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Uric acid, C5H4N4O3, 7,9-dihydro-1H-purine-2,6,8(3H)-trione, molecular mass 168 Da, is a product of the metabolic breakdown of purine nucleotides
(adenine and guanine).
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Uric acid is synthesized mainly in the liver, intestines and the vascular endothelium as the end product of
an exogenous pool of purines, and endogenously from damaged, dying and dead cells, whereby nucleic
acids, adenine and guanine, are degraded into uric acid. Mentioning uric acid generates dread because
it is the established etiological agent of the severe, acute and chronic inflammatory arthritis, gout and
is implicated in the initiation and progress of the metabolic syndrome. Yet, uric acid is the predominant
anti-oxidant molecule in plasma and is necessary and sufficient for induction of type 2 immune
responses. These properties may explain its protective potential in neurological and infectious diseases,
mainly schistosomiasis. The pivotal protective potential of uric acid against blood-borne pathogens and
neurological and autoimmune diseases is yet to be established.
� 2017 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction lium as the end product of an exogenous pool of purines, derived
Uric acid (Fig. 1) is synthesizedmainly in the liver, intestines and
other tissues such as muscles, kidneys and the vascular endothe-
largely from animal proteins. In addition, live and dying cells
degrade their nucleic acids, adenine and guanine into uric acid.
Deamination and dephosphorylation convert adenine and guanine
to inosine and guanosine, respectively. The enzyme purine nucle-
oside phosphorylase converts inosine and guanosine to the purine
bases, respectively hypoxanthine and guanine, which are both con-
verted to xanthine via xanthine oxidase-oxidation of hypoxanthine
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Fig. 1. The most alarming step [80]. Uric acid, C5H4N4O3, 7,9-dihydro-1 H-purine-
2,6,8(3 H)-trione, molecular mass 168 Da, is a product of the metabolic breakdown
of purine nucleotides (adenine and guanine). Crystals of monosodium urate (MSU)
in the joints stimulate the inflammasome, NLRP3. The leucine rich repeat (LRR) at
the carboxyl end of NLRP3 is the sensor for pathogen- (PAMP), or danger (DAMP)-
associated molecular patterns generated by exposure to MSU. Ligand binding leads
to the receptor oligodimerization and allows the amino terminal pyrin (PYD)
domain to interact with adaptor ASC, which recruits pro-caspase-1 via its card
domain and autoactivates it. The active cysteine peptidase processes the IL-1b
precursor (pro-IL-1b), which is then ready to exit the cell as biologically active
proinflammatory, 17 kDa IL-1b.
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and deamination of guanine by guanine deaminase. Xanthine is fur-
ther oxidized by xanthine oxidase to uric acid [1,2]. Normally, most
daily uric acid disposal occurs via the kidneys. Humans cannot oxi-
dize uric acid to the more soluble compound allantoin due to the
lack of uricase enzyme. The enzyme uricase (urate oxidase) can
metabolize uric acid to highly soluble 5-hydroxyisourate that is fur-
ther degraded to allantoic acid and ammonia, easily excreted by the
kidneys. However, several primates, including man have lost the
functional activity of the enzyme uricase, as uricase mRNA may
be detected in human livers but it displays two premature stop
codons, and the encoding gene is, thus, a pseudogene [3,4]. Mam-
mals possessing a functional uricase typically display serum uric
acid levels of 10–20 mg/mL. In contrast, uric acid levels are 3 to 10
times higher in apes and humans as a result of parallel nonsense
mutations that caused a pseudogenization of the uricase gene dur-
ing the early Miocene era [3,4].

Uric acid in healing and defense: Physiological functions of uric
acid

Antioxidant

Most serum uric acid is freely filtered in kidney glomeruli, and
approximately 90% of filtered uric acid is reabsorbed, implying that
it has a considerable physiological role [2,5]. In humans, over half
the antioxidant capacity of blood plasma comes from uric acid
[5,6]. Uric acid is a strong reactive oxygen species (ROS) and perox-
ynitrite scavenger and antioxidant [5–8]. High levels of uric acid
are readily detected in the cytosol of normal human and mam-
malian cells, especially in the liver [9], vascular endothelial cells,
and in human nasal secretions, where it serves as an antioxidant
[10,11].
Endothelial function

In contrast to studies documenting the ability of uric acid to
impair vascular endothelial cells integrity [12], a recent report
indicated for the first time that extremely low levels of serum uric
acid, attributed to loss-of-function mutations of SLC22A12 encod-
ing blood vessels and kidney proximal tubular cells transporter,
URAT1, cause endothelial dysfunction in vivo [13]. This and other
reports challenged the view stating that uric acid elicits cardiovas-
cular and kidney diseases via impairing endothelial integrity and
function [13–15]. Indeed, uric acid may exert fundamental roles
in tissue healing via initiating the inflammatory process that is
necessary for tissue repair, scavenging oxygen free radicals, and
mobilizing progenitor endothelial cells [15].
Potent mediator of type 2 immune responses

Elevated concentration of uric acid was detected in the peri-
toneal cavity of mice following injection of the most widely used
clinical adjuvant alum (aluminum hydroxide) [16,17]. Experiments
involving intraperitoneal injection of mice with the harmless pro-
tein, ovalbumin, or ovalbumin + alum, in conjunction with 0 or 50
units uricase demonstrated that uric acid is necessary and suffi-
cient for induction of antibody immune responses to ovalbumin
[17]. The alum established T helper 2 (Th2) adjuvanticity was
found to be mediated through cell injury leading to the induction
of uric acid, which acts as a danger signal promoting the generation
of inflammatory monocyte-derived dendritic cells [16,17]. These
findings document the pivotal role of uric acid in induction of pro-
tective antibody responses to the numerous human vaccines incor-
porating alum as an adjuvant.

Uric acid release was also demonstrated in the airways of
allergen-challenged asthmatic patients and mice, and appeared
necessary for mounting Th2 cell immunity, airway eosinophilia,
and bronchial hyperreactivity to inhaled harmless proteins and
house dust mite allergen. Additionally, administration of MSU
crystals together with inhaled harmless proteins elicited vigorous
type 2 immunity. Uric acid adjuvanticity was expressed via activat-
ing spleen tyrosine kinase (Syk) and the phosphoinositol 3 (PI3)-
kinase. Uric acid was thus identified as an essential initiator and
amplifier of allergic inflammation in vivo [17].

Allergens, which are often proteases, namely cysteine proteases,
and the cysteine peptidases papain and bromelain are able to stim-
ulate barrier epithelial cells to produce type 2 cytokines such as
thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-
33, which are responsible for directing the immune environment
to the type 2 axis and hypersensitive inflammation. It was recently
shown that allergens and cysteine peptidases, like papain cause
stress and damage to the tissue cells, especially the barrier epithe-
lial cells, triggering the release of uric acid. Uric acid was shown to
activate epithelial cells for release of TSLP and IL-33, but not IL-25,
and was identified as a key player that regulates the development
of type 2 immune responses to cysteine peptidase allergens [18].
Human and mouse airway epithelial cells secrete uric acid consti-
tutively; in vivo exposure of mice to particulate pollutants and the
cysteine peptidase-containing house dust mite triggered increase
in uric acid production and release by mucosal cells and mediated
allergic sensitization, which was shown to be inhibited by uricase
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[19]. Indeed, uric acid is now recognized as an alarmin, like ATP
(adenosine triphosphate), the high mobility group box 1 protein
(HMGB1), and IL-33, and a prominent and potent mediator of type
2 immune responses involving epithelial cells, innate lymphoid
cells, eosinophils, basophils, and mast cells [16–22].

Resistance to parasites

The protective immune response against many helminth para-
sites is dependent on type 2 immune responses [23]. No informa-
tion is available regarding the contribution of uric acid in
development of protective type 2 immune responses to nema-
todes. Regarding schistosomiasis, cysteine peptidases, such as
papain, Schistosoma mansoni cathepsin B1 (SmCB1) and cathepsin
L3 (SmCL3) and Fasciola hepatica cathepsin L1 (FhCL1) do not
induce allergic reactions in mice or hamsters and were shown
instead to elicit reproducible and highly significant (P < 0.0001)
reduction of 50–65% in challenge S. mansoni and Schistosoma
haematobium infection, via generation of polarized (papain, SmCL3,
FhCL)- or predominant (SmCB1) type 2 responses involving release
of TSLP, IL-4, IL-5, IL-13 and generation of IgG1 antibodies [24–28].
Subcutaneously administered papain or helminth cysteine pepti-
dases interact with epithelial cells, triggering the release of TSLP,
the master cytokine of innate and adaptive type 2 immune
responses [21,22,24,28]. The generated type 2 cytokines recruit
and activate innate lymphoid cells 2, eosinophils, basophils, and
mast cells, and support the production of IgG1 antibodies to the
cysteine peptidase, thus directing the immune system, at the time
of challenge infection, to the type 2 immune arm. Eosinophils,
basophils and mast cells-derived basic toxic proteins, proteogly-
cans, proteases, peroxidases and extracellular trap unite to harm
the migrating schistosome larvae, and certainly damage more so
the blood capillaries endothelial cells. Injury to the capillary
endothelium was shown to trigger release and accumulation of
uric acid in the vicinity of the developing blood flukes. These data
support the hypothesis stating that endogenous uric acid is neces-
sary for development of type 2 immunity to cysteine peptidases in
the absence of adjuvant [16–22]. Detection of elevated concentra-
tions of uric acid in lung and liver of immunized and unimmunized
schistosome-infected animals in in entire agreement with docu-
ments showing uric acid is constitutively present in normal cells,
especially liver, intestine and vascular endothelial cells and
increases in concentration when cells are damaged and following
release from dying cells [5,9,16–22,29,30].

In the liver sinusoids, when worms begin to grow, ingest blood,
and excrete and secrete cysteine peptidases, the type 2 immune
effectors and cytokines, damage hepatocytes triggering the release
of uric acid. Uric acid has been shown to be associated with non-
alcoholic fatty liver disease (NAFLD) and was demonstrated to have
a causal role in fatty liver via stimulation increase in fatty acids
synthesis and release of unsaturated fatty acids, especially arachi-
donic acid from lipid depots and cell membrane [31–37]. Due to its
powerful anti-oxidant properties, uric acid interferes with the
activity of lipoxygenases and serves as a substrate for the enzyme
cyclooxygenase. Arachidonic acid is thus allowed to access the par-
asites and mediate their demise, as arachidonic acid has been
shown to be an effective schistosomicide in vitro and in vivo in
mice, hamsters, and in S. mansoni-infected children [38–42].

If experiments in independent laboratories support the above
scenario and findings, namely the anti-schistosome protective cys-
teine peptidase-induced type 2 responses/uric acid/arachidonic
acid axis, arachidonic acid will be considered not only a safe and
effective drug, but even more importantly, a natural schistosomi-
cide [43]. The experiments will also prove, for the first time, that
uric acid is an indispensable player in protection against schisto-
some infection. Since mice and hamsters possess a functional
uricase and typically display serum uric acid levels in the 10–
20 mg/ml, in contrast to humans where serum uric acid levels are
much higher [3,4], it is anticipated, yet remains to be proved, that
the cysteine peptidase-based vaccine will achieve considerably
higher levels of protection in children than those recorded in mice
and hamsters [44].
Defense against neurological and autoimmune diseases

In support, plasma low uric acid levels, leading to decrease in
antioxidant molecules, were evident in patients with multiple scle-
rosis. Peroxynitrites and ROS are believed to be responsible formye-
lin degradation in multiple sclerosis (MS) and can be blocked by
high uric acid levels, while gout patients almost never present with
MS disease [45]. Several reports documented association of low uric
acid serum levels with MS disease [45–48]. A recent meta-analysis
of published data indicated convincingly that patients with MS had
lower serum uric acid than healthy controls, and advocated serum
uric acid low level as a potential biomarker for multiple sclerosis
[49]. Low plasma uric acid levels were also associated with neuro-
logical disorders [49–51], Parkinson [52–56], and Alzheimer
[57,58] disease, Pemphigus vulgaris, an autoimmune disorder char-
acterized by blistering and sores (erosions) of the skin and mucous
membranes [59], and lichen planus, an autoimmune inflammatory
disease of the mucocutaneous tissue [60,61], which was also asso-
ciated with low uric acid levels in saliva [62].
Uric acid dread: Pathogenic potential of uric acid

Gout

Despite its documented protective potential, mentioning uric
acid generates apprehension as it is the confirmed aetiological
agent of the severe, acute and chronic inflammatory arthritis, gout.
However, soluble uric acid is not the culprit as gout is due to
deposition of crystals of monosodium urate (MSU) in joints and
periarticular tissues [63]. Crystals of MSU do not always elicit
inflammation in joints. They must first be coated by serum proteins
before interacting with articular cells’ surfacemembrane directly or
via receptors, followed by stimulation of a cytosolic molecular plat-
form involved in innate immunity, the cysteine peptidase, caspase
1-activating the NOD-like receptor P3 (NLRP3) inflammasome,
which is responsible for proteolytic cleavage of pro-interleukin
(IL)-1b and maturation and release of the active IL-1 moiety in
the joint [64]. Neutrophils are recruited and activated in response
to the spilling of IL-1, producing ROS, proteolytic enzymes, extracel-
lular traps, and pro-inflammatory chemokines and cytokines,
which recruit and activate macrophages. Neutrophil extracellular
trap (NET) formation is driven by IL-1b, and was shown to contain
the alarmin HMGB1 supporting NET pro-inflammatory potential.
Accordingly, the pathogenesis of acute gout is the result of a
cross-talk between MSU crystals-induced NLRP3 inflammasome
activation, IL-1 release, and neutrophil accumulation [64–68].

The alarming steps
Recently, MSU crystals were identified as an endogenous dan-

ger signal formed after release of uric acid from dying cells. The
injured cells rapidly degrade their RNA and DNA; liberated pyrim-
idines are catabolized to beta-alanine and beta-aminoisobutyrate
and purines are catabolized into uric acid, leading to its accumula-
tion. The cytosol contains around 4 mg/mL uric acid with signifi-
cant increases following degradation of injured cells nucleic
acids [9,69]. Uric acid (Fig. 1) is soluble in biological fluids up to
70 mg/mL, and hence is entirely soluble in human blood, which
has constitutive concentration of 40–60 mg/mL. In humans, about
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70% of daily uric acid disposal occurs via the kidneys, and in 5–25%
of humans, impaired renal (kidney) excretion leads to hyper-
uricemia (>120 mg/mL). Increase in concentration of uric acid
above its solubility level leads to its precipitation as MSU crystals,
especially in the joint cavities, evoking severe inflammatory epi-
sodes in some persons only, as remarkably, most people with
hyperuricemia remain asymptomatic and do not develop gout
symptoms [69,30]. It is likely that to elicit gout, hyperuricemia
must be associated with defects in the function of the genes reg-
ulating urate transport and homeostasis, such as the urate-anion
exchanger urate transporter 1 (URAT1) and the glucose trans-
porter, GLUT9 [70–72].

Urate crystals are deposited principally in connective tissues of
the joints, tendons, kidney, and rarely in heart valves and peri-
cardium, and readily interact with serum proteins [73]. A group
of mouse antibodies of the IgM class were recently shown to facil-
itate in vitro uric acid crystallization and to bind to the MSU crys-
tals [72,74]. Deposited MSU crystals in the joints cavities interact
with resident macrophages and mast cells, recruited neutrophils
and monocytes, and non- haemopoietic synovial and endothelial
cells. All these cells may phago- or endocytose MSU crystals lead-
ing to their activation and injury and release of hydrolytic
enzymes, reactive oxygen species, and a plethora of danger-
associated molecular patterns (DAMP) that might be sensed by
the cells surface membrane and cytoplasmic receptors of the
innate immune system [75,76].

The crystals of MSU assume a spine structure and expectedly
harm the surface membrane of surrounding cells. Injury to body
cells is perceived by extracellular receptors of the Toll-like family
(TLR), TLR-2 or TLR-4 [75–78]. The response involves generation
of pro-IL-1b and tumor necrosis factor. Additionally, the MSU crys-
tals are ingested by resident phagocytes, leading to increase in intra-
cellular sodium content, changes in cell osmomolarity, water influx,
and consequent decrease in intracellular potassium concentration.
Apparently, this generated danger signal is able to activate a mem-
ber of the NOD (nucleotide binding and oligomerization domain)
subfamily of NOD-, leucine-rich repeat (LRR)-containing receptors
(NLR) family members, which include the proteins NLRP1, NLRP3
and NLRC4. The NLRP3 receptor essentially consists of a central
NOD domain, LRR ligand sensor domain at the carboxyl terminus,
and an effector pyrin (PYD) domain at the amino end. Stimulation
of the sensor domain results into oligomerization of the molecule
and recruitment of an adaptor protein, ASC (apoptosis-associated
speck-like protein containing a caspase recruitment domain). The
PYD domain of NLRP3 interacts with the PYD domain of ASC, which
additionally contains a caspase activating and recruiting domain
(card) (Fig. 1). The ASC card domain is able to recruit and autoacti-
vate the cysteine protease caspase-1 which cleaves the inactive,
31 kDa precursor of IL-1b (pro-IL-1b) (and pro-IL-18) into the
mature, biologically active, 17 kDa IL-1b, and additionally induces
a lytic form of cell death, named pyroptosis [64,79–83].

Of note, the in vitro NLRP3- and caspase-1- dependence for MSU
crystals-induced IL-1b release was not reproduced in several
in vitro and in vivo situations [77,78]. Moreover, the presence of
free fatty acids was necessary for MSU crystals to induce gout-
like reactions in mice, via engagement of the TLR-2, activation of
ASC and caspase-1, but not NLRP3, and release of IL-1b [77].

The controversy about the mechanism of MSU-induced gout
inflammation is not entirely resolved, yet all researchers convene
on the MSU-associated release of IL-1b, recruitment and activation
of neutrophils, and their inflammatory roles [84]. The functions of
IL-1b are multiple and include inducing fever (endogenous pyro-
gen) via setting the hypothalamic thermostat in the brain, promot-
ing collagenase expression and destruction of muscle and cartilage
(catabolin), eliciting inflammation, and recruiting and activating
neutrophils [64–69,30,84,85].
Uric acid is also considered a danger signal responsible for
increasing osteoarthritis via inflammasome activation as a direct
correlation was consistently recorded between severity of knee
osteoarthritis and synovial, but not serum, content of uric acid,
IL-1b and IL-18 [86,87].
Renal disorders

The kidneys play a major role in the regulation of serum uric
acid levels as approximately one third and two-thirds of the uric
acid produced in humans is eliminated by the gastrointestinal tract
and kidneys, respectively. In the kidney, uric acid undergoes filtra-
tion from glomeruli, followed by reabsorption and secretion in the
proximal tubules, whereby 90% is reabsorbed into the blood capil-
laries [2]. Renal tubular handling of uric acid is now shown to be
dependent on several proteins belonging to the organic anion
transporter (OAT) family. The product of the SLC22A12 gene, the
urate transporter 1 (URAT1) protein on the apical membrane of
the renal proximal tubule is highly, if not exclusively, expressed
in the kidney, and was the first to be identified as a reabsorptive
urate transporter. OAT4 is similar to URAT1 in location and func-
tion, namely reabsorption of uric acid. OAT1 and OAT3, encoded
by the SLC22A6 and SLC22A8 genes, respectively are localized to
the basolateral membrane of the renal proximal tubules and form
a renal tubular secretory pathway principally involved in luminal
excretion of uric acid [2,88]. In addition, recent evidence has
demonstrated the instrumental role of the hexose transporter
GLUT9 in uric acid reabsorption and interstitial exit as mutations
of its encoding gene SLC2A9 are associated with aberrations of uric
acid disposal [70,88].

Increased uric acid production, impaired renal uric acid excre-
tion, or a combination of the two lead to hyperuricemia [2,89].
Hyperuricemia increases the risk of acute kidney injury [90],
impairs the contractile activity of the intraglomerular mesangial
cells [91], and induces damage to mesangial and proximal tubules
epithelial cells probably via TLR 4-dependent up regulation of
NLRP3 and IL-1b [92,93]. Hyperuricemia was also shown to be an
independent risk factor for chronic kidney disease in type 2
diabetes via injury of the endothelial cells and release of the alar-
min HMGB1, stimulating TLR to induce pro-inflammatory and
chemotactic cytokines, vascular smooth muscle proliferation, and
activation of the NLRP3 inflammasome [94].

Additionally, uric acid may accumulate in the kidney, leading to
formation and deposition of stones. Kidney stones and urinary
tract infections are the most common urinary tract problems. Uric
acid stones occur in 10% of all kidney stones and are the second
most-common cause of urinary stones after calcium oxalate and
calcium phosphate calculi. The most important risk factor for uric
acid crystallization and stone formation is a low urine pH (below
5.5) due to impaired urinary uric acid excretion. Main causes of
low urine pH beside high uric acid excretion are chronic diarrhea,
severe dehydration, and diabetic ketoacidosis [95].

The metabolic syndrome

Metabolic syndrome is the name for a group of risk factors that
raises the threat for heart disease and other health problems, such
as diabetes and stroke. Cardiovascular disease (CVD), diabetes type
2, and non-alcoholic fatty liver disease (NAFLD) are manifestations
of the metabolic syndrome [95–99].

Cardiovascular diseases
Hyperuricemia was shown to be implicated in development of

hypertension and cardiovascular diseases, via induction of
growth factors, hormones, cytokines and autacoids [98–100].
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Experimental studies have suggested that uric acid may penetrate
vascular smooth muscle fibers through an organic anion transport
system, followed by activation of multiple signal transduction
pathways, which culminate in increased expression of inflamma-
tory mediators. The consequences are a rise of arterial pressure,
vascular smooth muscle cell hypertrophy, and hypertension
[100,101]. Additionally, soluble uric acid induces vascular endothe-
lial cell dysfunction, namely alteration of cell proliferation and
induction of cell senescence and apoptosis, via activating the
renin-angiotensin system (a hormone system responsible for regu-
lating plasma sodium concentration and arterial blood pressure)
and triggering reactive oxygen and nitrogen species and endoplas-
mic reticulum stress [102–104].

Insulin resistance and diabetes type 2
An elevated serum uric acid is also one of the best independent

predictors of diabetes and commonly precedes the development of
both insulin resistance and diabetes type 2, as it was discovered
that one quarter of diabetes cases can be attributed to a high serum
uric acid level and elevated serum uric acid levels were found to be
closely associated with insulin resistance and diabetes mellitus
type 2 [105,106]. In response to controversial findings [107], a
meta-analysis of prospective cohort studies [108] and a recent crit-
ical review [109] concluded that serum uric acid is a strong and
independent risk factor for diabetes in middle-aged and older peo-
ple. Additionally, an increased serum uric acid level was signifi-
cantly correlated with the severity of albuminuria and diabetic
retinopathy in patients with type 2 diabetes mellitus [110].

Rise in consumption of fructose-containing drinks, food and
table sugar (sucrose = glucose + fructose) during the last centuries
has led to increase in weight gain, visceral and hepatic fat accumu-
lation, resistance to insulin and incidence of diabetes, as well as
increase in generation of uric acid, which predisposes to onset of
metabolic syndrome, including diabetes. In the liver, the enzyme
ketohexokinase phosphorylates fructose, resulting in fall in levels
of intracellular phosphates and ATP (adenosine triphosphate).
Decrease in intracellular phosphates activates adenosine
monophosphate (AMP) deaminase, which catabolizes AMP to ino-
sine monophosphate, and eventually to uric acid via the
hypoxanthine-xanthine pathway [111,112]. Elevated amounts of
intracellular uric acid are then released in the circulation, inducing
inflammation in endothelial cells, kidney and vascular muscle
fibers, and pancreas islets of Langerhans [112].

Non-alcoholic fatty acid disease
Numerous clinical and experimental reports have documented

association between high serum uric acid levels and non-
alcoholic fatty liver disease (NAFLD) [30–35]. The serum uric acid
role in producing NAFLD was recently explained via uric acid-
mediated generation of ROS and pro-inflammatory cytokines,
which lead to increased expression of thioredoxin (TXN)-
interacting protein (TXNIP), and ROS-dependent dissociation of
TXN from TXNIP, which then interacts with NLRP3, activating the
inflammasome in parenchymal and non-parenchymal liver cells,
and resulting in release of IL-1b and IL-18. The ROS-TXNIP pathway
inflammatory signaling induces deregulation of lipid metabolism-
related gene expression and lipid accumulation [31–33], through
overexpression of the lipogenic enzyme, acetyl-coenzyme A
(COA) carboxylase 1, fatty acid synthase and stearoyl-COA desat-
urase 1. Another mechanism for uric acid-mediated fat accumula-
tion in liver proposed that uric acid induces oxidative stress in
hepatocytes endoplasmic reticulum followed by cleavage into
active form and nuclear translocation of the transcription factor,
sterol regulatory element-binding protein (SREBP), which regu-
lates the expression and activity of lipogenic enzymes [34]. Of note,
analysis of the fatty acid composition of liver phospholipid of
patients with NAFLD revealed a significant (P < 0.05) elevation of
arachidonic acid content and polyunsaturated fatty acid n�6/n�3
ratio compared with control values [35]. Plasma fatty acid compo-
sition of people with NAFLD was recently shown to be associated
with increase in omega-6 polyunsaturated fatty acids, especially
arachidonic acid, compared to healthy controls [36,37].
Conclusions and future perspectives

The contribution of uric acid to development and progress of
gout and metabolic syndrome appears to be well-established.
The pivotal role of uric acid in preservation of the human species
and the individual may be anticipated by the loss of the enzyme
uricase in humans and the eagerness of the kidney to retrieve fil-
tered uric acid. Yet, studies are needed to document the paramount
importance of uric acid in resistance to infectious, neurological and
autoimmune diseases.

Running studies are planned to document a novel and instru-
mental physiologic function of uric acid in resistance to blood-
borne helminthes via providing and publishing solid evidence for
the role of type 2 immune responses/uric acid/arachidonic acid
axis in innate and acquired protective immunity to infection with
S. mansoni and S. haematobium in rodents.
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[44] Tallima H, Dvořák J, Kareem S, Abou El Dahab M, Abdel Aziz N, Dalton JP, et al.
Protective immune responses against Schistosoma mansoni infection by
immunization with functionally active gut-derived cysteine peptidases
alone and in combination with glyceraldehyde 3-phosphate dehydrogenase.
Plos Negl Trop Dis 2017;in press.

[45] HooperDC, Spitsin S, KeanRB, Champion JM,DicksonGM,Chaudhry I, et al. Uric
acid, a natural scavenger of peroxynitrite, in experimental allergic
encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci USA 1998;95
(2):675–80.
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