was incorporated into
the high-dimensional features of each pixel. Then, according
to the proposed JCLRRSR model, the image feature matrix
was decomposed and modeled under the joint constraints of
LRR and SR. The model not only reflected the global
structure of the image but also maintained the local in-
formation of the pixels, thus improving the decomposition
accuracy. Finally, considering the computational efficiency,
the LADMAP was selected to solve the model and then the
brain lesions were segmented. The setting of neighborhood
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FIGURE 4: Correlation diagram between the segmentation accuracy and parameters o and 8. (a) Brain tumor segmentation. (b) Multiple
sclerosis injury region segmentation.

(c)

FIGURE 5: Segmentation of the brain tumor images. (a) The original brain tumor images. (b) The segmentation results obtained by the
JCLRRSR. (c) The real-world results provided by the MICCAI 2012.

size, the number of training samples, and the values of =~ JCLRRSR approach, experiments were carried out involving
parameters « and f3 involved in the model were discussed in ~ the brain tumor data and the multiple sclerosis data. The
detail in Section 4. In order to verify the effectiveness of the =~ experimental results revealed that JCLRRSR can not only
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FIGURE 6: Segmentation of the multiple sclerosis images. (a) The original multiple sclerosis images. (b) The segmentation results obtained by
the JCLRRSR. (c) The real-world results provided by the ACCORD-MIND.

TaBLE 1: Comparison of segmentation accuracy obtained by different methods for two cases.

Lesions Subjects Number of training samples Global-RX [35] SRD [36] LRR JCLRRSR
200 0.7542 0.6803 0.7016 0.7624
HGG 500 0.7634 0.8153 0.8565 0.9175
800 0.7689 0.8209 0.8602 0.9213
200 0.7227 0.5422 0.6014 0.6624
Brain tumor LGG 500 0.7272 0.7903 0.8325 0.8951
800 0.7305 0.8023 0.8412 0.9031
200 0.7384 0.6112 0.6515 0.7148
Total 500 0.7503 0.8028 0.8445 0.9063
800 0.7497 0.8116 0.8507 0.9122
1000 0.6674 0.5213 0.5641 0.6425
BMSL 2000 0.6846 0.7235 0.7637 0.8026
3000 0.6855 0.7321 0.7732 0.8242
1000 0.5326 0.4865 0.5245 0.6057
Multiple sclerosis SMSL 2000 0.5578 0.6395 0.6835 0.7344
3000 0.5587 0.6400 0.6910 0.7356
1000 0.6000 0.5039 0.5443 0.6241
Total 2000 0.6212 0.6815 0.7236 0.7685

3000 0.6221 0.6860 0.7321 0.7799
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segment brain lesions automatically but also have certain
advantages in terms of segmentation accuracy as compared
with other existing methods.

Data Availability

The two sets of data used to support the findings of this study
are both from open datasets. Among that, one is from the
MICCAI BraTS Challenge 2012 (http://www2.imm.dtu.dk/
projects/BRATS2012/data.html). The other is from the
ACCORDION MIND database (https://clinicaltrials.gov/
ct2/show/NCT00182910).
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