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High-temperature superconductors exhibit a characteristic hourglass-shaped spectrum of magnetic
fluctuations which most likely contribute to the pairing glue in the cuprates. Recent neutron scattering
experiments in strongly underdoped compounds have revealed a significant low energy anisotropy of these
fluctuations which we explain by a model in which topological defects of the antiferromagnet clump to
producing domain wall segments with ferronematic order. This state does not invoke global charge order
but breaks C4 rotational and inversion symmetry. The incommensurability of the low doping
charge-disordered state is in good agreement with experiment and interpolates smoothly with the
incommensurability of the stripe phase at higher doping. Within linear spin-wave theory the dynamic
structure factor is in very good agreement with inelastic neutron scattering data and can account for the
observed energy dependent anisotropy.

T
here is emerging a coherent picture concerning the structure of spin excitations in strongly underdoped
cuprates (for a recent review cf. e.g. Ref. [1]). In both LSCO (with doping less than 5%)2,3 and YBCO4–6

materials it is now possible to prepare samples with predominantly one twin domain of the orthorhombic
structure which allows to elucidate the symmetry of the magnetic excitations in the CuO2 planes. Inelastic
neutron scattering (INS) experiments4,7–9 reveal a strongly anisotropic low energy spin response which breaks
the four-fold symmetry of a CuO2 plaquette. The latter is of course also broken due to the orthorhombic
distortion, however, for ‘conventional’ magnetic excitations this would only induce a small redistribution of
weight. In cuprates instead, the low energy response is quasi one-dimensional and corresponds to dynamic
incommensurate spin modulations which are oriented along the diagonals of a CuO2 plaquette in LSCO whereas
in YBCO the response is oriented along the Cu-O axis. Upon increasing energy these excitations disperse towards
the antiferromagnetic wave-vector QAF which is reached at a characteristic energy Ecross. Above Ecross the magnetic
fluctuations more or less isotropically disperse outwards and approach the antiferromagnetic (AF) spectrum of
the undoped compound. On the other hand, a scan in the direction orthogonal to the spin modulation reveals a
commensurate response up to Ecross whereas for larger energies the excitations start to disperse with almost the
same velocity as in the incommensurate modulation direction. Thus the overall magnetic fluctuation spectrum
resembles an hourglass parallel to the low energy magnetic spin modulations whereas it is ‘Y’-shaped in the
orthogonal direction.

Itinerant approaches10–12 can capture the features of hourglass-shaped excitations, however, it is questionable
whether these theories are compatible with the strong energy dependent orientational anisotropies described
above. In fact, the consideration of spin excitation anisotropies in detwinned YBa2Cu3O6.85

13 (i.e. close to optimal
doping) already requires an anisotropy of ,3% in the hopping integrals11 along the two orthorhombic directions.
In contrast, close to the metal-insulator transition orthorhombicity alone cannot account for the strong aniso-
tropies as also revealed by transport experiments on detwinned samples14.

The above experimental results are generally well explained by computations of the dynamical structure factor
on top of an ordered array of domain walls of the antiferromagnetic order parameter, so-called stripes15–18. Not
only the hourglass is well described but also general features as, for example, the recovery of C4 symmetry at high
energy15. On the other hand a severe problem with this interpretation for strongly underdoped cuprates is the
apparent absence of charge order. It has been argued that disorder can ‘wash out’ the stripe charge correlations
and corresponding models of disordered (or fluctuating) stripes have in fact been used in order to describe the
magnetic hourglass spectra of cuprates and cobalt oxides19,20.

Another kind of theories is based on the formation of spin spirals which also break spin rotational invariance
similar to stripes, but in the absence of concomitant charge correlations. Early proposals for spirals21 have been
shown to suffer from an intrinsic instability for homogeneous phases manifested by a negative compressibility22.
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On the other hand, holes bound to impurities in the spin glass phase
may generate a ‘dipolar distortion’ in the antiferromagnetic spin
background23 which in turn can stabilize long-range spiral order24,25.
Such long-range order coexistent with a disordered background is
reminiscent of liquid crystal phases26.

Spin excitations for homogeneous (perfectly ordered) helical mag-
nets have been computed within the tJ-model (see e.g.27,28) and ana-
lyzed with regard to the magnetic fluctuations in cuprates29.
However, to the best of our knowledge detailed computations of
the dynamical structure factor for spiral ground states on top of a
disordered background to compare with experiment have not yet
been done.

More recently, we have proposed a state for heavily underdoped
cuprates which shares characteristics of both the dipolar and the
stripe scenario. Holes added to the antiferromagnet clump in stripe
segments ending in fractional vortex-antivortex (VA) pairs30 resem-
bling disclination pairs in nematics26. A single short segment pro-
duces a dipolar distortion of the AF background similar to Ref. [23].
Under appropriate conditions a finite density of segments globally
breaks C4 rotational and inversion symmetry and yields spiral long
range order, a situation termed ferronematic in Ref. [30]. At large
length scales the spin structure coincides with the state proposed in
Refs. [24,25], but the microscopic origin of the dipoles, here stem-
ming from the charge segment nematic order, is completely different.
In analogy with liquid crystals, at large doping this ferronematic state
is expected to transform into a smectic phase thus providing a natural
link with the observed stripe state1 around doping 1/8. In fact, the
ferronematic state has the appealing feature that for parameters
appropriate for cuprates the resulting magnetic incommensurability
coincides with that obtained for static stripes so that a smooth cross-
over from the former to the latter with doping is feasible.

It has been shown within Gutzwiller variational calculations of
Hubbard-type models30,31 that VA dipoles correspond to stable
energy minima for typical cuprate parameters. However, if one is
interested only in the spin structure of vortex-antivortex pairs it
turns out30 that the Gutzwiller results can be reproduced within a
spin-only (Heisenberg) model supplemented by frustrating interac-
tions in order to stabilize the segments and the induced ferronematic
order. Such a model may appear too simplistic to compute dynamical
properties. However, our previous experience with ordered stripes15

shows that it can capture many features of a fully fermionic com-
putation, which in the present case would be restricted to too small
sizes to be meaningful.

Thus in order to study excitations on top of the ferronematic
ground states our investigations are based on the Heisenberg model

H~
X

ij

JijSiSj ð1Þ

where the spin structure is taken as coplanar and small out-of-plane
tilts due to the Dzyaloshinsky-Moriya interaction are neglected. The
segments are modeled as a one-dimensional array of Nva plaquette
centered magnetic vortices with alternating topological charge (cf.
Fig. 1a). For a number of Nseg segments the total number of holes is
given by Nh 5 NvaNsegn where n denotes the ‘filling factor’ of a
segment. Variational Gutzwiller calculations30 yield n < 0.7 for diag-
onal segments.

The following computations are performed for a ratio between
next-nearest (J9) to nearest (J)-neighbor interaction given by J9/J 5
20.1. These parameters are fixed in the undoped phase by the con-
dition that the calculated magnon excitations match the measured
spin-wave dispersion32.

Results
We compute the initial spin structure from a linear superposition of
randomly positioned vortex-antivortex segments with ferro order as
in Ref. [30]

Sx rð Þ~S0 exp iQrð ÞcosW rð Þ

Sy rð Þ~S0 exp iQrð ÞsinW rð Þ

Sz rð Þ~0:

ð2Þ

Here Q 5 (p, p) is the AF wave-vector and

W rð Þ~
XNseg

n~1

XNV A

i nð Þ
{1ð Þi nð Þarctan

x{xi nð Þ{0:5

y{yi nð Þ{0:5

� �
ð3Þ

is the angular spin distortion due to the Nseg segments. In Eq. (3) the
sum over i(n) is due to sites belonging to segment n and (21)i(n) 5

1(21) corresponds to a plaquette centered magnetic (anti)vortex.
Then the classical energy of Eq. (1) is minimized where the VA
structure is stabilized by an additional coupling JV between diag-
onally neighbored spins across the segments (cf. Fig. 1a). A fit of
the VA structure to the result of a Gutzwiller variational computation
yields JV/J 5 8 (cf. Methods section). In order to account for fluctua-
tions beyond the variational result we take a smaller value JV/J 5 1.5
which induces the same winding number for the ferronematic spiral
as for JV/J 5 8 (cf. supplementary information) and reproduces the
low doping magnetic incommensurability of LSCO. Thus this para-
meter is fixed at the static level and there are no free parameters in the
following dynamical computations.

For doping of nh 5 0.05 Fig. 1b demonstrates that this approach
can reproduce the static spin structure factor of LSCO measured with
elastic neutron scattering. Note that the present fit with plaquette
centered vortices yields shorter segments with Nva 5 4 as compared
to our previous investigations30 with site-centered vortex-antivortex
pairs.
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Figure 1 | Static properties of the ferronematic spin structure. (a) Detail

of the staggered ferronematic spin arrangement from a 84 3 84 lattice in

the xy-plane. Segments are build from plaquette centered vortices

(squares) and antivortices (circles) which are stabilized by exchange

couplings JV between diagonally neighbored spins perpendicular to the

vortex-antivortex line. Furthermore a nearest-neighbor (J) and next-

nearest neighbor (J9) coupling is implemented in the model. (b) Fit of the

spin structure factor (LSCO) for doping nh 5 0.05 and segment length Nva

5 4 perpendicular to the direction of segments. Computations have been

done on 84 3 84 lattices and we average over 10 segment configurations.

The experimental resolution (cf. Fig. 4 of Ref. [2]) has been taken into

account by convoluting with a gaussian. Data by courtesy of S. Wakimoto.

(c) Sketch of the Brillouin zone geometry used in the present paper.

The K-direction corresponds to the direction of the disordered spiral

modulation and the shaded square indicates the momentum range for the

intensity plot of Fig. 3.
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In order to compute excitations on top of the ferronematic ground
state we rotate the spin quantization axis to the direction of the local
mean-field magnetization and apply linear spin-wave theory as
described in Methods.

It is then straightforward to obtain the spin susceptibilities

xab
ij vð Þ~ Sa

i ; Sb
j

D ED E
from the equations of motion and to compute

the Fourier transformed

xab
q vð Þ~ 1

N

X
ij

eiq: Ri{Rjð Þ xab
ij vð Þ

D E
config:

: ð4Þ

In practice we evaluate xab
q vð Þ for a randomly generated configura-

tion of segments and then take the average over typically 10–20
configurations as indicated by Æ…æconfig.

The spins of the ferronematic state can fluctuate both in- and out-
of the CuO2 plane. Both types of excitations contribute to the mag-
netic neutron-scattering cross section measured by INS which is
proportional to

d2s

dVdE
*
X
ab

1
q2

q2dab{qaqb

� �
Imxab q, vð Þ:Sq vð Þ: ð5Þ

Here xab(q, v) only depends on the in-plane components of q while
the perpendicular component qz enters the cross section only
through the prefactors inside the sum. In the extreme case that the
qz is much larger than the in-plane components (i.e. for the case that
the neutron beam is almost perpendicular to the CuO2 plane and
high energies) the response is dominated by the in-plane response
xE

q vð Þ33. In practice, qz depends on energy and one always has a
contribution from perpendicular, in-plane and off-diagonal suscept-
ibilities which we have all included. In our computations we assumed
an incoming neutron energy Ei and a scattering geometry as in typ-
ical neutron scattering experiments (i.e. qx and qy in the first Brillouin
zone).

Fig. 2 shows momentum cuts of the neutron scattering intensity
within different energy ranges which have been obtained from the
same ferronematic configurations for which the static response in
Fig. 1b has been evaluated. Momentum cuts along the H- and

K-direction for the same energies are reported in Fig. 3. At low
energies (panel (a) in Figs. 2, 3) the response is dominated by two
incommensurate peaks along the orthorhombic K-direction due to
the spiral modulation perpendicular to the segments and coinciding
in momentum space with the static peaks in Fig. 1b. The period of the
modulation is obtained as l 5 2p/jqKj 5 14aortho corresponding to
an incommensurability of eortho 5 1/14 5 0.07143. Note that for
diagonal stripes with n holes per site the incommensurability would
be given by eortho 5 nh/n thus yielding the same value for nh 5 0.05
and n 5 0.7.

Upon increasing energy the reponse first keeps the elongated
shape along the K-direction (panel b) but becomes more isotropic
at higher energies (panel c). From the momentum cuts in Fig. 3 the
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Figure 2 | Neutron scattering intensity for the ferronematic at doping nh 5 0.05. The magnetic neutron-scattering cross section has been integrated over

energy ranges (a) 0–0.06 J, (b) 0.13–0.2 J, (c) 0.27–0.34 J, (d) 0.68–0.75 J. The momentum range corresponds to the shaded area indicated in Fig. 1c. The

value of the perpendicular momentum qz has been calculated from energy-momentum conservation for an incident neutron beam energy with Ei 5 0.3 J

(panels a,b) and Ei 5 0.8 J (panels c,d). Average over 6 configurations.
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Figure 3 | Momentum cuts parallel (H-direction, red squares) and
perpendicular to the segments (K-direction, black circles) for the
intensity distributions shown in Fig. 2.
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dispersion of excitations along the K-direction toward the antiferro-
magnetic wave-vector can be clearly deduced. Panels b,c of Fig. 3 also
reveal a small shoulder in the momentum structure along K which is
due to an outwards dispersing branch. Similar to the case of stripes16

and enhanced by disorder the corresponding intensity is strongly
reduced with respect to the inwards dispersing excitations.

At still higher energies the magnetic scattering intensity acquires a
quasi two-dimensional ring-shaped structure (Fig. 2, panel d). The
overall features of the intensity distribution are rather similar to data
from INS experiments on LSCO (cf. Fig. 1 in Ref. [9]), however, our
calculations reveal an anisotropic intensity distribution with variable
weight ratio between the H- and K-directions at different energy
ranges. (cf. panel (c) of Fig. 3). This feature resembles an analogous
rotation of weight observed in the magnetic scattering from static
stripes in La1.875Ba0.125CuO4

34, whereas the data from strongly
underdoped LSCO seem to indicate a more isotropic distribution
of weight. We should remark that for the case of stripes we observe
that a computation in a spin only model (as here) yields a more
anisotropic response than a more accurate computation in a fermion
model15. Thus we attribute this small difference in anisotropy to the
simplicity of the model. Unfortunately a fermion model could not be
used due to the large size required to take into account disorder with
high momentum resolution.

The magnetic dispersions along K and H directions can be
deduced from Fig. 4 which shows the corresponding cuts of the
magnetic structure factor Eq. (5) weighted by energy. Panel (a) of
Fig. 4 clearly reveals the basic features of the hourglass spectrum
although the resolution is limited due to the large periodicity of the
ferronematic spiral as compared to the size of the lattice which can be
dealed with. The large intensity feature corresponds to the inwards
dispersing magnetic excitations which merge at QAF and subse-
quently disperse outwards again with reduced intensity. At high
energies the magnetic fluctuations approach the magnon dispersion

of the undoped antiferromagnet which is indicated by the solid line
in Fig. 4. The Y-shaped structure of the spin excitations in the parallel
direction to the segments is reported in panel (b) of Fig. 4. Here the
low energy magnetic excitations are confined to QAF but also start to
follow those of the undoped AF above the crossing energy Ecross.

The location of Ecross is difficult to determine from Fig. 4 due to the
limited resolution. Instead we deduce this scale from the energy
dependence of the magnetic structure factor for the antiferromag-
netic wave vector QAF which is shown in Fig. 5 for doping x 5 0.04.
Since the ferronematic spin spiral is strongly disordered the static
structure factor also displays small but finite weight at QAF. This
induces a ‘quasi-elastic’ peak at v R 0 in the frequency dependent
magnetic cross section, Sq~QAF vð Þ in addition to the higher energy
feature at Ecross < 0.14 J. We can convert the ‘J-scale’ into energy
units by taking J 5 112 meV32 and a frequency independent
renormalization factor Zc 5 1.1835 which yields good agreement with
the magnon dispersion of the undoped AF. Based on this conver-
sion we also show in Fig. 5 experimental Sq~QAF vð Þ data for
La1.96Sr00.04CuO4 which we have extracted from Fig. 1 of Ref. [7].
Interestingly also these data support an increase of Sq~QAF vð Þ for v
R 0 in agreement with the persistence of AF domains in an otherwise
incommensurate ordered spin system. Finally, the inset to Fig. 5
reports Ecross for x 5 0.04 and x 5 0.05 which fits rather well into
the experimentally determined8 evolution of Ecross with doping. In
contrast, stripe calculations in the strongly underdoped regime usu-
ally significantly overestimate Ecross

17 although this may also be cured
by disorder19.

Discussion
We have shown that the spectrum of spin excitations computed on
top of a ferronematic ground state is in qualitative and quantitative
agreement with inelastic neutron scattering experiments on cuprate
superconductors in the spin glass phase. Since the ferronematic also
can be thought of arising from melted stripes our theory provides an
explanation for the continuous evolution of the hourglass-shaped
magnetic excitations from low to optimal doping. It should be
mentioned that preliminary Monte-Carlo simulations also seem to
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Figure 5 | Energy dependence of the magnetic cross section Sq~QAF vð Þ
(cf. Eq. (5)) at the antiferromagnetic wave-vector. The main panel reports

Sq~QAF vð Þ for doping x 5 0.04 (dashed) together with experimental data

extracted from Fig. 1 of Ref. [7]. Inset: Comparison of the crossing energy

with experimental data for LSCO (solid circles) and LBCO (open circle)

from Ref. [8]. For the conversion into energy units we use J 5 112 meV32

and a frequency independent renormalization factor Zc 5 1.1835.Figure 4 | Intensity plot of the cross section vSq(v) [Eq. (5)] for a
momentum cut perpendicular (panel a) and parallel (panel b) to the
segments. The value of the perpendicular momentum qz has been

calculated from energy-momentum conservation for an incident neutron

beam energy with Ei 5 J. The solid lines report the magnon dispersion of

the undoped antiferromagnet. Average over 6 configurations.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5319 | DOI: 10.1038/srep05319 4



support smectic charge correlations which are stabilized by long-
range Coulomb interactions. While such correlations between dis-
ordered stripes can also induce an incommensurate magnetic
response19, the magnetic fluctuations of the ferronematic spiral are
due to the disordered magnetic background which is induced by the
vortex and antivortex dipoles of the charge segments.

Experimentally, the ferronematic state is supported by the obser-
vation of a low temperature ferroelectric phase in the spin glass phase
of cuprates36. In fact, the ferronematic state breaks inversion sym-
metry so that on general grounds37 a ferroelectric distortion becomes
possible e.g. via the inverse Dzyaloshinskii-Moriya mechanism38.
The ‘smoking gun’ experiment would then be to test whether the
onset temperature of incommensurate spin fluctuations coincides
with that of the ferroelectric as predicted by our model.

Methods
Parameters for the effective Heisenberg model. In order to estimate the effective
coupling Jv across the plaquette centered magnetic vortices and antivortices (cf. Fig. 1)
we perform a variational calculation based on the single-band Hubbard model

H~
X
ij,s

tijc
{
i,scj,szU

X
i

ni,:ni,; ð6Þ

including nearest-neighbor (t) and next-nearest neighbor (t9) hopping. Ground state
properties are obtained from the Gutzwiller variational wave-function YGh j~P̂G W0j i
where P̂G~Pi 1{ 1{gið Þni,:ni,;

� �
partially projects out doubly occupied sites from

the Slater determinant jW0æ. We evaluate EG({gi}) 5 ÆYGjHjYGæ/ÆYGjYGæ in the limit
of infinite dimensions39 corresponding to the so-called Gutzwiller approximation
(GA) and minimize with respect to the variational parameters gi. We set U/t 5 8 and
t9/t 5 20.2 which within a time-dependent extension of the GA reproduces the spin-
excitations of undoped LSCO15,16.

Panel (a) of Fig. 6 reports the spin/charge texture obtained in this way for 4 holes
(192 particles) on a 14 3 14 lattice with periodic boundary conditions. Hole charges

(indicated by circles) are arranged in 2 3 2 plaquettes aligned along the diagonal
direction. The center of the plaquettes alternately contains a magnetic vortex and
antivortex, respectively, inducing a phase change of the AF order across the segment.
This feature can be modeled within the Heisenberg model by diagonal couplings Jv

indicated by solid bars in panel (b) of Fig. 6. Panels (c,d) compare the angular spin
twist , atan(Sy/Sx) between GA computation and minimization of the Heisenberg
model energy along the two scans indicated in panel (b). We find that for Jv/J 5 8
there is excellent agreement of the spin far field (which is determined by the dipole
strength of the segment) between both approaches. On the other hand, one may argue
that the variational GA overestimates the localization of hole charges and that
including corrections beyond the GA would lead to actually smaller values of Jv/J. The
phase change across the segment is then reduced for smaller Jv/J as can be seen from
panels (c,d). However, as long as Jv=J *> 1:5 we find that the static and dynamic spin
structure factor only weakly depends on Jv/J as demonstrated in the supplementary
material where we show results for the GA fitted value Jv/J 5 8. In the ‘Results’ section
instead we have taken a smaller value Jv/J 5 1.5 in order to include fluctuations
beyond the GA variational approach.

Evaluation of spin excitations. Spin excitations on top of the ferronematic ground
state are obtained by applying a rotation to the spins

Sx
i ~

~Sx
i cos Hið Þz~Sy

i sin Hið Þ ð7Þ

Sy
i ~

~Sy
i cos Hið Þz~Sx

i sin Hið Þ ð8Þ

Sz
i ~

~Sz
i ð9Þ

so that the spin quantization axis points in the direction of the local mean-field
magnetization40.

For this effective ferromagnetic state one can apply the Holstein-Primakoff
transformation:

~Sx
i ~

1
2

a{
i zai

� 	

b) xya) GA

scan 1

scan 2
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i
x

-2

-1
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1
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(S
y/S

x)
GA, U/t=8, t’/t=-0.2
xy, J

v
/J=8
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v
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v
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Figure 6 | Comparison of spin textures obtained from the Hubbard model within the GA (a) and the Heisenberg model (b) The GA solution shown in
panel (a) has been obtained for 4 holes in a 14 3 14 system. Parameters: U/t 5 8, t9/t 5 20.2. The spin structure of panel (b) results from the

minimization of the Heisenberg model. Here the 4 diagonal exchange couplings which are indicated by bars are set to Jv /J 5 8 and all other nearest-

neighbor couplings are J9/J 5 20.1. Panels (c), (d) compare the angular rotation of the spins (5atan(Sy/Sx)) along the scans indicated in panel (b).
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~Sy
i ~{

1
2
za{

i ai

~Sz
i ~

1
2i

a{
i {ai

� 	
:

The linear-spin wave theory Hamiltonian reads,

H~
X

ij

Aija
{
i ajz

1
2

X
ij

Bij a{i a{
j zajai

h i
ð10Þ

with

Aii~{
X

j

Jij cos Hi{Hj
� �

ð11Þ

Ai=j~
1
2

Jij cos Hi{Hj
� �

z1
� �

ð12Þ

Bij~
1
2

Jij cos Hi{Hj
� �

{1
� �

ð13Þ

where Hi is the angle the spin i forms with the x-axis. Here we used the fact that the
configurations are coplanar. The absence of unstable spin-wave modes in our analysis
supports this assumption.
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