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Abstract: In the last few decades, photovoltaics have contributed deeply to electric power networks
due to their economic and technical benefits. Typically, photovoltaic systems are widely used
and implemented in many fields like electric vehicles, homes, and satellites. One of the biggest
problems that face the relatability and stability of the electrical power system is the loss of one
of the photovoltaic modules. In other words, fault detection methods designed for photovoltaic
systems are required to not only diagnose but also clear such undesirable faults to improve the
reliability and efficiency of solar farms. Accordingly, the loss of any module leads to a decrease in the
efficiency of the overall system. To avoid this issue, this paper proposes an optimum solution for fault
finding, tracking, and clearing in an effective manner. Specifically, this proposed approach is done by
developing one of the most promising techniques of artificial intelligence called the adaptive neuro-
fuzzy inference system. The proposed fault detection approach is based on associating the actual
measured values of current and voltage with respect to the trained historical values for this parameter
while considering the ambient changes in conditions including irradiation and temperature. Two
adaptive neuro-fuzzy inference system-based controllers are proposed: (1) the first one is utilized
to detect the faulted string and (2) the other one is utilized for detecting the exact faulted group in
the photovoltaic array. The utilized model was installed using a configuration of 4 × 4 photovoltaic
arrays that are connected through several switches, besides four ammeters and four voltmeters.
This study is implemented using MATLAB/Simulink and the simulation results are presented to
show the validity of the proposed technique. The simulation results demonstrate the innovation
of this study while proving the effective and high performance of the proposed adaptive neuro-
fuzzy inference system-based approach in fault tracking, detection, clearing, and rearrangement for
practical photovoltaic systems.

Keywords: PV arrays; fault detection; ANFIS; data analysis; module rearrangement

1. Introduction
1.1. Motivation

One of the most promising fields in power plant generation is the generation of
electrical energy using a renewable resource. Photovoltaic modules are considered the
most widely used system in this field due to their advantages concerning low running
cost and easy maintenance [1–5]. Some problems face the operation of these systems
which lead to the high decrease of the whole system efficiency, one of the most common
problems which attract the attention of many researchers is fault detection and clearing
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happening in one of these large number assembled modules [6–10]. Nevertheless, fault
detection in several Photovoltaic (PV) systems remains a manually handled challenge in
industrial applications, which requires a lot of attention. The overall global capacity of PV
has noticed almost exponential progress in the earlier periods, increasing from 39 GWp
in 2010 to 480 GWp in the year 2018, while the distinctive PV connection costs dropping
from 4621 USD/kWp to 1210 USD/kWp for a similar duration [11]. For instance, European
Union (EU) tracks an ambitious plan to be the world leader in the area of renewable energy
sources by 2030 [12]. In Finland, the share of renewables is about 47% of all generation in
the year 2018, counting wind energy, PV generation, and hydropower stations [13].

1.2. Literature Review

Many papers have been subjected to the fault tracking problem using different op-
timization control techniques [14]. Reference [15] presented the designing principle of a
fault-tolerant PV system as the proposed technique succeeds in restricting the fault between
some modules containing healthy and faulted PV cells. Further, [16] introduced various
fault occurrences in a PV plant by explaining the limitations of existing detection and
suppression techniques. The prescribed system was subjected to different fault proposed
detection techniques and it was concluded that there is no universal fault detection tech-
nique that can detect and classify all faults in a PV system. Moreover, [17] obtained fault
detection in PV modules through an algorithm formulated as a clustering problem using
the robust minimum covariance determinant (MCD) estimator to describe its performance
on simulated instances of arc and ground faults. Furthermore, [18] presents fault detection
based on the comparison between the measured and model prediction results of the AC
power production. In order to identify faults, a number of fault detection algorithms are
based on the comparison between measured and modeled PV system outputs are imple-
mented. In addition, [19] displayed how Arduino is used to monitor and detect faults in PV
panels individually to avoid the simulation and modeling of the PV system, then the data
is transmitted and interfaced through LabVIEW which compares the actual measured data
and the reference data at the same condition. The authors of [20] showed a new approach
for fault detection due to either detection of shading of PV modules and faults on the direct
current (DC) side of PV systems.

Additionally, [21] presented an investigation of thermal monitoring of the PV solar
modules and realize image processing by thermal radiation on PV modules in order to
detect the broken cells on the PV panel and compare it with reference taken sample im-
ages on a panel within a periodic time interval. The authors of [22] demonstrated a fault
detection procedure in order to completely avoid the use of modeling and simulation of
the PV system through defining two new current and voltage indicators, NRc, and NRv,
respectively, in the DC side of the inverter of the PV system, this method is based on the
evaluation of these indicators. Additionally, [23] presented the applying of signal process-
ing techniques to monitoring and control PV arrays. Fault detection algorithm objective
function is developed as a combination problem and addressed using the robust minimum
covariance determinant. Further, [24] showed many algorithms for fault detection algo-
rithms are based on the comparison between measured output values and the reference
modeled PV system outputs to determine the faults. It is established that metaheuristics,
fuzzy logic, and artificial intelligence (AI) can provide improved performance in universal
engineering applications [25–32]. Finally, References [33–35] described other approaches
that use AI techniques, such as neural networks, fuzzy logic, and expert systems. However,
all the above papers present many techniques and algorithms, but it suffers from many
limitations like determining the existence of PV cell faults without locating these faults,
additional equipment (e.g., signal generators, signal analysis devices) is needed to perform
fault diagnosis [36].
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1.3. Contributions

As stated above, faults in PV systems are nearly undetectable, especially under low
irradiance conditions. If this fault remains hidden, it can significantly lesser the harvesting
energy of solar arrays, damage the PV panels, and possibly reason fire threats. In this work,
a new approach is developed for fault detection through a simple and low complexity fault
detection algorithm as well as reconfiguration for the faulted PV panel to maintain the
maximum achievable efficiency of the PV system. The novelty of this work is the intro-
duction of two adaptive neuro-fuzzy inference system (ANFIS) based controllers where
the first one is to detect the faulted string, while the other one is utilized for detecting the
exact faulted group in the PV array. The fault detection approach is based on comparing
the actual measured values of current and voltage and the trained historical values for
this parameter, taking into consideration the ambient changed conditions like irradiation
and temperature. The used model was installed using a configuration of 4X4 photovoltaic
arrays connected through many switches in addition to four ammeters and four voltmeters.
This case study is applied using MATLAB/Simulink where the simulations are presented
to show the validity of the proposed approach. These simulation results prove the effective-
ness and applicability of the proposed ANFIS based approach for not only fault tracking
and detection, but also clearing, and rearrangement for real-world PV systems.

2. Problem Formulation and System Modelling

The main objective of this paper is to design a tracking system for fault algorithms in
a PV array by implementing an artificial intelligence optimization technique to detect the
exact location of the faulted PV cell. Each PV cell has its I-V and P-V output characteristics at
the same temperature and different solar irradiance levels. The PV cell exhibits a non-linear
output current and voltage relationship.

Figure 1 shows the system under study, it consists of 4 × 4 photovoltaic arrays where
there are four PV cell groups connected in series, and each PV cell group has four PV cells
connected in parallel, each string includes a series ammeter and parallel voltmeter. Further,
in Figure 2, parallel switches among every panel in addition to extra switches like B1, B3,
B5, B7, B8, B9, B10 are connected for enabling the rearrangement process using ANFIS
controller action.
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Figure 2. Connected switches for rearrangement of photovoltaic array system. 
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The rated current and voltage of each PV panel are known at a certain temperature and
irradiation conditions and the reading of both ammeter and voltmeter is easily predicted
through the above-described characteristic of each PV cell as well as the value of voltmeter
and ammeter readings can be estimated after the outage of any PV cell and developing the
clearing fault action through training these data using ANFIS.

3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

In this paper, the use of ANFIS is introduced. ANFIS is a cross between an Artifical
Neural Network (ANN) and a fuzzy logic inference system. An artificial NN is intended to
mimic the attributes of the human brain and comprises a gathering of artificial neurons.
An adaptive system is a multi-layer feed-forward in which every node (neuron) plays out
a capacity on input signals. More details about ANFIS structure can be obtained in [37–39].
Figure 3 shows the schematic diagram of the ANFIS structure. In this figure, the fixed
nodes are represented by a circle while the adaptive node is represented by a square.

The ANFIS technique uses the Sugeno fuzzy model [40], where the fuzzy if–then rules
are formulated by:

Rn = if M1i(e)and M2i(∆e), then f = pne(t) + qn ∆e(t) + rn (1)

where n represents the number of rules. Note that M1i and M2i represent fuzzy membership
functions. pn, qn, and rn represent the linear parts of the corresponding nth rule.

Note that the first ANFIS layer involves the basic fuzzification where the degrees of
membership functions are provided using the input variable. Typically, every node in the
layer represents an adaptive function formulated by [38]:

M1i =
1

1 +
[

x−ci
ai

]bi
(2)
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where (ai, bi, ci) represent the parameter set. Note that layer 2 stands for the product
inference layer in which each node called with Π is under the firing strength of a particular
fuzzy rule. Note that the outputs wi of the layer is represented as follows:

wi = M1i(e)× M2i(∆e) (3)

In turn, the third layer represents a normalization one, whereas the calculated firing
strength from the preceding layer is normalized:

wi =
wi

∑i(wi)
(4)

Layer 4 receipts the normalized values from the third layer. Note that every node
in this corresponding layer represents an adaptive mode (defuzzification) with a node
function defined as [38]:

wiu = wi(pie + qi∆e + ri) (5)

in which (p, q, r) is the consequence parameter set while u represents the adopted control
signal. Note that at the last layer, it is required to compute the summation of all inward
signals to collect the output resulting portion of rules [40]:

∑
i
(wiu) =

∑i wiu
∑i wi

(6)
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4. Controller Design

Artificial intelligence (AI) control offers a way of dealing with modeling problems by
implementing linguistic, non-formal control laws derived from expert knowledge. Many
techniques have recently been used in the controller design of fault tracking systems, one of
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the most promising techniques is by using an ANFIS controller. In this paper, the network
was trained to recognize the relationships between the input and output parameters, and
the developed PV model is used to collect the training data. The operating temperature is
varied from 15 ◦C to 45 ◦C in a step of 5 ◦C and the solar irradiance level is varied from
100 W/m2 to 1000 W/m2 in a step of 50 W/m2, to get the training data sets for ANFIS.

In this paper two controllers based on ANFIS are developed, the first ANFIS controller
shown in Figure 4 is working as either an alarm indicator for fault occurrence or for
switching action purposes in case of a real existing fault. Such that, R is solar radiation,
and A1, A2, A3, A4 are the meter readings for strings 1 to 4, respectively. The inputs for
the first controller are irradiation, temperature, and the ammeter current values for each
string of PV modules, also the output values of this controller are specified by values 1, 3,
5, and 7 for the alarm which gives an early indication for the predictive maintenance for
the PV string 1, 2, 3 and 4, respectively, and the values 2, 4, 6 and 8 for the tripping action
in case of string fault occurrence of PV string 1, 2, 3 and 4, respectively. For example, in
the case of detecting a fault in PV string 1, the ANFIS controller output will be 2, and in
this case, switches B1 and B2 will be disconnected to isolate the faulted string. This action
will be repeated in case of a second, third, or fourth PV string fault. The main purpose of
isolating the faulted string is to be preparing the string for the next test to identify exactly
which group is faulted in the string.
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Figure 4. Block diagram of ANFIS controller 1.

The main purpose of the second ANFIS controller shown in Figure 5 is to identify the
exact location of the specified faulted panel in any PV string, then shorting it as a fault
clearance action and for rearranging the PV array system to improve the efficiency of the
PV system.

The inputs of the second ANFIS controller are the output of the first ANFIS controller
(2, 4, 6, 8) in addition to the readings of the voltmeter for each PV string. The second ANFIS
controller will start its action after isolating the faulted PV string. The output of the second
ANFIS controller is the location of the faulted panel (1, 2, 3, . . . , 16) based on panel location
in the PV array as shown in Figure 1 and omitting it outside the system. Such that, O1
is the output of ANFIS 1, V1, V2, V3, and V4 are the voltmeter readings for string 1 to 4,
respectively. Switches B1, B3, B7, and B9 are returned back the disconnected string again
after isolating the faulted panel in the string to the system to improve the overall efficiency
of the PV array system.
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5. Simulation Results
5.1. Case Study

Simulation is done on a PV array system. The PV array consists of four PV cell groups
connected in series, and each PV cell group has four PV cells connected in parallel. Each
group consists of an equal number of series and parallel PV cells. There are constant
series and parallel resistances for healthy PV groups (Rs and Rr respectively). There are an
equivalent series and parallel resistances for the PV array system. The simulation inputs for
the combined ANFIS controller 1 and 2 are R which represents solar radiation. Other inputs
are A1, A2, A3, and A4 that denote the meter readings for PV strings 1 to 4, respectively.

The variation in the resistance of PV cells is an indication of deterioration in its charac-
teristics and may lead to fault occurrence in the future. This variation in cell resistance will
lead to slight variation in the equivalent circuit of the PV array system. In case of a short
circuit or open circuit occurring on a PV cell or group, the series and parallel equivalent
circuit resistance of the PV array will be varied. The percentage value of resistance variation
will lead to a variation in the characteristic curves of cells and arrays. The variation of the
characteristic curves will be detected by the ANFIS controllers. The controllers will detect
the damage groups that will cause an open circuit and short it, thereby giving the alarm as
predictive maintenance in case of physical variation in the characteristics of PV cells. A test
is done by varying the series and parallel resistance of a certain PV group of cells. Note
that the input reference for the controller is the healthy model without fault which is used
for ANFIS adaptation.

The simulation result shows the effect of this variation on PV characteristics, groups,
and arrays. The results are shown in Figures 6–9, where Rsh is the equivalent shunt
resistance of PV matrix modules. In this test, different Rs values (0.002, 0.004, and 0.008)
are adopted in this simulation. Figure 6 shows the effect of variation of series resistance
due to fault occurrence in the PV cell where the I-V and P-V characteristics are presented.
Figure 7 demonstrates the impact of variation of series resistance due to fault occurrence in
the proposed PV array system in which the P-V characteristic is presented. It is obvious
that the harvesting PV power is the highest with a 0.002 Rs value compared to the other
ones. Similarly, Figure 8a,b shows the effect of variation of shunt resistance (1000, 4000,
and 6000) due to fault occurrence in the proposed PV cell, and the I-V characteristic is
presented for different faults. In turn, Figure 8c,d displays the effect of variation of shunt
resistance due to fault occurrence in the proposed PV cell, where the P-I characteristic is
presented. Figure 9 shows the effect of variation of shunt resistance due to fault occurrence
in the PV array, the P-V characteristic is presented for different faults.
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Figure 6. Effect of variation of series resistance on the characteristic of Photovoltaic (PV) cell: (a) I-V ch/s; and (b) P-V ch/s.
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A fault in group 21 occurred in the simulation model and becomes an open circuit.
The ANFIS controller detected the fault and shorted the damaged module and the results
of characteristic curve comparison are shown in Figures 10 and 11 in cases of health, faulted
conditions, and finally after shorting the faulted group. Specifically, the effects in P-V
characteristic when the proposed system is exposed to open circuit fault and the ANFIS
controller action for system restoration are shown in Figures 10 and 11. The PV array
structure during fault occurrence and after reconfiguration using the ANFIS controller
is shown in Figures 12 and 13. It is worth noting that the ANFIS controller can detect
not only a single fault but also larger faults based on the input readings (radiation and
current readings, and by referring to the readings of healthy PV matrix modules) which
will require upgrading the training process of ANFIS.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 10. Effect of open-circuit fault occurred in a certain group on the power output of PV string. 

 

Figure 11. Effect of open-circuit fault occurred in a certain group on the power output of PV array. 

Figure 10. Effect of open-circuit fault occurred in a certain group on the power output of PV string.



Sensors 2021, 21, 2269 12 of 16

Sensors 2021, 21, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 10. Effect of open-circuit fault occurred in a certain group on the power output of PV string. 

 

Figure 11. Effect of open-circuit fault occurred in a certain group on the power output of PV array. Figure 11. Effect of open-circuit fault occurred in a certain group on the power output of PV array.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 17 
 

 

A

A

A

A

V

V

V

V

V

B1

B3

B5

B7

B9

B2

B4

B6

B8

B10

B11 B12 B13 B14

B15 B16 B17 B18

B19 B20 B21 B22

B23 B24 B25 B26

         O.C

 

Figure 12. Construction of PV array during faulted PV group. 

A

A

A

A

V

V

V

V

V

B1

B3

B5

B7

B9

B2

B4

B6

B8

B10

B11 B12 B13 B14

B15 B16 B17 B18

B19 B20 B21 B22

B23 B24 B25 B26

 

Figure 13. Reconstruction of PV array by shorting the faulted module using ANFIS controller. 

Figure 12. Construction of PV array during faulted PV group.



Sensors 2021, 21, 2269 13 of 16

Sensors 2021, 21, x FOR PEER REVIEW 14 of 17 
 

 

A

A

A

A

V

V

V

V

V

B1

B3

B5

B7

B9

B2

B4

B6

B8

B10

B11 B12 B13 B14

B15 B16 B17 B18

B19 B20 B21 B22

B23 B24 B25 B26

         O.C

 

Figure 12. Construction of PV array during faulted PV group. 

A

A

A

A

V

V

V

V

V

B1

B3

B5

B7

B9

B2

B4

B6

B8

B10

B11 B12 B13 B14

B15 B16 B17 B18

B19 B20 B21 B22

B23 B24 B25 B26

 

Figure 13. Reconstruction of PV array by shorting the faulted module using ANFIS controller. Figure 13. Reconstruction of PV array by shorting the faulted module using ANFIS controller.

5.2. Discussions

Table 1 gives a comparison between the efficiency of the array in the three cases for
the same operating condition (same radiation and temperature) for 110 V DC load. As
noticed in Table 1, the proposed method can attain the highest PV power that is 1490 W
which is corresponding to 99.33% with respect to the normal case. In turn, the fault case
without using the proposed rearrangement is only 1050 W which is corresponding to
70.00% with respect to the normal case. This analysis shows the significant enhancement of
the harvesting energy from the PV systems under faulted conditions. This paper presents
an optimum solution for fault finding and clearing, this is done through using artificially
intelligent ANFIS. The new technique is established for fault detection by two ANFIS
controllers used for this purpose. One of them is used to detect the faulted string and the
other one is used for detecting the exact faulted group in the PV array.

Here, we compare the feature of the proposed work with the previous solutions. In [33],
the authors have outlined an understanding of how advanced AI systems can operate by
way of solving several problems in photovoltaic systems. Models of Sugeno fuzzy logic
and PVSAT-2 have been developed to forecast the power production using solar irradiance
in the array plane [34]. In [35], the ANFIS application for modeling and simulating PV
power supply units has been introduced. Moreover, ANFIS has been implemented to
model the delivered and consumed energy generation by PV, where numerous components
of the global model have been accomplished using the dataset from the numerous input
data of PV. In turn, in this work, we have introduced a new approach for fault detection
by a simple and low complexity fault detection way, as well as reconfiguration for the
faulted PV panel, thereby maintaining the highest achievable PV efficiency. In this paper,
the comparison is done taking a base case as a fault without a controller, compared with the
achievement approach when using the proposed controller as well as the model without
fault. This work covers a gap in the literature, the novelty of this work is the proposal of
two ANFIS based controllers. Specifically, the first ANFIS based controller is to detect the
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faulted string while the second ANFIS based controller is utilized for detecting the exact
faulted group in PV. The controller can be easily designed and used in industry because
the inputs are valid and easy to be measured (the inputs to the controller are the radiation,
voltage, and current).

Table 1. The efficiency of the PV array after rearrangement for the same operating condition.

PV Status Power Output (W)

Normal 1500
Fault 1050

After rearrangement 1490

6. Conclusions

This paper presents an optimum solution for fault finding, tracking, and clearing.
This is done by using one of the most promising techniques of artificial intelligence, e.g.,
ANFIS. Specifically, a novel approach is established for fault detection by a simple and low
complexity fault detection method, as well as reconfiguration for the faulted PV panel for
maintaining the maximum achievable efficiency of PV. In this regard, two ANFIS controllers
are used for this purpose. One of them is used to detect the faulted string and the other one
is used for detecting the exact faulted group in the PV array. The fault detection approach
is based on the comparison between the actual measured values of current and voltage
and the trained historical values for this parameter taking into consideration the ambient
changed conditions including solar irradiation and temperature. This article considered
the overcurrent (OC) fault in PV modules only that have a major effect on the performance
of the PV array system. The results show a clear improvement in the efficiency of the PV
array after the reconfiguration process. These simulation results verify the efficiency and
applicability of the proposed ANFIS based technique for fault tracking, detection, as well
as clearing, and rearrangement for PV arrays.
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21. Coşgun, A.E.; Uzun, Y.; Cosgun, A. Thermal Fault Detection System for PV Solar Modules. Electr. Electron. Eng. Int. Journal
(ELELIJ) 2017, 6, 9–15. [CrossRef]

22. Silva, M.F.A.D. Analysis of New Indicators for Fault Detection in Grid Connected PV Systems for BIPV Applications. Ph.D.
Thesis, Univeridade de Lisboa, Lisbon, Portugal, 2014.

23. Braun, H. Signal Processing and Robust Statistics for Fault Detection in Photovoltaic Arrays. Ph.D. Thesis, Arizona State
University, Phoenix, AZ, USA, 2012.

24. Chouder, A.; Silvestre, S. Automatic supervision and fault detection of PV systems based on power losses analysis. Energy Conver.
Manag. 2010, 51, 1929–1937. [CrossRef]

25. Abouelatta, M.A.; Ward, S.A.; Sayed, A.M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Fast Corona Discharge Assessment
Using FDM integrated With Full Multigrid Method in HVDC Transmission Lines Considering Wind Impact. IEEE Access 2020, 8,
225872–225883. [CrossRef]

26. Ali, E.S.; El-Sehiemy, R.A.; Abou El-Ela, A.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. An Effective Bi-Stage Method for
Renewable Energy Sources Integration into Unbalanced Distribution Systems Considering Uncertainty. Processes 2021, 9, 471.
[CrossRef]

27. Elsisi, M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. An Improved Neural Network Algorithm to Efficiently Track Various
Trajectories of Robot Manipulator Arms. IEEE Access 2021, 9, 11911–11920. [CrossRef]

28. Abaza, A.; El-Sehiemy, R.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Optimal Estimation of Proton Exchange Membrane
Fuel Cells Parameter Based on Coyote Optimization Algorithm. Appl. Sci. 2021, 11, 2052. [CrossRef]

29. Elsisi, M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Reliable Industry 4.0 Based on Machine Learning and IoT for Analyzing,
Monitoring, and Securing Smart Meters. Sensors 2021, 21, 487. [CrossRef]

30. Elsisi, M.; Tran, M.-Q.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Deep Learning-Based Industry 4.0 and Internet of Things
Towards Effective Energy Management for Smart Buildings. Sensors 2021, 21, 1038. [CrossRef]

31. Ghoneim, S.S.M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Enhancing Diagnostic Accuracy of Transformer Faults Using
Teaching-Learning-Based Optimization. IEEE Access 2021, 9, 30817–30832. [CrossRef]

http://doi.org/10.3390/en12091712
http://doi.org/10.3390/app11031055
http://doi.org/10.3390/j3010005
http://doi.org/10.1016/j.solener.2020.10.024
http://doi.org/10.1016/j.rser.2015.07.165
http://doi.org/10.1016/j.energy.2020.117884
http://doi.org/10.1109/TSTE.2015.2421447
https://www.ijstr.org/paper-references.php?ref=IJSTR-1216-15833
https://www.ijstr.org/paper-references.php?ref=IJSTR-1216-15833
http://doi.org/10.1016/j.solener.2017.04.043
http://doi.org/10.14810/elelij.2017.6302
http://doi.org/10.1016/j.enconman.2010.02.025
http://doi.org/10.1109/ACCESS.2020.3045073
http://doi.org/10.3390/pr9030471
http://doi.org/10.1109/ACCESS.2021.3051807
http://doi.org/10.3390/app11052052
http://doi.org/10.3390/s21020487
http://doi.org/10.3390/s21041038
http://doi.org/10.1109/ACCESS.2021.3060288


Sensors 2021, 21, 2269 16 of 16

32. Ward, S.A.; El-Faraskoury, A.A.; Badawi, M.; Ibrahim, S.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Towards Precise
Interpretation of Oil Transformers via Novel Combined Techniques Based on DGA and Partial Discharge Sensors. Sensors 2021,
21, 2223. [CrossRef]

33. Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci.
2008, 34, 574–632. [CrossRef]

34. Platon, R.; Pelland, S.; Poissant, Y. Modelling the power production of a photovoltaic system: Comparison of sugeno-type fuzzy
logic and PVSAT-2models. In Proceedings of the EuroSun2012, ISES-Europe Solar Conference, Rijeka, Croatia, 18–20 September
2012.

35. Mellit, A.; Kalogirou, S.A. ANFIS-based modelling for photovoltaic power supply system: A case study. Renew. Energy 2011, 36,
250–258. [CrossRef]

36. Schirone, L.; Califano, F.P.; Moschella, U.; Rocca, U. Fault finding in a 1 MW photovoltaic plant by reflectometry. In Proceedings
of the 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and
PSEC), Waikoloa, HI, USA, 5-9 December 1994; Volume 1, pp. 846–849.

37. Jang, J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [CrossRef]
38. Elsisi, M.; Tran, M.-Q.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Robust Design of ANFIS-Based Blade Pitch Controller for

Wind Energy Conversion Systems against Wind Speed Fluctuations. IEEE Access 2021, 9, 37894–37904. [CrossRef]
39. Lin, C.T.; Lee, C.G. Neural Fuzzy Systems; PTR Prentice Hall: Englewood Cliffs, NJ, USA, 1996.
40. Sugeno, M.; Tanaka, K. Successive identification of a fuzzy model and its applications to prediction of a complex system. Fuzzy

Sets Syst. 1991, 42, 315–334. [CrossRef]

http://doi.org/10.3390/s21062223
http://doi.org/10.1016/j.pecs.2008.01.001
http://doi.org/10.1016/j.renene.2010.06.028
http://doi.org/10.1109/21.256541
http://doi.org/10.1109/ACCESS.2021.3063053
http://doi.org/10.1016/0165-0114(91)90110-C

	Introduction 
	Motivation 
	Literature Review 
	Contributions 

	Problem Formulation and System Modelling 
	Adaptive Neuro-Fuzzy Inference System (ANFIS) 
	Controller Design 
	Simulation Results 
	Case Study 
	Discussions 

	Conclusions 
	References

