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Abstract

Background: Parasites significantly alter topological metrics describing food web structure, yet few studies have explored
the relationship between food web topology and parasite diversity.

Methods/Principal Findings: This study uses quantitative metrics describing network structure to investigate the
relationship between the topology of the host food web and parasite diversity. Food webs were constructed for four
restored brackish marshes that vary in species diversity, time post restoration and levels of parasitism. Our results show that
the topology of the food web in each brackish marsh is highly nested, with clusters of generalists forming a distinct modular
structure. The most consistent predictors of parasite diversity within a host were: trophic generality, and eigenvector
centrality. These metrics indicate that parasites preferentially colonise host species that are highly connected, and within
modules of tightly interacting species in the food web network.

Conclusions/Significance: These results suggest that highly connected free-living species within the food web may
represent stable trophic relationships that allow for the persistence of complex parasite life cycles. Our data demonstrate
that the structure of host food webs can have a significant effect on the establishment of parasites, and on the potential for
evolution of complex parasite life cycles.
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Introduction

Food webs are abstractions of nature that describe community

topology via networks of trophic interactions [1,2]. The informa-

tion provided by existing topological (who eats whom) webs has

provided a fertile resource for the generation of theory on the

determinants of community structure and the stability of

ecosystems [1,3,4,5,6]. For example, the topology of a food web

may help in understanding the flow of energy through systems

and whether population dynamics are more or less stable in

highly diverse communities relative to low diversity communities

[6,7,8,9]. Further, several topology-based metrics have become

key parameters in the theoretical search for general patterns in

food webs [7], and as determinants of food web stability [9].

Parasites have largely been understudied in these systems, and

there have been few attempts to use the topology of the free-living

host community to describe parasite dynamics [10,11,12].

However, highly resolved topological food webs [13,14] show

features of real structure that may be important in the persistence

of complex parasite life cycles [15]. First, free-living hosts serve as

both habitat and dispersal agents, and if transmission of a parasite

is a function of the density of the final host, an abundance of hosts

will result in an abundance of parasites [16,17]. Second, because

many parasites tend towards high host specificity [18,19],

increasing the diversity of host communities may result in a

concomitant increase in the diversity of parasites [20,21]. Third,

trophically transmitted parasites are dependent upon the feeding

habits of predators and prey for transmission [22]. Consequently,

patterns of parasite diversity are contingent upon, and susceptible

to, the structure and distribution of feeding interactions and the

abundance of host in the free-living community [23]. In essence,

the structure of the host food web is likely to exert a strong

selective pressure on the evolution of parasite transmission

strategies and subsequent patterns of parasite diversity observed

in extant systems [23,24,25].

Clusters of species that have a critical place in the topology of

the host network are likely to provide insight into the diversity of

parasites in ecosystems for two reasons. First, those host species

that fall into core clusters within ecological networks are likely to

experience fewer fluctuations in abundance relative to those that

fall in the periphery of a network [26] providing a reliable resource

for parasites. Second, clusters of tightly interacting species that

drive nestedness and modularity in food webs yield stable

predator-prey trophic links [27,28] and exploiting these stable

links may ensure successful completion of the parasite life cycle.

This is particularly important for helminth parasites with complex
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life cycles involving two or more hosts. As a general rule,

transmission between the final intermediate host and the definitive

host occurs via predation. The reliance on this form of

transmission, over evolutionary time, is likely to have favored

parasitism of host species that are central to the structure of food

webs, and fall within interactions that are relatively ‘‘strong’’ (e.g.

[12,24]). Consequently, identifying patterns in the topology of

ecological networks and linking regularities in the networks to

parasite community dynamics is central to understanding how

parasites establish and persist in host communities.

An ideal situation in which to test the effect of network topology

on the emergent patterns of system parasite species richness

would be within a series of islands of varying ages as in MacArthur

& Wilson’s classic island biogeography study [29]. MacArthur

& Wilson posited that the number of species within a discrete and

isolated system was a consequence of the species previously located

there and the processes of immigration extinction and speciation.

A consequence of this is that as a community assembles, the

network and trophic structure of the food web should also change,

revealing patterns of community complexity [30]. In this study, we

use four brackish tidal marshes, each with a distinct host diversity

and community composition as a surrogate for individual islands

with a range of diversity and community complexity. Metazoan

(helminth) parasites are common in invertebrates, fishes and birds

in these marshes [31], and use a variety of vertebrate definitive

hosts, molluscan first intermediate hosts, and fish second

intermediate hosts. These life history strategies are intimately tied

to the trophic interactions between free-living species, and as a

result, the structure of the food web should act as a template for

transmission. Using network centrality metrics [32] that describe

the positional importance of free-living hosts, we quantify

characteristics of the food web that are necessary for complex

parasite life cycles to persist, and the potential mechanisms driving

parasite species richness within host species. We report that the

diversity of parasites within host species is largely determined by

how well connected and central a host is within the network.

Methods

Ethics Statement
Field collections were conducted under scientific permits issued

by the New Jersey Department of Environmental Protection,

Division of Fish and Wildlife, Marine Fisheries Administration

(#0558, #0628, and #0746) and Bureau of Freshwater Fisheries

(#0536, #06-008, and #07-019). Prior to necropsy, fish were

maintained briefly in aquaria following animal care protocols

approved by The Animal Care and Facilities Committee at Rutgers

University, Office of Research and Sponsored Programs (Protocol

00-012: NIH Assurance Number A3262-01). Fish euthanasia was

conducted in accordance with the 2000 Report of the American

Veterinary Medical Association Panel on Euthanasia, approved by

The Animal Care and Facilities Committee at Rutgers University

under the protocol described above (Protocol 00-012): fish were

placed in a buffered 300 mg/L solution of tricaine methanesulfonate

(MS-222) until cessation of opercula movement, followed by pithing

of the brain and spinal cord.

Defining the study sites
Sampling occurred within four brackish tidal marshes in the

New Jersey Hackensack Meadowlands (USA): over 90% of the

marshes in the Meadowlands are heavily impacted due to decades

of anthropogenic disturbances [33]. These disturbances, largely in

the form of tidal restriction and habitat fragmentation, have

resulted in marsh habitats dominated by Phragmites australis

(common reed); a plant whose presence is typically an indicator

of habitat degradation [34]. Recent large-scale restoration projects

with the goal of creating and enhancing a variety of marsh habitats

for wildlife, and to bring about the recovery of wetland function

[35], have created spatially delineated habitats that vary in time

since restoration: Oritani marsh (unrestored); Mill Creek marsh

(20 years since restoration); Harrier Meadow (10 years); Secaucus

High School marsh (0 years).

Mill Creek marsh (20 year) is a 57-hectare tidal marsh bordered

by highways and residential land (40u479450 N 74u029300 W). The

marsh restoration has resulted in low marsh habitats dominated by

Spartina sp and Distichlis sp that are flushed daily by the tides: tidal

impoundments and lowland scrub-shrub habitats lay along the

marsh/upland ecotone. Harrier Meadow marsh (10 year) is a 32-

hectare tidal marsh surrounded by tidal mudflats and urban

development (40u479120 N 74u07930 W). The marsh has low

marsh habitat similar in vegetation to Mill Creek, shallow open

water impoundments that are hydrologically connected to the

surrounding mudflats, areas of higher elevation dominated by

Phragmites australis, Lythrum salicaria, and lowland scrub-shrub

habitats. Secaucus High School marsh (0 year) is a 43-hectare

tidal marsh bordered by a river and residential development

(40u489170 N 74u029520 W). The site is currently dominated by the

common reed (P. australis), and contains narrow sinuous channels,

several mosquito ditches, and tide gates. Tidal flow is restricted

and large sections of the marsh receive rare inundation at high

tide: restoration to restore regular tidal flow, and wetland function

are currently underway. Oritani marsh (unrestored) is a 224-

hectare tidal marsh that has no record of human alteration or use

(40u479570 N 74u059070 W). The marsh is undeveloped and

includes more than 150 hectares of upland area and a smaller area

of high and low marsh with small tidal channels. The upland areas

are dominated by a dense monoculture of common reed (P.

australis). The high marsh areas are dominated by saltmarsh hay

(Spartina patens), while the low marsh areas are predominately

smooth cordgrass (S. alterniflora), marsh fleabane (Pluchea pupur-

ascens), and dwarf spikerush (Eleocharis pavula).

Although the ‘real’ food web is likely to span the entire New

York-New Jersey estuary complex, we constructed four food webs

that are constrained by physical boundaries (roads, urban

development) that surround each marsh site. In addition, we limit

the food webs to those species found in tidally influenced sediment

and the vegetated habitat within the marsh (sensu [36]). By

constraining each food web spatially, we omit birds, mammals,

and invertebrates that are transient in the marsh habitat. Further,

we do not consider the edge of each marsh, and the species located

within this habitat, as part of our community as these species are

likely indicative of the mudflats in the estuary complex, or the

urban development that surrounds each site.

Our preferred taxonomic unit for constructing each food web

was species, although we were limited by our source data. As a

consequence, some members of our food web were lumped into

large categories (e.g. Nematoda, copepods, ostracods). Where

possible, we empirically validated literature records for birds (point

count surveys every three months starting in December 2005 and

ending in December 2007: bird species were recorded if visually

detected within a five-minute period at any of three survey stations

within each marsh), benthos (benthic cores were taken at a depth

of 5 cm every three months starting in December 2005 and ending

in December 2006 at three locations within each marsh), and

fishes (active seine netting, minnow trapping, and trap nets were

deployed every three months starting in December 2005 and

ending in December 2007). However, the majority of species we

document in our food webs were based upon community data

Food Web Networks and Parasite Diversity
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collected from the literature for birds [37,38], fishes [39], and

benthos [40,41]. We included species from these records if they

comprised more than 0.5% of the individuals sampled, but relaxed

this criteria for top predators given their relative importance in the

structure of food webs and role as potential definitive hosts for

parasites (sensu [36]). For basal species we lumped: terrestrial and

aquatic detritus; micro and macroalgae; and the producer

component of the food chain together. Though this represents a

gross simplification of a high level of diversity [42], it has been

used in other parasite food web studies as a method of minimizing

complexity that may not be relevant in parasite transmission [36].

These criteria were used consistently for each food web: the species

that fulfil these rules are listed in tables provided in the

supplementary files (Table S1: Appendix S1).

Food web topology
Food webs consist of a predator(i)-prey(j) matrix with n species,

and were constructed following the methods in Cohen et al. [2,43].

Given our interest in the topology of the free-living host network,

we did not construct parasite subwebs sensu Lafferty et al. [36].

Consequently, our matrices and analyses were limited to

traditional predator-prey interactions. Binary entries in these

matrices indicate whether a predator eats a prey species. Trophic

links were determined for all taxa using primary publications and

monographs [44,45,46]. In cases where the diet description was

overly vague (e.g. benthic invertebrates) we used our discretion,

based upon adult body-size relationships, in assigning trophic links

[47,48]. We further extended links between predators and prey by

inferring links using our empirical parasite records. Given that

parasites are a useful indicator of host diet [49]: the presence of a

parasite species within a host provides a robust indicator of host

diet [22,50]. Thus, a host species that serves as an intermediate

host for a parasite species found in a specific predator will be a

prey item for that predator [22].

Food web metrics were calculated for each predator-prey matrix

and included the number of species (S), the number of observed

links (Lo), the number of potential links (calculated as the number

of cells in the matrix, S2), linkage density (d), directed connectance

(C) [51], and nestedness (N) [52]. Connectance (C = Lo/S2) is the

number of realized links (Lo) divided by the number of possible

links (S2). Measured in this way, C is the average fraction of species

in a community consumed by the average species. Nestedness

describes the extent to which a group of specialist consumers feed

upon a subset of the prey eaten by generalists. To estimate

nestedness we calculated matrix temperature using the software

ANINHADO [53] that compares the extent to which a matrix is

significantly nested relative to a series of null model generated

matrices. The null model used to assess significance was

implemented as Ce in ANINHADO. To allow for across network

comparisons we also calculated relative nestedness [54].

Topology is a concept from graph theory that is used to

characterise the structure and status of a network. To this end, we

calculated features such as node degree, eigenvector centrality,

betweenness, closeness and modularity. The degree (or connectivity;

k) of a node, describes the number of links a singular node makes

with other nodes and provides a fundamental metric. Using these

values we calculated the cumulative degree distribution, a

representation of the fraction of trophic species P(k) that have k or

more trophic links. We examined these distributions by fitting three

different models and ranked model fit using the Akaike Information

Criterion [55]: (a) exponential P(k) , exp(-ck); (b) power-law P(k) ,
k-c; and (c) truncated power-law P(k) , k-c exp(- k/kx). Eigenvector

centrality scores correspond to the values of the first eigenvector of

the predator-prey matrix, and may be interpreted as arising from a

reciprocal process in which the value for each species is proportional

to the sum of the centralities of those species to whom it is connected

[56]. This implies that species with high eigenvector centrality

values will be those that exist in densely populated substructures in

the food web. A corollary of eigenvector centrality is the value of

betweenness, a quantitative measure for describing the centrality of

species, provided as the frequency with which a node is located on

the shortest path between all other species [56]. Conceptually, those

species with high-betweenness are those that represent ‘‘bridges’’

within the food web. Closeness provides a measure that describes

the relative distance from a focal species to all other species.

Intuitively, closeness provides an index of the extent to which a

given species has short paths to all other species. These tests were

computed in R v2.12.1 statistical programming language [57] with

the sna: tools for network analysis package v.2.0.1. [58]. We

measured an additional descriptive metric of network centrality

using models of core/periphery structure [59]. The idea of network

core/periphery structure in food webs is that there is a physical

centre of the food web (species with high levels of interspecific

interactions) and a periphery of a cloud of points in Euclidean space

(species with fewer direct and/or indirect interactions). To estimate

the core/periphery structure within each network we used

UCINET 6. Last, we measured the modular structure of each food

web using a clustering algorithm to define group-membership [60].

The algorithm, proposed by Allesina & Pascual [60], merges two

important concepts: first, it identifies compartments (sets of highly

interacting species), and secondly forms groups using these data and

metrics that describe the similarity of species ‘‘roles’’ (sets of species

that have similar interaction patterns).

Field collections and incorporating parasites into the
networks

Information on helminth parasites came from field sampling of

a focal species, Fundulus heteroclitus, and a literature review of

potential parasites of the free-living organisms present in the study

system. Fundulus heteroclitus was selected as a focal species because it

is a highly abundant resident marsh species along the east coast of

North America, likely plays an important role in marsh food webs,

and has a wide range of possible helminth parasites [61]. The

abundance of F. heteroclitus, and its helminth parasites were

measured every three months starting in December 2005 and

ending in December 2007 (eight contiguous seasons: two fall, two

spring, two winter, two summer). Fish were collected using a 4 mm

seine and baited minnow traps; all habitats within each marsh

were sampled for at least 5 days each season. From each seasonal

collection, thirty fish were identified to species, euthanized and

immediately necropsied. Fish necropsy was done using standard

parasitological techniques. Helminth parasites collected during

necropsy were identified using keys and primary literature. In

addition to these empirical data, we selected twenty one

representative parasites, that ranged in life cycle strategy and host

specificity, and were likely to be found in each marsh site given the

presence of particular hosts (see Table S2). Consequently, host-

parasite links in these analyses were only included in the web when

the parasite was known to have suitable hosts present for each life

stage of the parasite species. Thus our network is not a

comprehensive host-parasite network, but a subset of parasites

within a network of host interactions.

The topological determinants of parasite diversity
To test whether network topology affects the diversity of

parasites within a host, we used regression tree analysis (RT).

Regression tree analysis develops a set of ‘rules’ derived from

predictor variables that best recreate the observed pattern in the

Food Web Networks and Parasite Diversity
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response variable [62,63]. The response variable in this analysis is

parasite diversity within a host; predictor variables were

topological food web metrics (Table 1). In this technique, trees

are constructed by repeatedly splitting variables along binary

nodes using predictive covariates that lead to an average value of

the response variable. Nodes of covariates may be nested, with the

most basal explaining the largest proportion of variation in the

response variable. A major advantage of this analysis technique is

that it does not rely on the assumptions that are required for the

appropriate use of parametric statistics (i.e. Gaussian distribution

of predictor variables), nor does it make assumptions about spatial

or temporal autocorrelations. Further, regression tree analysis is

not restricted by linearity in predictor and response variables or by

multicollinearity in predictor variables. To avoid over-parameter-

ization, trees were selected using the cost-complexity algorithm,

whereby auxiliary nodes are cut if no significant loss in the mean

square error of the predictions is detected. These trees were

constructed with R v2.12.1 statistical programming language using

the rpart: recursive partitioning package [64]: variable importance

was determined using the caret: classification and regression

training package [65].

To validate the structure of the generated regression tree, we

use random forest methods to generate class predictions based on

several regression trees. In brief, a series of regression trees are

constructed using a random selection of some of the input

predictor variables. A final tree is built, where the predictions are

based upon the aggregate outcome of all the randomized trees

forming the random forest [66]. In these analyses, we use fully

cross-validated regression trees, and random forests with 1000

trees were used to predict parasite diversity within hosts. We

analyzed all food webs together and separately and determined

variable importance using R v.2.12.1 and the randomForest

package [67].

Our a priori hypothesis was that the diversity of complex life

cycle parasites would be higher in those host species that are highly

connected, and fall within densely populated substructures of the

food web i.e. eigenvector centrality score will be the most basal

node in the regression tree.

Results

Structure of the free-living web
The Oritani marsh (unrestored) included 71 species, and had

5041 potential links of which 629 were realised, resulting in a

connectance of 0.125 (Table 2). The Secaucus Marsh (0 year)

included 87 species, and had 7569 potential links of which 627

were realised, resulting in a connectance of 0.083 (Table 2). The

restored marshes Harrier Marsh (10 year) and Mill Creek (20 year)

included 112 and 122 species respectively; the resulting values of

connectance were 0.096 for Harrier Marsh and 0.124 for Mill

Creek Marsh (Table 2). All four of our trophic food webs displayed

cumulative degree distributions that were different from what

would be expected if the link distribution were random (Figure 1).

Each food web had data that were consistent with an exponential

(AICc = –115.54) or truncated power-law distribution (AICc =

–113.52): as measured by AICc there was no difference in fit

between these models (DAIC = 2.02), though the data was not

well represented by the power-law (AICc = –49.25). Good fits of

the data to a power-law distribution were achieved in the range of

1-10 interactions per species (Figure 1), this was followed by a

sharp cut-off for species with more than 10 interactions, resulting

in a poor model fit [68,69]. The identity of the best-fit model is

secondary to our data departing from a power-law distribution;

this suggests that super-generalist species are more rare than would

be expected if the networks were built using a scale-free

distribution to describe the number of interactions per species.

Like many aquatic ecosystems, the food web had high diversity in

the low and high trophic levels and with relatively few species in

the intermediate trophic levels. The linkage density increased

though not markedly so across the gradient of time post-

restoration (Table 2).

All networks were significantly nested in comparison to

randomised matrices (p,0.001; Table 2). We report the minimum

AIC found by using the simple group based model [60] that

determined that a configuration that contained 15 groups for

Oritani and Secaucus Marshes, and 18 and 19 for Harrier

Meadow and Mill Creek Marshes fit the data best (Table 2:

Figure 2). Alternate group size configurations and their respective

AIC values are contained in supplementary tables (Table S3).

Parasite community in Fundulus heteroclitus
A total of 960 sentinel fish were studied: 30 collected in each of

the eight seasons between 2006-07 in each of the 4 marshes. Ten

taxa of metazoan parasites were identified including nematodes

Dichelyne bullocki and Contracaecum sp; the digenean Lasiotocus minutus

and metacercaria of Ascocotyle diminuta Posthodiplostomum minimum;

monogeneans Fundulotrema prolongis and Swingleus ancistrus; acantho-

cephalans Paratenuisentis ambiguous and Southwellina hispida (cysta-

canth); the copepod Ergasilus funduli; these taxa infected more than

70% of the mummichogs examined. Parasite intensity per host

ranged from 1 to 127.

Table 1. Predictors used in regression tree and random forest model building.

Code Description Range

Eigenvector The value for each species is proportional to the sum of the centralities of those species to whom it is connected. 0.0151–1.00

Betweenness The frequency with which a node is located on the shortest path between all other species. 0–79.26

Closeness The relative distance from a focal species to all other species. 0.38–0.74

Degree The number of links a singular species makes with other species. 1–73.00

Group Group membership 1–19

Coreness The relative distance from a focal species to the centre of the food web. 0.002–0.36

Marsh diversity Species richness 71–122

Trophic generality Trophic generality (G) 0–55

Trophic vulnerability Trophic vulnerability (V) 0–70

doi:10.1371/journal.pone.0026798.t001
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Where are the parasite life stages?
Our a priori prediction was that the diversity of complex life

cycle parasites would be higher in those host species that are

highly connected, and fall within densely populated substructures

of the food web i.e. the regression tree analysis would support

eigenvector centrality as the predominant factor in determining

parasite diversity within a host. Using empirical parasite data from

our field collections of Fundulus heteroclitus, and sampling of twenty-

one parasite species from primary literature, we find that the best

predictors of parasite diversity within a host are trophic generality,

Figure 1. Log-log plots of cumulative distribution of links per species. (a) Oritani Marsh (unrestored), (b) Secaucus Marsh (0 year), (c) Harrier
Marsh (10 year), and (d) Mill Creek Marsh. Cross marks represent observational data lines, and r2 values represent the fit to the data of the best simple
models: power-law distribution (straight line), truncated power-law distribution (downward curved dashed line), or exponential distribution
(downward curved solid line).
doi:10.1371/journal.pone.0026798.g001

Table 2. Summary of food web metrics for each of the estuarine food webs.

Parameters: Oritani Marsh (unrestored) Secaucus Marsh (0 year) Harrier Marsh (10 year) Mill Creek Marsh (20 year)

Number of species; S 71 87 112 122

Potential no of links; S2 5041 7569 12544 14884

Observed no of links; Lo 629 627 1206 1846

Linkage density; d 8.86 7.21 10.77 15.13

Connectance; C 0.125 0.083 0.096 0.124

Relative nestedness; n* 0.75 0.75 0.86 0.81

Number of groups; k 15 15 18 19

Minimum AICGroups 1361.204 1403.699 1851.464 3016.614

Statistics include species richness (S), potential links (S2), observed links (Lo), linkage density (d), connectance (C), relative nestedness (n*), and number of groups yielding
the minimum AIC for the group-based model described in the main text (k).
doi:10.1371/journal.pone.0026798.t002
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eigenvector centrality, and closeness (i.e. they are considered

important variables in both regression tree and random forest

models: Table 3). In regression trees, the calculation of variable

importance is the reduction in the loss function (e.g. mean squared

error) attributed to each variable at each split summed across the

full tree. Consequently, a variable that does not appear as a node

in the tree may explain more of the variability in the response

variable than a predictor identified as a node. For the full

regression tree models (Table 3: Table S4: Figure S1), the variables

that are considered most important are closeness, coreness,

eigenvector centrality, and trophic generality. For the random

forest tree models (Table 3: Table S4: Figure S2), the variables that

are considered the most important are trophic generality,

eigenvector centrality, closeness, and trophic vulnerability.

Discussion

These data suggest that food web structure plays a significant

role in the persistence of complex parasite life cycles and the

diversity of parasites within free-living species. The key insight

Figure 2. The structure of the food web at Secaucus High School Marsh. The marsh food web (a) without grouping, and (b) with species
sorted according to their group affinity. The lines connect a consumer with a consumed species; the nodes represent species identified in Table S1.
The grouping configuration is determined by [60], assessed using AIC, a configuration containing 15 groups was the best fit of the data. The grouping
algorithm, seeks to partition the species into groups that make the density of connections within each sub-matrix maximal/minimal. Alternate group
configurations are presented in Table S3.
doi:10.1371/journal.pone.0026798.g002

Table 3. Regression tree and random forest model results.

Model type Site R2 Most important variables in model

Regression tree All 52.97 Closeness, coreness, eigenvector, trophic generality

Mill Creek 47.71 Closeness, trophic vulnerability, eigenvector, group

Harrier Meadow 52.06 Trophic generality, eigenvector, closeness, betweenness

Secaucus High School 46.88 Trophic generality, degree, coreness, eigenvector

Oritani 33.86 Trophic generality, trophic vulnerability, degree, closeness

Random forest All 47.39 Trophic generality, eigenvector, closeness, trophic vulnerability

Mill Creek 21.88 Trophic generality, eigenvector, group, trophic vulnerability

Harrier Meadow 42.71 Trophic generality, eigenvector, closeness, trophic vulnerability

Secaucus High School 55.77 Trophic generality, closeness, eigenvector, group

Oritani 3.94 Trophic generality, eigenvector, group, betweenness

The r2 value indicates the ability of the model to predict parasite diversity within an host. Also included are the four most important variables from the models listed in
order of importance. See supplementary files for a regression tree graphic.
doi:10.1371/journal.pone.0026798.t003
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provided by our analyses is that the highly connected species

within a food web, along with modular network structure, are

likely to provide clusters of interactions that allow for higher

transmission efficiency in trophically transmitted parasites. Clus-

ters of interactions are particularly important for parasites with

complex life cycles as they rely on feeding interactions between

trophic levels, a strategy with a failure rate that is potentially offset

by strong trophic links and transmission within food web

compartments. Recent studies of parasitism in food web networks

have also documented the increased use by parasites of free-living

species that occupy central locations in the food web, and in free-

living species that tend to have more predators [12,70]. These data

suggest that over evolutionary time, parasite species might become

embedded in subsets of hosts, or clusters of hosts that ensure high

transmission within the food web.

Several members of the free-living community, characterized by

broad diets and high centrality scores, have significantly higher

diversities of helminth parasites. Functionally, species that fall close

to the centre of a food web (i.e. high closeness and eigenvector

centrality scores), are best placed to accumulate resources and

energy from lower trophic levels [71]. Further, those species with a

broad diet are likely to ingest species that act as intermediate hosts

for a diverse range of parasites, and consequently harbour higher

within-host diversity [70]. One reason why there may be a reliance

on such hosts is because species that fall at the periphery of the

food web, or outside of tight clusters of interactions, are more

susceptible to extinction [26,72]. Consequently, parasite species

that rely on hosts that are central to the food web are less likely to

be subject to fluctuations in host availability and as such, increase

the probability of successful transmission.

A second consideration is that the majority of trophically

transmitted parasites fall within densely populated substructures in

the food web. These link-dense areas (i.e. species with high

eigenvector centrality scores) represent clusters of species that are

linked more tightly together than they are to species in other areas

of the network. These areas, and the interactions they document,

form the basis for the ‘‘groups’’ or ‘‘compartments’’ we describe

(Table 2: Table S3). Discussions of compartmentalization in

ecological networks began in the 1960s, and despite some concerns

[73], the presence of distinct compartments in food webs has been

directly correlated with measures of system robustness [74,75,76].

Furthermore, highly resolved data sets reveal that many networks

are highly cohesive, with several small groups of species connecting

to a single dense core which plays a central role in determining

network structure [74,75]. A significant consequence of network

cohesiveness is that the network may become more robust to

perturbation, as changes are restricted to one area of the network.

Notably, it has been demonstrated in population-level models that

if a pathogen enters a particular compartment, the spread of that

pathogen may be enhanced within these clusters of tightly

interacting species [77]. Though not entirely analogous, it is likely

that compartmentalization in food webs also facilitates the

transmission of complex life cycle parasite species because

transmission within a cluster of species is easier than transmission

between clusters of species.

A fundamental aspect of searching for clusters of interactions is

describing the distribution of feeding links in food webs. The

appearance of a characteristic single-scale distribution of feeding

links in our networks may be related to how these brackish marsh

communities have assembled. It is likely that the mechanisms that

produce the link distribution in our food webs differs from those

that produce scale-free distributions observed in real world

networks [68]. This is largely due to the violation of two

assumptions in amenable models of real world networks: (i) the

network grows at each time step through the addition of nodes and

links and (ii) there is a preferential attachment of new nodes to

other nodes with a higher number of links [78]. Predator-prey

webs appear to violate the first assumption through the processes

of immigration, extinction, and speciation [79]. Secondly,

although there is yet to be a general consensus as to how new

species link to existing species in food webs, it appears that

immigrants do not always link to the most linked species [30,80].

In an explicit test of the preferential attachment model, Olesen et

al. [80] determined that the assembly process in a plant-pollinator

network was intermediate between preferential attachment and

random; with attachment constrained by the ecology (i.e.

abundance, phenophase length) of the system. This is supported

by our data, and a larger analysis of 16 food webs [8] that suggest

there are fewer super-generalists than would be expected if new

species preferentially attached to other highly linked species. The

proposition that there are a few super-generalists that are driving

the structure of the entire web is supported by the high degree of

nestedness for each of our marsh food webs. These data imply that

there is a distinct group of generalist species that interact amongst

themselves and that there is a tendency for specialist species to

interact with the most generalist species. This topological property

has become a standard measure in food web analyses because of

the potential for core generalist species to drive the evolution of

entire systems.

Complementing the distribution of feeding links, and the

generalist-specialist dichotomy we observed in our networks, is

the presence of distinct groups of highly interacting species which

we identified using the algorithm proposed by Allesina and Pascual

[60]. The presence of such groups may have a significant effect on

the coevolutionary process, and has been discussed in plant-

pollinator systems [81], and as a potential stabilizing force in food

webs [76]. In the case of our estuarine food webs, the observed

groups represent tight clusters of feeding interactions that act as

transmission routes for trophically transmitted parasites. The

interaction between parasite and host is intimate and persistent,

and there has been considerable selection for parasite stages to

exploit host species that increase the probability for life cycle

success. In some cases, parasites have circumvented diffuse

predator-prey interactions by modifying the behaviour of

intermediate hosts to make them more susceptible to predation

from specific definitive hosts [82]. Though this is a fruitful

approach to increasing transmission efficiency, it is not a

predominant mechanism (reviews in [83]), and it is more likely

that it is the structure of the host food web that exerts a stronger

selective force on parasite life cycles [18,19]. Consequently, it is

likely that through evolutionary time, parasite species become

embedded in groups of hosts that ensure high transmission. Those

highly connected species in our food webs are heavily parasitized

because they potentially provide a stable coevolutionary unit that

complex life cycle parasites may exploit during their evolution and

persistence [71].

The demonstration of modularity in these four estuarine food

webs has implications for ecology and evolution outside of parasite

transmission and life strategies. To our knowledge, there are few

studies that have found modularity in food webs [76,81,84],

though this is likely the result of poorly resolved data and the lack

of sufficiently strong algorithms to detect modules. As the

resolution of food web data improves (see [11]) and studies begin

to incorporate module-detecting algorithms from the social

sciences [59] and physics [85] it is likely that network modularity

will be revealed as a critical component in the functioning of

ecological networks, particularly with regards to the stability of

ecological systems [5]. Indeed, recent work has demonstrated that
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compartmentalization may significantly increase the likelihood of

food web persistence [86]. Further, the identification of modules of

species within networks may reveal critical information about the

effect of species extinctions on community dynamics, the impact of

exotic species on native plants and animals, the spread of infectious

diseases within and between communities, and potentially provide

the critical units of tightly interacting species that could operate as

coevolutionary units [87].

One assumption of our study is that our selective sampling of

parasites, and the patterns that emerge, are representative and can

be extended to parasites in general. Though our interpretation is

intuitive, and supported in part by similar findings in other

estuarine food webs [12,70], it is potentially a result of sampling

only 25 parasite species. Our analyses may be biased for two

reasons: firstly, information on parasites is typically more detailed

for common and charismatic host species; secondly, systematic

parasitological sampling of our study region is incomplete, and as

such, we have included parasites based upon host records from

distant locations (i.e. California and Europe). That said, our study

falls within the bounds of previous studies, such as Thompson et al.

[88] who explored the role of nine parasite species in a food web

network, to Lafferty et al. [36] who developed de novo a host-

parasite food web that included 33 helminth parasites. Though our

approach may have resulted in an overestimation of parasite

diversity in certain species, the approach we have taken to

including parasite species and the subsequent extrapolation to

generate hypothesis for further testing is appropriate.

To conclude, the analytical food web framework was formally

introduced in the early Twentieth century and has since developed

into a widely appealing and accepted approach to describing

species interactions. While debate continues about the utility of

food webs as synthetic tools it is plausible to suggest that at the very

least, highly resolved food webs provide an opportunity to

integrate processes operating at the level of the free-living

community with those important for parasites. Indeed, previous

studies have documented how parasites permeate entire ecosys-

tems; positions derived from the frequency of complex life cycles,

with one parasite species interacting with many free-living hosts

substantially altering food web metrics [11]. More importantly,

our study has demonstrated how food web structure strongly

influences parasite diversity patterns, a result of the dependence of

parasites upon their free-living hosts and the nature of the

ecological network in which they reside.

Supporting Information

Figure S1 Pruned regression tree analysis of within-host parasite

diversity. The explanatory variables were trophic generality

(num_prey), trophic vulnerability (num_pred), eigenvector cen-

trality, closeness, group membership, marsh diversity and core-

ness. Each node is labelled with the mean parasite diversity, and

number of observations in the group. Further, each of the splits

(nonterminal nodes) is labelled with the variable and its values that

determine the split. The tree explained 52.97% of the total sum of

squares, and the vertical depth of each split is proportional to the

variation explained.

(DOC)

Figure S2 Random forest variable importance. (a) Determined

by calculating the mean square error during each random

permutation (n = 1000), and determining the difference between

the average value and the prediction error on the out-of-bag data;

and (b) the total decrease in node impurities from splitting on the

variable averaged across all trees (n = 1000).

(DOC)

Table S1 List of taxa and species codes in the Mill Creek,

Harrier Meadow, Oritani, and Secaucus High School Marsh food

webs.

(DOC)

Table S2 Life cycle characteristics of select parasites in the

Meadowlands estuary complex. Parasite species marked with a star

(*) represent those identified in field collections of Fundulus

heteroclitus.

(DOC)

Table S3 Arrangement of Mill Creek, Harrier Meadow, Oritani

and Secaucus High School Marsh food webs into group structure

by the algorithm proposed by Allesina & Pascual [60].

(DOC)

Table S4 Regression tree variable importance determined by

the summed reduction in the loss function (e.g. mean squared

error) attributed to each variable at each split. Random forest

variable importance is determined by calculating the mean square

error during each random permutation (n = 1000), and determin-

ing the difference between the average value and the prediction

error on the out-of-bag data.

(DOC)

Appendix S1 Food web adjacency matrices for Mill Creek,

Harrier Meadow, Oritani, and Secaucus High School Marsh.

(XLS)
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