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Abstract

We study the optimal interventions of a regulator (a central bank or government) on the illi-

quidity default contagion process in a large, heterogeneous, unsecured interbank lending

market. The regulator has only partial information on the interbank connections and aims to

minimize the fraction of final defaults with minimal interventions. We derive the analytical

results of the asymptotic optimal intervention policy and the asymptotic magnitude of default

contagion in terms of the network characteristics. We extend the results of Amini, Cont and

Minca’s work to incorporate interventions and adopt the dynamics of Amini, Minca and

Sulem’s model to build heterogeneous networks with degree sequences and initial equity

levels drawn from arbitrary distributions. Our results generate insights that the optimal

intervention policy is “monotonic” in terms of the intervention cost, the closeness to invulner-

ability and connectivity. The regulator should prioritize interventions on banks that are

systematically important or close to invulnerability. Moreover, the regulator should keep

intervening on a bank once having intervened on it. Our simulation results show a good

agreement with the theoretical results.

Introduction

Introduction

The systemic risk in a financial network has been drawing more and more interest of regula-

tors and researchers, especially after the Asian financial crisis in the late 1990’s and the more

recent economic recession during 2007-2009. Financial institutions (hereafter, banks) are con-

nected to form an interbank network to allow liquidity reallocation between the banks in that

banks with liquidity surpluses can lend to banks with liquidity deficits. However, the interbank

network may also introduce aggregate liquidity shortage and default contagion. Liquidity

shock such as a run will cause some banks to default, leading to losses of their creditor banks

through interbank connections, which may in turn result in losses of their creditors. In the

financial crisis of 2007-2009 the interbank market dysfunctioned because the market partici-

pants perceived heightened counterparty risk and liquidity risk [1], and the severe reduction

in transaction volume was a major contributing factor to the collapse of many banks. When

the interbank market is stressed or freezes, the central bank as the lender of last resort has to
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provide extensive short term liquidity support. For example, the Federal Reserve in the US

established many facilities, including the traditional discount window, the Term Auction

Facility (TAF), Primary Dealer Credit Facility (PDCF), and Term Securities Lending Facility

(TSLF). The central bank or government also recapitalize the banks and provide risk capital in

the form of a bailout. Naturally, we ask the following questions: Should the regulator (the cen-

tral bank or government) intervene if the bankruptcy of one or several banks has occurred or

is imminent? What is the optimal intervention policy of the regulator based on the measurable

features of the network and the banks, such as the degrees of connectivity and the levels of cap-

italization? How much improvement can the optimal strategy achieve regarding the fraction of

market protected from defaults?

To answer these questions we study the uncollateralized interbank funding market where

the majority of interbank loans are overnight. The connections are constantly changing so the

regulator may not know exactly all the connections over time. After some liquidity incident,

e.g. runs on a few banks, some banks default, which initiates the default contagion process.

During the process, the regulator has to intervene on the defaulted banks to prevent the conta-

gion from spreading. Due to the system panics, no banks want to lend new loans to other

banks but meanwhile they are still obliged to pay back their current loans which are due in the

time frame of the model. So it is reasonable to fix the in and out degrees of banks and assume

all the connections do not change any more after the inception of default contagion. Theoreti-

cally, the regulator would be able to find out the connections between the banks by communi-

cating with the banks; however, the contagion process happens so fast that the regulator may

not have ample time to find out the connections between the banks. In other words, the regula-

tor will have to intervene while all the connections between the banks are unknown. So the

regulator has only partial information because in the beginning the regulator only knows the

initially defaulted banks and the magnitude of connections of each bank but the connections

between the banks are unknown. Every time a default occurs the regulator learns the connec-

tions of the defaulted bank (i.e. the banks that are affected by the default), represented by the

connections being revealed after the default.

We set up a probability space under which the financial network is generated by a uniform

matching of the in and out degrees (a configuration model). A directed link in the network

represents one unit of loan. In the following we may use “bank” and “node” interchangeably.

Before an external shock to the system, each node has a positive equity level (the difference of

total assets and liabilities), which indicates the number of defaulted loans due to the default of

its debtors a node can withstand before it defaults. In other words, it is the “distance to

default”. After an external shock, some nodes in the system default initially and we set their

equity levels to zero. We adopt the dynamics of the model in [2, 3]. When a node defaults, it

defaults on all of its loans. We assume a zero recovery rate of the loan, i.e. the creditor receives

zero value from the loan, which is the most realistic assumption for short term default as sug-

gested in [4]. We assume there is a time span between a node’s default and the time its creditor

records the loan as a loss (by writing down the loan from its balance sheet). We model this

time span by independently and identically distributed exponential random variables. After

the affected node records the defaulted loan, it may request the regulator for interventions. If

the regulator decides to intervene by replacing the defaulted loan or by infusing one unit of

equity, the equity level of the affected node will stay the same, otherwise its equity level will

decrease by one. Once the equity level reaches zero, the node defaults. We assume that the

once a bank has defaulted it cannot become liquid again within the time horizon of the model

because it is very unlikely for a bank that has declared default to gain enough capital in the

short term considered in the model.

Intervention on default contagion
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We emphasize that one essential feature of the model is partial information. Because it

takes time and effort for the regulator to find out the exact connections in the interbank mar-

ket and the default contagion process may progress very rapidly, the regulator may have to

intervene even before it is able to figure out the connections in order to take early actions and

save the maximum amount of banks from bankruptcy. During the contagion process, the reg-

ulator only knows the default set (the set of defaulted nodes) with some out-links revealed, but

meanwhile other out-links remain hidden until the affected nodes record the defaulted loans.

More generally, unlike the complete information assumption in other theoretical models,

the partial information setting aligns with the reality better, as pointed out by [5]: “Interbank
exposure data are never publicly available, and in many countries nonexistent even for central
regulators”.

Our methodology is illustrated in Fig 1. The regulator’s goal is to minimize the number of

final defaulted nodes with the minimum number of interventions. Thus we obtain a stochastic

control problem minmnobjnðGrn; mnÞ where the objective function depends on the graph Grn
and the intervention sequence μn, shown in (1). We aim to solve it for the optimal intervention

sequence m�n and thus obtain the optimal objective function value objnðGrn; m
�
nÞ, shown in (2).

However, solving the problem with the usual dynamic programming approach will incur

intractability problem because of the fast expansion of the state space as pointed out in [3],

especially for a heterogeneous network. We take an alternative approach based on the fact that

under some regularity conditions, the objective function converges as n!1. We solve the

asymptotic optimal control problem minμ obj(Gr, μ) in (3) where obj, Gr and μ are the limit

forms of objn, Grn and μn, respectively, and obtain the optimal intervention μ� and the objec-

tive function obj(Gr, μ�) in (4) which allow us to construct the optimal intervention sequence

m�n for a finite n through μ� and approximate objnðGrn; m
�
nÞ with obj(Gr, μ�). Our results of the

numerical experiments validate the approximation for networks with sizes close to the real

financial networks.

Relations to previous literature

Our work is closely related to the current literature on the role of the central bank as the lender

of last resort, including providing liquidity by a loan, recapitalizing the banks and bank bailout.

These studies differ in their perspectives and focuses in their models. The influencing Dia-

mond & Dybvig model [6] about the market panics and bank runs has two Nash equilibria:

depositors withdraw only for their real expenditure needs or a bank run. [7] extend the Dia-

mond & Dybvig model to a financial network of four banks to study the default contagion.

The interbank network is formed to allocate liquidity among the banks to satisfy regional

liquidity demands. In a complete market where the banks exchange deposits or in a discon-

nected market no contagion occurs while in an incomplete market where the banks do not

exchange deposits with all other banks, high connectivity may entail contagion. The role of the

central bank is thus to complete the market. [8] introduce a similar model but assume the

depositors are uncertain about where they have to consume. In their model the central bank

acts as a “crisis manager”: when a bank is to be liquidated, the central bank has to organize the

bypass of the defaulting bank in the payment network and provide liquidity to the banks that

depend on the defaulting bank. [9] consider that the fire sales of the banking assets occur when

a large number of banks default and investors outside the banking sector who are inefficient

users may end up purchasing the liquidated assets. To avoid the allocation inefficiency, the reg-

ulator may bail out the banks directly or provides liquidity to surviving banks to purchase

defaulting banks. [10] argue that the government should bail out banks in distress because it

can provide liquidity more efficiently than private investors. [11] consider three forms of
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regulator interventions: buying equity, purchasing assets and providing debt guarantee to

alleviate debt overhang in a financial market but the regulator has limited information and

resources. All the works discuss the optimal interventions based on equilibrium analysis. In

contrary, our model emphasizes the aspect of the interbank market that it is a complex net-

work and focus on how the regulator should make intervention decisions under the network

dynamics. Moreover, some papers study the related problem about the banks in the interbank

network bailing each other out, such as [12] and [13].

In addition to the theoretical studies, empirical studies abound. [14] analyze the data on

the interbank transactions derived from the main euro area payment system and find that the

European Central Bank took the role of the overnight unsecured interbank market in liquidity

provision to the banks during the global financial crisis in 2008-2010. [15] analyze the daily

transaction data and find that in 2008 counterparty risk plays a more important role than

liquidity hoarding in reducing liquidity and increasing the cost of finance in the federal funds

market in the US. By analyzing supervisory data of Germany, [16] find that regulatory inter-

ventions decrease liquidity creation while capital support does not affect it. [17] discuss the

relations between liquidity regulations and the lender of last resort practice and argue that they

are complementary rather than conflicting tools.

Our work is also related to the strand of literature on systemic risk and default contagion

in the financial networks without considering regulator interventions. These works focus on

understanding the dependence of the default contagion on various features of the financial

network and the banks within it, including the degrees of connectivity, the equity levels and so

on. Similarly, there are mainly two types of literature: empirical and theoretical. The empirical

studies conduct statistical analyses on the interbank markets using data on interbank lending

as far as they are available and provide an overview of the structural characteristics of the inter-

bank network in different countries ([4, 18, 19]). The theoretical studies model the financial

network with network models but differ in their assumptions about the network structure and

approaches: some focus on “stylized” networks whose structures are hypothetical ([7, 20, 21,

22]) while others rely on simulations ([4, 23]). Among them, [24] and [25] propose random

network models that allow more realistic and heterogeneous structures. [26] survey theoretical

works on contagion and systemic risk in financial networks and categorize them according to

different topics including network connectivity, bank heterogeneity, uncertainty in financial

markets, and portfolio composition of the banks.

Fig 1. The methodology: Approximation of the finite network with the infinite network.

https://doi.org/10.1371/journal.pone.0209819.g001

Intervention on default contagion

PLOS ONE | https://doi.org/10.1371/journal.pone.0209819 January 15, 2019 4 / 60

https://doi.org/10.1371/journal.pone.0209819.g001
https://doi.org/10.1371/journal.pone.0209819


In regards to section Introduction, this paper is closely related to [24] and [2, 3]. [24] study

the magnitude of default contagion in a heterogeneous network with given degree sequence

and arbitrary distribution of weights and derive the analytical expressions of the asymptotic

fractions of defaults in terms of the network characteristics. Our work incorporates interven-

tions into a model proven to be equivalent to theirs. Thus if there are no interventions, the

asymptotic fraction of final defaults will be the same as in [24]. [2] consider a stylized core-

periphery financial network as an intermediary to provide liquidity to fund projects in outside

economy but it may also incur contagion when the banks hoard liquidity. The regulator inter-

venes by providing loans to defaulting banks. [3] consider a similar core-periphery model

where the regulator intervenes by injecting equity. We adopt the dynamics of their model that

constructs the default set under interventions through a configuration model because the con-

figuration model can be adapted to the contagion process [27]. But we differ from [2, 3] in two

important ways. First, our model is a more general heterogeneous random network with

degree sequences and initial equity levels drawn from arbitrary distributions. More impor-

tantly, [2, 3] focus on the benefits and costs of the connectivity in the presence of the regulator

and draw conclusions mainly from numerical studies, while we focus on the optimal interven-

tion policy and its relations to the network characteristics. Mathematically we have successfully

addressed two major mathematical difficulties arising from considering interventions on a

general complex network: Interventions introduce discontinuity into the asymptotic process

thus the main supporting theorem used in [24] is no longer applicable directly; moreover, the

high dimensional optimal control problem we obtain later is well known among control theo-

rists difficult to solve, especially analytically. We give analytical formulations for the asymp-

totic optimal intervention policy as well as the asymptotic number of interventions and final

defaulted banks. The asymptotic results provide a good approximation to real financial net-

works, which are heterogeneous and have several hundred to a thousand of banks thanks to

the fast convergence behavior of our results.

Contributions

The main contribution is that we have proposed a new approach to determine the optimal

intervention strategy on contagions in a large and heterogeneous financial network-to be spe-

cific, we derive the asymptotic optimal intervention strategy as the size of the network tends to

infinity and then show that it is a good approximation of the optimal intervention strategy for

a real financial network. This new approach has the advantage of avoiding the stylized model

in the equilibrium analysis or the intractability of the dynamic programming approach in pre-

vious literature and enabling us to obtain analytical results. In light of this, we derive rigorous

asymptotic results of the optimal strategy for the regulator and the fraction of final defaulted

banks under the dynamics of the default contagion process in a heterogeneous network with a

degree sequence and initial equity levels that can be drawn from arbitrary distributions. The

analytical expressions are presented in terms of measurable features of the network. For con-

vergence of the results, we assume the network is sparse as in [24] which is supported by the

empirical studies of real financial networks ([28, 29]).

The key insights of our findings of the optimal strategies are summarized in the following.

We should only consider intervening on a bank when it records the loss of a defaulted loan

and is very close to default. The optimal intervention policy depends strongly on the interven-

tion cost. The smaller the intervention cost, the more interventions are implemented. More-

over, the optimal intervention policy is “monotonic” with respect to the measurable features of

the network. We should not intervene on the banks with out degrees in a certain range regard-

less of their other features; for those banks worth interventions, the larger the sum of initial
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equity and accumulative interventions received, the earlier we should begin intervention on

them; the time to start intervention on a node is also “monotonic” in its in and out degrees.

Interestingly, once we begin intervening on a node, we keep intervening on it every time it rec-

ords the loss of a defaulted loan. By comparing the fractions of final defaults under no inter-

ventions and the optimal intervention policy, we are able to quantify the improvement made

by interventions in terms of the network features. This gives guidance for the maximum

impact the regulator can have to offset the effects of default contagion.

The paper is organized as follows. We set up the model and introduce the stochastic control

problem (SCP) in section Model description and dynamics. In section The asymptotic control

problem we formulate the asymptotic control problem Eq (9) that gives the limit for the objec-

tive function of the SCP as the size of the network goes to infinity and present the necessary

conditions for the optimal intervention policy, which lead to the main theorems. In section

Numerical experiments we show the results of the numerical experiments to validate the

approximation of Eq (4) by Eq (9). We present in Appendix A: Proofs all the proofs and in

Appendix B: Wormald’s theorem and Appendix C: Extended pontryagin maximum principle

the two theorems used in the proofs as well as a list of notations in Appendix D: Preliminary

list of notations.

Model description and dynamics

Basic setup

We consider default contagion in an unsecured interbank lending market under short term

illiquidity risk based on the model of [2]. Due to the system panics, no banks want to lend

new loans to other banks but meanwhile they are still obliged to pay back their current

loans which are due in the time frame of the model, so we fix the in and out degrees of

banks in the network, denoted as (d−(v), d+(v))v2[n], where [n] = {1, . . ., n} the set of nodes. Let

m =
P

v2[n] d−(v) =
P

v2[n] d+(v).

Then we model the financial network with prescribed degree sequence (d−(v), d+(v))v2[n] as

an unweighted directed network ð½n�; EnÞ, where En denotes the set of links. A directed link

ðv;wÞ 2 En represents v borrows a unit of loan from w, i.e. v is obliged to repay w one unit of

loan. We allow multiple loans to exist between two nodes and also self links representing the

internal loans between different departments of the bank.

Now we set up a probability space ðGn;m;PÞ where Gn,m is the set of networks on n nodes

with at most m directed links. So the random financial network with m directed links lives in

this probability space and under P the law of the random link set En is determined as follows.

We start with n unconnected nodes and assign node v d−(v) in-half-links and d+(v) out-half-

links. An in-half-link represents an offer of a loan and an out-half-link a demand for a loan.

Then the m in-half-links and m out-half-links are matched uniformly so that the borrowers

and lenders are determined. The resulting random network is called the configuration model.
The uniform matching of the in and out-half-links allows us to construct the random net-

work sequentially: at every step we can choose any out half-link by any rule and choose the in-

half-link uniformly over all unconnected in-half-links to form a directed link. This is because

conditional on any subset of connected links, the unconnected links also follow the uniform

distribution. Moreover, the conditional law of unconnected links only depends on the number

of connected links, not the matching history. Additionally we can restrict the matching to

choosing only the out-half-links from the defaulted nodes so that we can model the develop-

ment of the default set with their revealed out-links.

Remark 1. As a result of the uniform connection of in and out-half-links, a node gets

selected with the probability proportional to the number of its unconnected in-half-links. The

Intervention on default contagion
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rationale is that when the regulator searches for the lender of a defaulting loan, a bank that

lends out more loans to other banks is more likely to be the lender and be affected by the

defaulting loan.

Then we endow a node v 2 [n] with its initial equity level eðvÞ 2 N0 :¼ f0; 1; 2; . . .g which

represents the number of defaulted loans v can tolerate until v defaults, so it is the “distance to

default”. Next after the system receives some external shock, some nodes default and the sys-

tem begins to evolve. Define time 0 as the time right after the shock. Let ðGkÞ0�k�m be the filtra-

tion for the probability space ðGn;m;PÞ which models the arrival of new information, i.e. the

revealed link at each step. Because this implies that the the remaining equity of the selected

node will decrease by one, ðGkÞ0�k�m also models the default contagion at the same time. Note

in the following the network with the set of revealed links evolves in the space Gn,m as the result

of the contagion process.

Initial condition. Define the set of initially defaulted nodes D0 :¼ fv 2 ½n� : eðvÞ � 0g and

the σ-algebra representing the information available initially G0 :¼ sððd� ðvÞ; dþðvÞ; eðvÞÞv2½n�Þ.
Given the degree pairs for all nodes (d−(v), d+(v))v2[n], envision for a node v 2 [n], there are

d−(v) in-half-links each representing a loan another node is obliged to pay v and d+(v) out-half-

links each representing a loan v is obliged to pay another node. Let cvk be the sum of initial equity

and accumulative number of interventions on node v and lvk be the number of revealed in-links

of node v at step k, so cv
0
¼ eðvÞ, lv

0
¼ 0. An example of the initial condition of a four node net-

work is illustrated in Fig 2 with D0 ¼ f1; 2g.

Dynamics. We adopt the dynamics from [2]. At the kth step for k 2 [1, m], if the out-links

of nodes in Dk� 1 have not all been revealed, then the new link is revealed following the rule:

an out-half-link of any node in Dk� 1 is picked by any rule and then connected uniformly to

another unconnected in-half-link. Let (Vk, Wk) be a pair of random variables denoting the

link from node Vk to node Wk being revealed at step k. We call Wk is selected at step k. Assume

(Vk, Wk) = (v, w), then the uniformity in connecting the half-links leads to the probability of w
being selected conditional on Gk� 1 as

PðWk ¼ wjGk� 1Þ

¼
number of w’s unrevealed in � links at k � 1

total number of unrevealed in � links at k � 1

¼
d� ðwÞ � lwk� 1

m � ðk � 1Þ
:

ð1Þ

So a node is selected with the probability proportional to the number of its unrevealed

(unconnected) in-half-links. After a directed link (v, w) is revealed, then proceed with the fol-

lowing steps:

• Update Gk ¼ sðGk� 1 [ fðv;wÞgÞ.

• Update the number of revealed out-links: lwk ¼ lwk� 1
þ 1 and lZk ¼ lZk� 1 for η 6¼ w.

• Determine the intervention μk 2 {0, 1} Gk measurable at step k for the selected node w. Note

that cZk � lZk indicates that the node η has defaulted by step k. Because we do not intervene on

defaulted node, μk = 0 if cwk� 1
� lwk� 1

.

• Update cwk ¼ cwk� 1
þ mwk , otherwise cZk ¼ cZk� 1 for η 6¼ w.

• Update the default set Dk. If cwk � lwk and w =2 Dk� 1, then Dk ¼ Dk� 1 [ fwg, otherwise

Dk ¼ Dk� 1.

Intervention on default contagion
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If all out-links from Dk have been revealed, the process ends and let the process end time be

Tn = k, otherwise repeat the process. Define DTn
as the number of defaulted nodes by the pro-

cess end time Tn. In Fig 3 we show the first step of the dynamics for the network in Fig 2. The

link (1, 4) is revealed (connected) and node 4 is selected with probability 2

6
. Because the node

4 is liquid, the regulator needs to decide whether to intervene. Node 4 remains liquid if it

receives one intervention, or it will default and be included in the default set.

Fig 2. Financial network before default contagion occurs. (d−(v), d+(v)) are the degrees and e(v) is the initial equity

of node v. The nodes in the initial default set D0 ¼ f1; 2g are marked in blue.

https://doi.org/10.1371/journal.pone.0209819.g002

Fig 3. Dynamics at step one. Node 4 is selected with probability 2

6
and a link between 1 and 4 is revealed. If one

intervention is applied, node 4 remains liquid, otherwise its equity level will decrease by one and node 4 defaults.

https://doi.org/10.1371/journal.pone.0209819.g003
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Remark 2. The notion of partial information is reflected by the fact that there are always

unrevealed links before the process ends and the regulator cannot make decisions depending

on the knowledge of it. The regulator can only be certain that if the remaining equity is nonpo-

sitive ðcZk � lZkÞ then the node η has defaulted at step k. On the other hand, every out-half-link

from the default set represents a defaulted loan which is possible to impact every node in the

network at a later time. So all the current liquid vulnerable nodes are subject to default at a

later time and the regulator should take this into account when making intervention decisions

at each step.

Let Rk be the accumulative number of interventions by step k and Dk ¼ jDkj be the number

of defaults at step k. The regulator aims to minimize the number of defaulted nodes by Tn with

the minimum amount of interventions, so we define the objective function as a linear combi-

nation of the (scaled) number of interventions and defaults by the end of the process Tn as

Jn ¼ EðK
RTn

n
þ
DTn

n
jG0Þ; ð2Þ

where K> 0 is the relative “cost” of an intervention. Further by the definition of cvTn and noting

that a node defaults at last if cvTn � lvTn , i.e. the number of defaulted loans exceeds the total of

the initial equity level and the number of interventions received by Tn, we can express RTn
and

DTn
as

RTn
¼

X

v2½n�

ðcvTn � eðvÞÞ;

DTn
¼

X

v2½n�

1ðcvTn�l
v
Tn
Þ:

ð3Þ

Now we define the stochastic optimal control problem as

min
m2U

Jn; ð4Þ

where μ = (μk)1�k � m, μk 2 {0, 1} and U contains all ðGkÞ0�k�m adapted process μ.

The asymptotic control problem

Assumptions and definitions

We assume that a bank cannot become liquid again once it has defaulted, thus we cannot save

defaulted banks. This assumption is reasonable in the setting of default contagion in a stressed

network and a short time window. Nor do we intervene on invulnerable nodes, because they

never default but intervening on them will only prevent us from saving the banks that are very

close to default especially when the interventions are costly.

In the model description we only intervene on the node that is selected at each step. Now

we show that even if the regulator intervenes on multiple nodes and applies more than one

unit of credit every time, it will not be better.

Proposition 1. For the stochastic control problem Eq (4), we only need to consider inter-

vening on a node that, when selected, has only one unit of equity remaining.

We see proposition 1 implies that it is never optimal to intervene on a node if it is not

selected or has more than one unit of equity remaining when selected. Let (i, j, c, l) be the state

of a node, meaning it has the in and out degree (i, j), sum of the initial equity and the number

of interventions c and l revealed in-links. Note that by definition l� i. We characterize nodes

with states because nodes with the same state have the same probability of being selected at

each step and are statistically the same in influencing other nodes. Note in particular:
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1. c = 0 denotes that the node has defaulted initially.

2. c − l denotes the remaining equity or “distance to default”, i.e. the number of times of being

selected before a node defaults without interventions. Thus c� l means the node has

defaulted.

3. Because l� i by definition, i< c implies that a node is invulnerable, i.e. even all loans lent

out to the counterparties are written down from the balance sheet, the node still has positive

remaining equity. On the contrary, 0< c� i denotes the node has the possibility to default,

i.e. vulnerable.

4. In the beginning of the contagion process, all nodes have l = 0, i.e. are in states of the form

(i, j, c, 0).

Then we define the state of the system at each step. Note that the number of nodes that have

defaulted initially (c = 0) or invulnerable (i< c) in the beginning will not change throughout

the process, so we only need to keep track of the nodes that are initially vulnerable (0< c� i)
and currently liquid and if needed, we can always calculate the number of defaulted nodes at

any time in the process. Further note that the possible states throughout the process for nodes

that are vulnerable in the beginning and liquid at a later step are

G :¼ fði; j; c; lÞ : 0 � i; 0 � j; 0 � l < c � i or c ¼ iþ 1; l ¼ ig: ð5Þ

Note particularly the state (i, j, i + 1, i) is the result that a node in state (i, j, i, i − 1) is selected

and receives one intervention and thus becomes invulnerable.

Definition 1. (State variable Sk) Let Si;j;c;lk denote the number of nodes that are vulnerable

initially and are in state (i, j, c, l) at step k, for k = 0, . . ., m and Sk:¼ ðS
i;j;c;l
k Þði;j;c;lÞ2G be the state of

the system. Note in the following we may use α to represent (i, j, c, l)2Γ and write Sak instead of

Si;j;c;lk to simplify the notation.

Recall m = m(n) is the number of the total in (or out) degree of the network, which is also

the maximum steps of the process. Throughout this paper we follow the convention that the

superscript (usually a multi-index) denotes the state and the subscript denotes the time (dis-

crete or continuous), e.g. si;j;c;l
t

, ui;j;c;c� 1
t

, si;j;c;lt , wi;j;c;l
t and ui;j;c;c� 1

t in the following. Then we define

the empirical probability of in, out degrees and initial equity levels.

Definition 2. (Empirical probability) Define the empirical probability of the triplet (in

degree, out degree, initial equity level) as

Pnði; j; cÞ ¼
1

n
jfv 2 ½n�jd� ðvÞ ¼ i; dþðvÞ ¼ j; eðvÞ ¼ cg j: ð6Þ

Note that
P

c�0
Pnði; j; cÞ ¼ 1

n j v 2 ½n�jd
� ðvÞ ¼ i; dþðvÞ ¼ jf gj represents the empirical prob-

ability of the in and out degree pair (i, j).
Previously we use Wk to denote the selected node at step k. Now with a little abuse

of notation, let Wk denote the state of the selected node at step k, k = 1, . . ., m, so

Wk 2 Γ
+ :¼ {(i, j, c, l):0� i, 0� j, 0� c, 0� l� i}. We consider a Markovian control policy

Gn ¼ ðg
ðnÞ
1 ðS0;W1Þ; . . . ; gðnÞm ðSm� 1;WmÞÞ where gðnÞkþ1 : NjGj

0
� Gþ ! f0; 1g specifies the inter-

vention at step k + 1 on the selected node which has state Wk+1 given the state Sk and the super-

script (n) shows the dependence on n.
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Letting Pn = (Pn(i, j, c))i,j,0�c�i, we rewrite the terms Jn as JGnðPnÞ, RTn as RTn
ðGn; PnÞ and DTn

as DTn
ðGn; PnÞ in Eq 4 based on Gn and Pn, so

RTn
ðGn; PnÞ ¼

XTn

k¼1

gðnÞk ðSk� 1;WkÞ;

DTn
ðGn; PnÞ ¼ n

X

i;j

Pnði; j; 0Þ þ n
X

i;j;1�c�i

Pnði; j; cÞ �
X

ði;j;c;lÞ2G

Si;j;c;lTn

¼ n
X

i;j;0�c�i

Pnði; j; cÞ �
X

ði;j;c;lÞ2G

Si;j;c;lTn :

ð7Þ

Note that the first equality for DTn
ðGn; PnÞ holds because the nodes that default at the

end of the process consist of two parts: the nodes that have defaulted initially i.e. n
P

i,j Pn(i,
j, 0) and those nodes that are vulnerable initially and default during the process i.e.

n
P

i;j;1�c�iPnði; j; cÞ �
P
ði;j;c;lÞ2GS

i;j;c;l
Tn .

Assumption 1. Consider a sequence ð½n�; EnÞ of random networks, indexed by the size of

the network n. For each n 2 N; (d−(v))v2[n], (d+(v))v2[n] are sequences of nonnegative integers

with
P

v2[n] d−(v) =
P

v2[n] d+(v) and such that for some probability distribution p on N3

0
inde-

pendent of n with λ :¼
P

i,j,c ip(i, j, c) =
P

i,j,c jp(i, j, c)<1, the following holds

1. Pn(i, j, c)! p(i, j, c) 8 i, j, c� 0 as n!1.

2.
P

v2[n][(d−(v))2+ (d+(v))2] = O(n).

Note that the second assumption implies by uniform integrability that
mðnÞ
n ! l as n!1

and recall that m(n) :¼
P

v2[n] d−(v) =
P

v2[n] d+(v). Since k�m(n), for large n it holds that
k
n �

mðnÞ
n � lþ 1. Assumption 1 essentially implies the network is sparse which is justified in

many empirical study literature on the structure of financial networks [24].

Remark 3. We previously defined that the vector Pn only includes Pn(i, j, c) in the range 0�

c� i, i.e. the fractions of initially defaulted and vulnerable nodes. Accordingly define p :¼ (p(i,
j, c))i,j,0�c�i, i.e. the vector p only includes p(i, j, c) in the range 0� c� i.

Next we present our assumptions on the control functions gðnÞk .

Assumption 2. Define F :¼ {(i, j, c, c − 1): 0� i, 0� j, 1� c� i}. Let Gn ¼ ðg
ðnÞ
1 ; . . . ; gðnÞm Þ

be the a control policy (a sequence of control functions) for the contagion process on a net-

work of size n where n is large enough such that
mðnÞ
n � lþ 1. Assume that

gðnÞkþ1ðs;wÞ ¼

( ui;j;c;c� 1
k
n

if w ¼ ði; j; c; c � 1Þ 2 F

0 otherwise;
ð8Þ

for 0� k�m − 1. ui;j;c;c� 1
t

¼ ui;j;c;c� 1ðtÞ where ui, j, c, c−1: [0, λ + 1]! {0, 1} is a piecewise con-

stant function on [0, λ + 1], i.e. there is a partition of the interval into a finite set of intervals

such that ui, j, c, c−1 is constant 0 or 1 on each interval. Let u = (uβ)β2F and P contain all piece-

wise constant vector function u on [0, λ + 1].

Note that F includes possible states having the distance to default equal to one and F� Γ.

Further gðnÞkþ1ðs;wÞ ¼ 0 for w =2 F follows from proposition 1. In the following we may use β to

represent (i, j, c, c − 1) 2 F and write ub
t

instead of ui;j;c;c� 1
t

to simplify the notation.

Remark 4. By this assumption the function u is independent of the state but only a function

of time. This implies that the control function gðnÞkþ1ðs;wÞ depends on the scaled time k
n and the

state of the currently selected node w but not on the state s. We will show it suffices to consider
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such control policy Gn later after proposition 3 because given a function u, we can predict a

deterministic process to which the scaled stochastic contagion process converges in probability

at any time as the size of the network n!1. Moreover, this type of control policies is the one

that can be solved in the optimal control problem Eq (39) we will introduce later.

In summary, assumption 1 assumes the convergence of the empirical probabilities of the in

and out degrees and the initial equity. On the other hand, proposition 3 indicates that the con-

trol functions depend on the scaled time and the state of the currently selected node. These

two assumptions allow us to define the following asymptotic control problem by ensuring that

the limits in the objective function are well defined.

Definition 3. For a sequence of networks with Pn and Gn satisfying assumption 1 and

assumption 2, respectively, define the asymptotic control problem as

min
u2P

lim
n!1

JGnðPnÞ

¼ min
u2P

lim
n!1

KE
RTnðGn; PnÞ

n
þ E

DTn
ðGn; PnÞ
n

:

ð9Þ

In the following we will show the limits in Eq (9) are well defined by applying Wormald’s

theorem [30].

Dynamics of the default contagion process with interventions

Recall that Rk is the accumulative number of interventions up to step k, so

R0 ¼ 0;

Rk ¼
Xk

‘¼1

g‘ðS‘� 1;W‘Þ

¼
Xk

‘¼1

X

b2F

1ðW‘¼bÞ
ub‘� 1

n
:

ð10Þ

We shall show that (Sk, Rk)k=0, . . ., m is a controlled Markov chain given a control policy Gn.
In Fig 4 we illustrate for the same (i, j) pair the state space as well as their transition relations

between the states.

To describe the transition probabilities, assume the state of the selected node at step k + 1 is

Wk+1 = (i, j, c, l), for k = 0, . . ., m − 1, there are three possibilities:

The selected node has defaulted, i.e. c� l or the node is invulnerable, i.e. c> i, then

Sk+1 = Sk, Rk+1 = Rk.

1. The selected node is vulnerable but has the “distance to default” greater than one, i.e.

c − l� 2, then the node w is selected with probability
ði� lÞSi;j;c;lk
m� k and

Si;j;c;lkþ1 ¼ Si;j;c;lk � 1;

Si;j;c;lþ1

kþ1 ¼ Si;j;c;lþ1

k þ 1;

Rkþ1 ¼ Rk;

ð11Þ

while other entries of Sk+1 are the same as Sk.
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2. The selected node has the “distance to default” of one, i.e. c − l = 1, then the node is selected

with probability
ði� cþ1ÞSi;j;c;c� 1

k
m� k and by assumption 2,

Si;j;c;c� 1

kþ1 ¼ Si;j;c;c� 1

k � 1;

Si;j;cþ1;c
kþ1 ¼ Si;j;cþ1;c

k þ gðnÞkþ1ðSk; ði; j; c; c � 1ÞÞ

¼ Si;j;cþ1;c
k þ ui;j;c;c� 1

k
n

;

Rkþ1 ¼ Rk þ u
i;j;c;c� 1
k
n

;

ð12Þ

while other entries of Sk+1 are the same as Sk.

Let ðF kÞk¼0;...;m be the natural filtration of Sk, DSak ¼ Sakþ1
� Sak , α 2 Γ and ΔRk = Rk+1 − Rk, it

follows that

E½DSi;j;c;0k jF k� ¼ �
iSi;j;c;0k

m � k
for 1 � c � i;

E½DSi;j;c;lk jF k� ¼
ði � l þ 1ÞSi;j;c;l� 1

k

m � k
�
ði � lÞSi;j;c;lk

m � k
for 3 � c � i; 1 � l � c � 2;

E½DSi;j;c;c� 1

k jF k� ¼
ði � cþ 2ÞSi;j;c� 1;c� 2

k

m � k
ui;j;c� 1;c� 2
k
n

þ
ði � cþ 2ÞSi;j;c;c� 2

k

m � k
�
ði � cþ 1ÞSi;j;c;c� 1

k

m � k
for 2 � c � i;

E½DSi;j;iþ1;i
k jF k� ¼

Si;j;i;i� 1

k

m � k
ui;j;i;i� 1
k
n

;

E½DRkjF k� ¼
X

ði;j;c;c� 1Þ2F

ði � cþ 1ÞSi;j;c;c� 1

k

m � k
ui;j;c;c� 1
k
n

:

ð13Þ

Fig 4. The state space for the same (i, j) pair, 0� i, 0� j and their transition relations.

https://doi.org/10.1371/journal.pone.0209819.g004
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Convergence of the default contagion process with interventions

Based on the dynamics of the contagion process under interventions described in the previous

section, we will show that the state variable Sk, the accumulative interventions Rk, the number

of defaults Dk and the number of unrevealed out-links from the default set D�k (defined later)

after being scaled by n all converge to a deterministic process which depends on the solution

of the system of ODEs we will present now. Then we are able to show that the stochastic con-

trol problem Eq (4) converges to the asymptotic control problem Eq (9).

Definition 4. (ODEs of sτ) Given a set of piecewise constant function u = (uβ)β2F on [0, λ],

i.e. u 2P, define the system of ordinary differential equations (ODEs) of st ¼ ðsatÞa2G as

dsi;j;c;0
t

dt
¼ �

isi;j;c;0
t

l � t
for 1 � c � i;

dsi;j;c;l
t

dt
¼
ði � l þ 1Þsi;j;c;l� 1

t

l � t
�
ði � lÞsi;j;c;l

t

l � t

for 3 � c � i; 1 � l � c � 2;

dsi;j;c;c� 1
t

dt
¼
ði � cþ 2Þsi;j;c� 1;c� 2

t

l � t
ui;j;c� 1;c� 2

t
þ
ði � cþ 2Þsi;j;c;c� 2

t

l � t

�
ði � cþ 1Þsi;j;c;c� 1

t

l � t
for 2 � c � i;

dsi;j;iþ1;i
t

dt
¼

si;j;i;i� 1
t

l � t
ui;j;i;i� 1

t
:

ð14Þ

The ODEs can be expressed in the form
dst
dt ¼ hðt; st; utÞ where h = (hα)α2Γ.

For what is needed below we analyze the solutions of the ODEs in definition 4 for a subin-

terval of [0, λ] on which uτ is a constant vector function.

Proposition 2. Let st ¼ ðsatÞa2G satisfy the system of ordinary differential equations in defi-

nition 4 with the initial conditions st1 ¼ s1 :¼ ðsa
1
Þ
a2G

and assume uτ is a constant vector func-

tion uτ = b :¼ (bβ)β2F in the interval [τ1, τ2)� [0, λ) where bβ 2 {0, 1} is a constant, then the

solution sτ on [τ1, τ2) is

si;j;c;l
t
¼ ð

l � t

l � t1

Þ
i� l
Xl

r¼0

si;j;c;r1

i � r

l � r

 !

ð1 �
l � t

l � t1

Þ
l� r

for 2 � c � i; 0 � l � c � 2;

ð15Þ

si;j;c;c� 1
t

¼ ð
l � t

l � t1

Þ
i� cþ1

Xc� 1

r¼0

Xc

q¼rþ1

Yc� 1

k¼q

bi;j;k;k� 1si;j;q;r1

i � r

c � 1 � r

 !

ð1 �
l � t

l � t1

Þ
c� 1� r

for 1 � c � i;

ð16Þ

si;j;iþ1;i
t

¼ si;j;iþ1;i
1 þ

Xi� 1

r¼0

Xi

q¼rþ1

Yi

k¼q

bi;j;k;k� 1si;j;q;r1 ð1 �
l � t

l � t1

Þ
i� r
; ð17Þ

where
Qc� 1

k¼c b
i;j;k;k� 1 :¼ 1. As a direct result, if we take the initial condition si;j;c;l

t1
¼ pði; j; cÞ1ðl¼0Þ
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for (i, j, c, l)2Γ at τ1 = 0, it follows that

si;j;c;l
t

¼ pði; j; cÞ
i
l

� �

ð1 �
t

l
Þ
i� l
ð
t

l
Þ
l

for 2 � c � i; 0 � l � c � 2:

ð18Þ

Remark 5. We discuss some properties of sτ. Observe that the ODEs are “separable” in

that si;j;c;l
t

only depends on the entries of sτ and p with the same (i, j). Fix an (i, j) pair, define

Γi,j :¼ {(c, l):0� l< c� i or c = i + 1, l = i}. If uτ is a constant vector of 1’s on [τ1, τ2)� [0, λ),

then we can show after some algebra that for any τ 2 [τ1, τ2),

X

ðc;lÞ2Gi;j

si;j;c;l
t
¼
X

ðc;lÞ2Gi;j

si;j;c;l
t1
:

ð19Þ

If there exists some c0 such that 1� c0� i, ui;j;c0 ;c0 � 1
t

¼ 0, then
P
ðc;lÞ2Gi;j

si;j;c;l
t

<
P
ðc;lÞ2Gi;j

si;j;c;l
t1

.

Since the initial condition is si;j;c;l0 ¼ pði; j; cÞ1ðl¼0Þ for 1� c� i, it follows that

X

ðc;lÞ2Gi;j

si;j;c;l
t
�
X

1�c�i

pði; j; cÞ:
ð20Þ

In the following part our goal is to approximate
Rk
n and

Dk
n as n!1 given a function u.

However, the number of variables depends on n, so we need to bound the terms associated

with large in or out degrees. Fix � > 0 and by assumption 1 we have that

l ¼
X

i;j;c

ipði; j; cÞ ¼
X

i;j;c

jpði; j; cÞ <1; ð21Þ

then there exists an integer M� such that

X

i�M�

X

j;c

ipði; j; cÞ þ
X

j�M�

X

i;c

jpði; j; cÞ < �; ð22Þ

so letting i _ j = max{i, j}, we have

X

i_j�M�;c

jpði; j; cÞ

¼
X

i�M�

X

j<M�

X

c

jpði; j; cÞ þ
X

i�M�

X

j�M�

X

c

jpði; j; cÞ þ
X

i<M�

X

j�M�

X

c

jpði; j; cÞ

�
X

i�M�

X

j<M�

X

c

ipði; j; cÞ þ
X

i�M�

X

j�M�

X

c

jpði; j; cÞ þ
X

i<M�

X

j�M�

X

c

jpði; j; cÞ

< �:

ð23Þ

We can prove similarly that there exists an integer L� such that
P

i_j�L�,c ip(i, j, c) < �, but

without loss of generality we write M� instead of L� in what follows. Moreover, by assumption

1, as n!1,

X

i;j;c

iPnði; j; cÞ ¼
X

i;j;c

jPnði; j; cÞ ! l <1; ð24Þ
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so for n large enough, we can show that

X

i_j�M�;c

jPnði; j; cÞ < �;

X

i_j�M�;c

iPnði; j; cÞ < �:
ð25Þ

So we define the integer M� formally.

Definition 5. Given any � > 0, define M� as the integer such that

X

i_j�M�;c

ipði; j; cÞ < �;

X

i_j�M�;c

jpði; j; cÞ < �:
ð26Þ

Accordingly, define

G� :¼ fði; j; c; lÞ : i _ j < M�; 0 � l < c � i or c ¼ iþ 1; l ¼ ig;

F� :¼ fði; j; c; c � 1Þ : i _ j < M�; 0 � c � ig;

l̂ :¼ l � �;

ð27Þ

where a _ b = max{a, b}.

Next we show that the scaled state variable Sk and Rk converges in probability to the solu-

tion of the ODEs in definition 4 given the function u. The difficulty in proving proposition 3

arises from the fact that the right sides of the ODEs for sτ in definition 4 are discontinuous due

to interventions so the auxiliary Wormald’s theorem in Appendix B: Wormald’s theorem is

not applicable and needs to be adapted.

Proposition 3. Consider a sequence of networks with initial conditions (Pn)n � 1 satisfying

assumption 1 and let (Gn)n�1 be the sequence of control policies for the contagion process

on the sequence of networks and (Gn)n�1 satisfy assumption 2 with the function u = (uβ)β2F�,

then

sup
0�k�nl̂

Sak
n
� sak

n
¼ O n� 1

4

� �
;

sup
0�k�nl̂

~Rk

n
� ~rk

n
¼ O n� 1

4

� �
;

ð28Þ

with probability 1 � O n1
4 exp � n1

4

� �� �
and α 2 Γ�, where st ¼ ðsatÞa2G2 is the solution for the

ODEs in definition 4 with the initial conditions si;j;c;l0 ¼ pði; j; cÞ1ðl¼0Þ and

~R0 ¼ 0;

~Rk ¼
Xk

‘¼1

X

b2F�

1ðW‘¼bÞ
ub‘� 1

n
;

ð29Þ

and

~rt ¼
Z t

0

X

ði;j;c;c� 1Þ2F�

ði � cþ 1Þsi;j;c;c� 1
t

l � t
ui;j;c;c� 1

t dt: ð30Þ
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From proposition 3 we see that given (Pn)n�1 and (Gn)n�1 satisfying assumption 1 and

assumption 2, respectively, the scaled stochastic process
Sk
n converges to the deterministic pro-

cess sk
n

for any k in ½0; nl̂�. This justifies assumption 2 on the control policy because given a

control policy Gn depending on the function u, we can predict with high probability the scaled

stochastic contagion process at any time k.

Next we discuss the convergence of the scaled number of defaults
Dk
n and the process end

time
Tn
n . Note in definition 6, definition 7 and proposition 4 it is not required that i _ j<M�

Definition 6. Define D�k the number of unrevealed out links from the default set at step k.

Recall that Dk denotes the number of defaulted nodes at step k which consist of two parts:

the nodes that have defaulted initially n
P

i,j Pn(i, j, 0) and those that are vulnerable initially

and default by step k, i.e. n
P

i;j;1�c�iPnði; j; cÞ �
P
ði;j;c;lÞ2GS

i;j;c;l
k , thus

Dk ¼ n
X

i;j

Pnði; j; 0Þ þ n
X

i;j;1�c�i

Pnði; j; cÞ �
X

ði;j;c;lÞ2G

Si;j;c;lk

¼ n
X

i;j;0�c�i

Pnði; j; cÞ �
X

ði;j;c;lÞ2G

Si;j;c;lk :
ð31Þ

Similarly, among all defaulted nodes at step k the nodes with out degree j consist of two

parts: the nodes that have defaulted initially n
P

i Pn(i, j, 0) and those nodes that are vulnerable

initially and default by step k, n
P

i;1�c�iPnði; j; cÞ �
P

i;0�l<c�i or c¼iþ1;l¼iS
i;j;c;l
k , thus

D�k ¼
X

j

jðn
X

i

Pnði; j; 0Þ þ n
X

i;1�c�i

Pnði; j; cÞ �
X

i;0�l<c�i or c¼iþ1;l¼i

Si;j;c;lk Þ � k

¼ n
X

i;j;0�c�i

jPnði; j; cÞ �
X

ði;j;c;lÞ2G

jSi;j;c;lk � k:
ð32Þ

Correspondingly we make the following definitions to approximate
Dk
n and

D�k
n as n!1.

Definition 7. Define

dt ¼
X

i;j;0�c�i

pði; j; cÞ �
X

ði;j;c;lÞ2G

si;j;c;l
t
;

d�
t
¼

X

i;j;0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2G

jsi;j;c;l
t
� t:

ð33Þ

Proposition 4. Based on definition 6 and definition 7, it follows that

sup
0�k�nl̂

�
�
�
�
D�k
n
� d�k

n

�
�
�
� � opð1Þ þ 2�;

sup
0�k�nl̂

�
�
�
�
Dk

n
� dk

n

�
�
�
� � opð1Þ þ 2�:

ð34Þ

To summarize the results we have so far, we have shown in proposition 3 and proposition 4

that the state variable Sk, the accumulative interventions Rk, the number of defaults Dk and the

number of unrevealed out-links from the default set D�k after being scaled by n all converge to

a deterministic process which depends on the solution of ODEs in definition 4. This conver-

gence applies to any k before nl̂. By definition 6, Tn ¼ minf0 � k � m : D�k ¼ 0g. Addition-

ally define tf ¼ inff0 � t � l : d�
t
¼ 0g. Next we show that when

Tn
n converges in probability

to τf, then
RTn
n and

DTn
n also converge in probability to the corresponding deterministic variables,
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rtf and dtf , which in light of the boundedness of
RTn
n and

DTn
n further implies convergence in

expectations, thus the limits in Eq (9) are well defined.

Proposition 5. Consider a sequence of networks with initial conditions (Pn)n�1 satisfying

assumption 1 and let (Gn)n�1 be the sequence of control policies for the contagion processes

on the sequence of networks and (Gn)n�1 satisfy assumption 2 with the function u. If τf = λ, or

τf< λ and d
dt d

�
tf
< 0, it follows that as n!1,

RTn
ðGn; PnÞ
n

!
p

rtf ðu; pÞ;

DTn
ðGn; PnÞ
n

!
p

dtf ðu; pÞ:
ð35Þ

where

rtf ¼
Z tf

0

X

ði;j;c;c� 1Þ2F

ði � cþ 1Þsi;j;c;c� 1
t

l � t
ui;j;c;c� 1

t dt: ð36Þ

Further it follows that as n!1,

E
RTnðGn; PnÞ

n
! rtf ðu; pÞ;

E
DTn
ðGn; PnÞ
n

! dtf ðu; pÞ:
ð37Þ

Under the conditions in proposition 5, the asymptotic control problem Eq (9) becomes

min
u2P

K � rtf ðu; pÞ þ dtf ðu; pÞ: ð38Þ

In the following let ut ¼ ðubt Þb2F and u = (uτ)τ 2 [0, λ].

Substituting the expressions of rtf ðu; pÞ and dtf ðu; pÞ in Eqs (36) and (33) respectively into

Eq (38) and putting together the system of ordinary differential equations of st ¼ ðsatÞa2G, i.e.
d
dt st ¼ hðt; st; utÞ in definition 4 as well as the condition that determines τf, i.e. d�

tf
¼ 0, we

attain the following deterministic optimal control problem.

min
u;tf

K � rtf ðu; pÞ þdtf ðu; pÞ

st
d
dt
st ¼ hðt; st; utÞ

si;j;c;l0 ¼ pði; j; cÞ1ðl¼0Þ

d�
tf
¼ 0

ub
t
2 f0; 1g 8b 2 F

tf 2 ½0; lÞ;

ð39Þ
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where d
dt st ¼ hðt; st; utÞ is defined as in definition 4 and

rtf ðu; pÞ ¼
Z tf

0

X

i;j;1�c�i

ði � cþ 1Þsi;j;c;c� 1
t

l � t
ui;j;c;c� 1

t
dt;

dtf ðu; pÞ ¼
X

i;j;0�c�i

pði; j; cÞ �
X

ði;j;c;lÞ2G

si;j;c;l
tf
;

d�
tf
¼
X

i;j;0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2G

jsi;j;c;l
tf
� tf :

ð40Þ

Some difficulties arise because Eq (39) is an infinite dimensional optimal control problem.

In light of assumption 1, it suffices to solve a finite dimensional problem to approximate the

objective function of the infinite dimensional problem. First we define the finite dimensional

optimal control problem.

Definition 8. (FOCP) For � > 0, recall M� as in definition 5. Define the finite dimensional

optimal control problem (FOCP) as Eq (39) with the indexes (i, j) restricted to i _ j<M�.

Remark 6. The restriction of (i, j) to i _ j<M� indicates that we use only p(i, j, c), i _ j<
M�, 0� c� i in the calculation. It is equivalent to setting p(i, j, c) = 0 for i _ j�M�, 0� c� i
while keeping p(i, j, c) for i _ j<M�, 0� c� i unchanged, which implies asymptotically nodes

with i _ j�M� are all invulnerable. By the solution of the ODE in proposition 2, it implies that

sa
t
¼ 0, for α 2 ΓnΓ�. Note we use tilde sign with the variables to indicate the indexes (i, j) are

in the range i _ j<M�, for example, ~rtf ,
~dtf and ~d �

tf
.

We have the following lemma regarding the objective functions of the infinite and finite

dimensional optimal control problems.

Lemma 1. Let zðu; tf ; pÞ :¼ K rtf ðu; pÞ þ dtf ðu; pÞ be the objective function for the infinite

dimensional Eq (39) and ~zðu; tf ; pÞ :¼ K ~rtf ðu; pÞ þ
~dtf ðu; pÞ for (FOCP). Let ðu�; t�f Þ and

ð~u; ~t f Þ be the optimal solutions for the infinite dimensional Eq (39) and (FOCP), respectively,

then for the same p we have that
�
�
�
�
~zð~u; ~t f ; pÞ � zðu�; t�f ; pÞ

�
�
�
� < ðK þ 1Þ�: ð41Þ

By lemma 1 we only need to solve the finite dimensional optimal control problem (FOCP)

in definition 8. Because � can be arbitrarily small, we can approximate the objective function

of the infinite dimensional problem to any precision. Given p for (FOCP), the Pontryagin’s

maximum principle provides the necessary conditions for the optimal control ~u and end time

~t f . We can obtain the optimal asymptotic number of interventions ~r~t f
and fraction of final

defaults ~d~t f
, which lead to the main results of our work. In the next section we focus on solving

(FOCP) and suppress the tilde sign for the variables for notational convenience.

Necessary conditions for the optimal control problem

In the following we solve the finite dimensional optimal control problem (FOCP) in definition

8. Throughout this section we understand that the degrees are in the bounded range i _ j<M�

unless specified otherwise. We also suppress the tilde sign for notational convenience. Let

t = t(τ) :¼ − ln(λ − τ), t0 :¼ t(0) = −lnλ and tf :¼ −ln(λ − τf). Note t(τ) is a strictly increasing

function of τ and so is the inverse function τ = τ(t). We remark that we assume in the following

that τ< λ which implies tf<1, but later we can see that the solutions of sτ, uτ and wτ do allow

τ = λ. Then we can reformulate the optimal control problem Eq (39) into an autonomous one,
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i.e. the differential equations of the system dynamics do not depend on time explicitly. Let

ut ¼ ðubt Þb2F2 and u ¼ ðutÞt�t0 (note previously u = (uτ)τ2[0,λ]. Additionally, we allow an arbi-

trary starting time t0 here).

ð42Þ

min
u;tf

K � rtf ðu; pÞ þdtf ðu; pÞ

st
d
dt
st ¼ hðst; utÞ

si;j;c;lt0 ¼ pði; j; cÞ1ðl¼0Þ

d�tf ¼ 0

ubt 2 f0; 1g; 8b 2 F
�

tf 2 ½0;1Þ;

ð43Þ

where d
dt st ¼ hðst; utÞ denotes the system of differential equations

dsi;j;c;0t

dt
¼ � isi;j;c;0t for 1 � c � i;

dsi;j;c;lt

dt
¼ ði � l þ 1Þsi;j;c;l� 1

t � ði � lÞsi;j;c;lt

for 3 � c � i; 1 � l � c � 2;

dsi;j;c;c� 1
t

dt
¼ ði � cþ 2Þsi;j;c� 1;c� 2

t ui;j;c� 1;c� 2
t þ ði � cþ 2Þsi;j;c;c� 2

t

� ði � cþ 1Þsi;j;c;c� 1
t

for 2 � c � i;

dsi;j;iþ1;i
t

dt
¼ si;j;i;i� 1

t ui;j;i;i� 1
t ;

ð44Þ

and

rtf ðu; pÞ ¼
Z tf

t0

X

i;j;1�c�i

ði � cþ 1Þsi;j;c;c� 1

t ui;j;c;c� 1

t dt; ð45Þ

dtf ðu; pÞ ¼
X

i;j;0�c�i

pði; j; cÞ �
X

ði;j;c;lÞ2G�
si;j;c;ltf

; ð46Þ

d�tf ¼
X

i;j;0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2G�
jsi;j;c;ltf

� tf

¼
X

i;j;0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2G�
jsi;j;c;ltf

� lð1 � et0 � tf Þ:
ð47Þ

Note that Eq (47) follows from 1

l
¼ et0 and thus tf ¼ l � e� tf ¼ l 1 � 1

l
e� tf

� �
¼ lð1 � et0 � tf Þ.

To determine the necessary conditions for the optimal terminal time t�f and optimal control

u�t in Eq (42), we need the Extended Pontryagin Maximum Principle in Appendix C: Extended

pontryagin maximum principle. Then we put together the objective function Eq (43) and the

necessary conditions to construct the optimization problem Eq (86) we will introduce later.
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Applying the Extended Pontryagin Maximum Principle to the optimal control problem

Eq (42) yields the following necessary conditions of optimality. Note in order to simplify nota-

tions, we suppress the apostrophe “�” in the following. In other words, we use st, ut, wt, v, tf
instead of s�t ; u

�
t ;w

�
t ; v

�; t�f to denote the optimal values.

Proposition 6. (Necessary conditions of optimality) Let (st, ut)t2[t0, tf] be the optimal state

and control trajectory of Eq (42) where tf is the optimal terminal time. Define the Hamiltonian

function

Hðst; ut;wtÞ ¼
X

i;j;1�c�i

wi;j;c;0
t ð� isi;j;c;0t Þ

þ
X

i;j;2�c�i;1�l�c� 1

wi;j;c;l
t

h
ði � l þ 1Þsi;j;c;l� 1

t � ði � lÞsi;j;c;lt

i

þ
X

i;j;2�c�iþ1

ðK þ wi;j;c;c� 1

t Þði � cþ 2Þsi;j;c� 1;c� 2

t ui;j;c� 1;c� 2

t ;

ð48Þ

then there exists a piecewise continuously differentiable vector function

wt ¼ ðwa
t Þa2G2 2 Ĉ

1½t0;1Þ
jG2j

and a scalar v 2 R such that the following conditions hold:

1. The optimal control ut satisfies that 8t 2 [t0, tf], 1� c� i,if si;j;c;c� 1
t > 0,

ui;j;c;c� 1
t ¼

0 if wi;j;cþ1;c
t > � K

1 if wi;j;cþ1;c
t < � K

0 or 1 if wi;j;cþ1;c
t ¼ � K;

8
>>><

>>>:

ð49Þ

if si;j;c;c� 1
t ¼ 0,

ui;j;c;c� 1
t ¼ 0 or 1: ð50Þ

2. For 2� c� i, 0� l� c − 2,

d
dt
wi;j;c;l
t ¼ ði � lÞðwi;j;c;l

t � wi;j;c;lþ1

t Þ; ð51Þ

and for 1� c� i,

d
dt
wi;j;c;c� 1

t ¼ ði � cþ 1Þðwi;j;c;c� 1

t � ðK þ wi;j;cþ1;c
t Þui;j;c;c� 1

t Þ; ð52Þ

and

d
dt
wi;j;iþ1;i
t ¼ 0: ð53Þ

We denote the set of ordinary differential equations for wt as d
dt wt ¼ h0ðwt; utÞ.

3. Hðst; ut;wtÞ is a constant for t 2 [t0, tf].
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4. Transversal conditions

wi;j;c;l
tf ¼ vj � 1 8ði; j; c; lÞ 2 G�; ð54Þ

Hðstf ; utf ;wtf
Þ ¼ � ve� tf ; ð55Þ

d�tf ¼
X

i;j;0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2G�
jsi;j;c;ltf

� lð1 � et0 � tf Þ

¼ 0:

ð56Þ

Remark 7. (Singular control policy) Observe that if the coefficient of ui;j;c;c� 1
t in the Hamilto-

nian function Hðst; ut;wtÞ Eq (48), i.e. ði � cþ 1ÞðK þ wi;j;cþ1;c
t Þsi;j;c;c� 1

t vanishes, ui;j;c;c� 1
t ¼ 0

or 1 both satisfy conditions of the Extended Pontryagin Maximum Principle in Appendix C:

Extended pontryagin maximum principle i.e. minimizing Hðst; ut;wtÞ. In other words, the

Extended Pontryagin Maximum Principle cannot determine the optimal control ui;j;c;c� 1
t in this

case. Moreover, since i − c + 1> 0, so if ðK þ wi;j;cþ1;c
t Þsi;j;c;c� 1

t ¼ 0 can be sustained over some

interval (θ1, θ2)� [t0, tf], then ui;j;c;c� 1
t can be 0 or 1 at any time on (θ1, θ2) and switch arbitrarily

often between 0 and 1. In the terminology of optimal control theory, the control ut is “singu-

lar” on (θ1, θ2) and the corresponding portion of the state trajectory st on (θ1, θ2) is called a sin-

gular arc. Further note that ðK þ wi;j;cþ1;c
t Þsi;j;c;c� 1

t ¼ 0, t 2 (θ1, θ2) implies two cases: si;j;c;c� 1
t ¼ 0

or si;j;c;c� 1
t > 0, wi;j;cþ1;c

t ¼ � K, t 2 (θ1, θ2). We can show that in the first case any feasible control

function ui;j;c;c� 1
t will not affect other entries of st and the second case only occurs when c = i

and (θ1, θ2) = (t0, tf).

Solutions of the necessary conditions

Throughout this section we understand that the degrees are in the bounded range i _ j<M�

unless specified otherwise. A well known fact in the control theorists community is that solving

for the optimal (st, ut, wt) from the necessary conditions presented in proposition 6 is difficult,

especially analytically. In what follows, we solve for the optimal (st, ut, wt) in three steps.

First, solve the the two-point boundary value problem (TPBVP) consisting of the differen-

tial equations for st in Eq (42) and wt in condition (2) of proposition 6 where for st the bound-

ary values are given at t = t0 and for wt at t = tf as follows.

d
dt
st ¼ hðst; utÞ;

si;j;c;lt0 ¼ pði; j; cÞ1ðl¼0Þ 8ði; j; c; lÞ 2 G�;

d
dt
wt ¼ h0ðwt; utÞ;

wi;j;c;l
tf ¼ vj � 1 8ði; j; c; lÞ 2 G�;

ð57Þ

and additionally the optimal control policy ut satisfies Eq (50) in condition 1 of proposition 6.

We solve for (st, ut, wt) in terms of the auxiliary variables (v, tf, ts) and in the following we call

these expressions in terms of (v, tf, ts) as the solutions of (st, ut, wt).
Second, because the optimal (st, ut, wt) satisfies the two equations in the necessary condi-

tions of proposition 6, i.e. the Hamiltonian function Eq (55) at t = tf and the terminal condition
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Eq (56), while minimizing the objective function Eq (43), we have the following optimization

problem for (st, ut, wt):

ð58Þ

min
st ;ut ;wt

K � ittf ðu; pÞ þ dtf ðu; pÞ ð59Þ

st Hðstf ; utf ;wtf
Þ ¼ � ve� tf ð60Þ

d�tf ¼ 0; ð61Þ

where

rtf ðu; pÞ ¼
Z tf

t0

X

i;j;1�c�i

ði � cþ 1Þsi;j;c;c� 1

t ui;j;c;c� 1

t dt;

dtf ðu; pÞ ¼
X

i;j;0�c�i

pði; j; cÞ �
X

ði;j;c;lÞ2G�
si;j;c;ltf

;

d�tf ¼
X

i;j;0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2G�
jsi;j;c;ltf

� lð1 � et0 � tf Þ:

ð62Þ

After substituting (st, ut, wt) expressed in terms of (v, tf, ts) into the optimization problem

(58), we are able to solve the optimal (v, tf, ts) based on which we can calculate the optimal

(st, ut, wt).
Third, we change the variables from (v, tf, ts) to (v, y, z) for further simplification and attain

the optimization problem Eq (86) later.

Now we carry out the first step. The main difficulty of solving problem Eq (57) comes from

the fact that wt and st depend on ut which depends on wt and st recursively through Eq (50).

To disentangle the recursive dependence, the idea is to analyze the properties of st based on

which we can either derive the properties of wt or the explicit solutions of wt depending on

signs of vj − 1 + K. Then by Eq (50) we attain the optimal control policy ut which leads to the

solution of st.
It turns out that we only need wtf

as well as ut and st in (58). From problem Eq (57) we

know that wb
tf
¼ vj � 1 for β 2 Γ�. For ut and st, we give out their solutions in the following

directly due to the limited space of the paper. The solutions of ut and st can be verified by

substituting into problem Eq (57).

Lemma 2. The optimal control policy ut in terms of the variables (v, tf, ts) is given as below.

For 1� c� i except c = i and vj − 1 = −K, 8t 2 [t0, tf],

ui;j;c;c� 1
t ¼ 1ðt�ti;j;cÞ; ð63Þ

where

ti;j;c ¼

tf if vj � 1 � � K

tf þ ln 1þ
K þ vj � 1

ði � cÞK

� �

if vj � 1 < � K and 1 � c < iþ
K þ vj � 1

Kð1 � et0 � tf Þ

t0 otherwise;

8
>>>>><

>>>>>:

ð64Þ
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If vj − 1 = −K, 8t 2 [t0, tf],

ui;j;i;i� 1
t ¼ 1ðt�tsÞ for some ts 2 ½t0; tf �: ð65Þ

The following is the solution for st.
Lemma 3. Letting p(i, j, i + 1) = 0, under the optimal control policy in lemma 2, we have the

following solutions of st for the two-point boundary value problem (TPBVP).

1. For 2� c� i, 0� l� c − 2 and c = 1, l = 0,

si;j;c;lt ¼ pði; j; cÞ
i
l

� �

ðet0 � tÞi� lð1 � et0 � tÞl: ð66Þ

2. If vj − 1< −K, consider t 2 [ti, j, h, ti, j, h−1), for some 1� h� i where

ti;j;h ¼

tf if h ¼ 0

tf þ ln 1þ
K þ vj � 1

ði � hÞK

� �

if 1 � h < iþ
K þ vj � 1

Kð1 � et0 � tf Þ

t0 otherwise:

8
>>>>><

>>>>>:

ð67Þ

If 1� c< h,

si;j;c;c� 1
t ¼ pði; j; cÞ

i
c � 1

� �

ðet0 � tÞi� cþ1
ð1 � et0 � tÞc� 1

: ð68Þ

If h� c� i + 1,

si;j;c;c� 1
t ¼

i
c � 1

� �

ðet0 � tÞi� cþ1
Xc

m¼h

pði; j;mÞ

Xm� 1

n¼0

c � 1

n

� ��
1 � et0 � ti;j;m

�n
ðet0 � ti;j;m � et0 � tÞc� 1� n

:

ð69Þ

3. If vj − 1> −K, for 1� c� i + 1, t 2 [t0, tf],

si;j;c;c� 1
t ¼ pði; j; cÞ

i
c � 1

� �

ðet0 � tÞi� cþ1
ð1 � et0 � tÞc� 1

: ð70Þ

4. If vj − 1 = −K, for 1� c� i, t 2 [t0, tf],

si;j;c;c� 1
t ¼ pði; j; cÞ

i
c � 1

� �

ðet0 � tÞi� cþ1
ð1 � et0 � tÞc� 1

; ð71Þ

and

si;j;iþ1;i
t ¼ pði; j; iÞ1fts�tÞ½ð1 � e

t0 � tÞ
i
� ð1 � et0 � tsÞi�; ð72Þ

where ts 2 [t0, tf].
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Since Eqs (56) and (55) require the state variable value particularly at t = tf, we can apply

lemma 3 at t = tf to attain stf . Next we proceed to the second step, i.e. we substitute ðst; ut;wtf
Þ

in terms of (v, tf, ts) into the optimization program (58) which leads to the following results.

Proposition 7. Based on the solutions of optimal st in lemma 3 (particularly stf ), ut in

lemma 2 and wa
tf
¼ vj � 1, 8α 2 Γ�, letting

ti;j;c ¼

tf if K þ vj � 1 � 0 or c ¼ 0

tf þ ln ð1þ
K þ vj � 1

ði � cÞK
Þ if K þ vj � 1 < 0 and 1 � c < iþ

K þ vj � 1

Kð1 � et0 � tf Þ
;

t0 otherwise;

8
>>>>><

>>>>>:

ð73Þ

the Hamiltonian equation Eq (60) at t = tf is equivalent to

X

j

maxf� K; vj � 1g
X

i

i
Xi

c¼1

pði; j; cÞ
Xi

m¼c

i � 1

m � 1

� �

ðet0 � tf Þi� mþ1

Xc� 1

n¼0

m � 1

n

� ��
1 � et0 � ti;j;c

�n
ðet0 � ti;j;c � et0 � tf Þm� 1� n

¼ vlet0 � tf :

ð74Þ

The terminal condition Eq (61) is equivalent to

X

i

X

j

jf
Xi

c¼0

pði; j; cÞ
Xi

n¼c

i
n

� �

ð1 � et0 � ti;j;cÞnðet0 � ti;j;cÞi� n

� 1ðvj� 1¼� KÞpði; j; iÞ½ð1 � et0 � tf Þ
i
� ð1 � et0 � tsÞi�g

¼ lð1 � et0 � tf Þ:

ð75Þ

And the objective function Eq (59) becomes

K � rtf ðu; pÞ þ dtf ðu; pÞ

¼ K
X

i

X

j

f
Xi

c¼1

pði; j; cÞ

Xi

m¼c

Xc� 1

n¼0

ðm � cþ 1Þ
i
m

� �
m
n

� �
ðet0 � tf Þi� mð1 � et0 � ti;j;cÞnðet0 � ti;j;c � et0 � tf Þm� n

þ1ðvj� 1¼� KÞpði; j; iÞ½ð1 � et0 � tf Þ
i
� ð1 � et0 � tsÞi�g

þ
X

j

X

i

f
Xi

c¼0

pði; j; cÞ
Xi

n¼c

i
n

� �

ð1 � et0 � ti;j;cÞnðet0 � ti;j;cÞi� n

� 1ðvj� 1¼� KÞpði; j; iÞ½ð1 � e
t0 � tf Þ

i
� ð1 � et0 � tsÞi�g:

ð76Þ
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For the third step, we further simplify the expressions in proposition 7. Define

y :¼ 1 � et0 � tf ¼
tf

l
;

z :¼ 1 � et0 � ts ;

xi;j;c;c� 1 :¼ 1 � et0 � ti;j;c

¼

y if K þ vj � 1 � 0 or c ¼ 0

1 � ð1 � yÞ
ði � cÞK

ði � cþ 1ÞK þ vj � 1
if K þ vj � 1 < 0 and 1 � c < iþ

K þ vj � 1

Ky

0 otherwise;

8
>>>>><

>>>>>:

ð77Þ

where the first equality follows from t0 = −ln λ and tf = −ln(λ − τf). Because t0� ts� tf and the

function 1 − et0−t is increasing in t, 0� z� y� 1. As a result, we can substitute the new vari-

ables (y, v, z) into the objective function Eq (59), the Hamiltonian equation Eq (60) and the ter-

minal condition Eq (61). Moreover, we add the definition of xi,j,c,c−1 and 0� z� y� 1. Then

we obtain a new optimization problem defined as Eq (86) in section Main results. After solving

Eq (86) for (y�, v�, z�), we are able to calculate u�t and s�t (or u�
t

and s�
t

after changing the time

index) in order to present theorem 2 and theorem 3.

Main results

Contagion process with no interventions. We first present the theorem when no inter-

ventions are provided in the contagion process. For � > 0, recall M� is defined as in definition

5 and note that all indexes (i, j) are in the range i _ j<M� in what follows.

Definition 9. (I function) Define a function I: [0, 1]! [0, 1] as

IðyÞ :¼
1

l

X

i_j<M�

j
Xi

c¼0

pði; j; cÞPðBinði; yÞ � cÞ ð78Þ

where Bin(i, y) denotes a binomial random variable with i trials and the probability of occur-

rence y, so PðBinði; yÞ � cÞ ¼
Pi

m¼c
i
m

� �
ymð1 � yÞi� m. I(y) is constructed to represent the

asymptotic scaled total out degree from the default set at scaled time y and attains its form Eq

(78) from the solution of a set of differential equations.

Since Ið0Þ ¼ 1

l

P
i_j<M2 jpði; j; 0Þ � 0, and from the definition of λ,

Ið1Þ ¼
1

l

X

i_j<M�

j
Xi

c¼0

pði; j; cÞ � 1; ð79Þ

and I(y) is continuous and increasing, it has at least one fixed point in [0, 1]. Further define

JðyÞ :¼
X

i_j<M�

Xi

c¼0

pði; j; cÞPðBinði; yÞ � cÞ: ð80Þ

Theorem 1. (Extends from theorem 3.8 of [24]) Consider a sequence of networks with initial

conditions (Pn)n�1 satisfying assumption 1 where p = (p(i, j, c))i,j,0�c�i such that p(i, j, c) = 0 for

i _ j�M�, 0� c� i and no interventions are implemented, let y� 2 [0, 1] be the smallest fixed

point of I.
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1. If y� = 1, then asymptotically almost all nodes default during the contagion process, i.e.

DTn

n
!
p

1: ð81Þ

2. If y� < 1 and it is a stable fixed point, i.e. I0(y�)< 1, then asymptotically the fraction of final

defaulted nodes

DTn

n
!
p
Jðy�Þ: ð82Þ

Particularly, if I(0) = 0 and I0(0) < 1, then

DTn

n
!
p X

i_j<M�

pði; j; 0Þ: ð83Þ

Remark 8. Theorem 1 states that the stopping time of the default contagion process is fully

governed by the smallest fixed point of the function I(y) and the asymptotic fraction of

defaulted nodes at the end of the process can be 1, 0 or a fractional number, representing

almost all nodes default, almost no nodes default or a partial number of nodes default,

respectively.

Contagion process with interventions. We present the theorems for the contagion pro-

cess with interventions as the result of solving the finite dimensional optimal control problem

(FOCP) in definition 8. For � > 0, recall M� is defined as in definition 5. By lemma 1, the opti-

mal objective function value of (FOCP) is within (K + 1)� distance to the optimal objective

function value of the infinite dimensional Eq (39). That is why we solved (FOCP) and present

the results below with (i, j) in the range i _ j<M� in the following. From remark 6, for a given

vector p = (p(i, j, c))0�i,0�j,0�c�i, the restriction of (i, j) to i _ j<M� indicates that we use only

p(i, j, c), i _ j<M�, 0� c� i in the calculation. It is equivalent to setting p(i, j, c) = 0, i _ j�
M�, 0� c� i while keeping p(i, j, c), i _ j<M�, 0� c� i unchanged, which implies asymptoti-

cally nodes with i _ j�M� are all invulnerable (Note all p(i, j, c) need not to sum up to one).

First we define the optimization problem Eq (86) based on which we present theorem 2 and

theorem 3.

Definition 10. (~I and ~J function) Let x = (xβ)β2F� where xβ = xβ(y, v) and p = (p(i, j, c))i,j,0�c�i.
We define the functions ~Iðy; v; zÞ and ~Jðy; v; zÞ as

~Iðy; v; zÞ ¼
1

l

X

i_j<M�

j

Xi

c¼0

pði; j; cÞPðBinði; xi;j;c;c� 1Þ � cÞ � 1ðvj� 1¼� KÞpði; j; iÞðy
i � ziÞ

" #

;

ð84Þ

~Jðy; v; zÞ ¼
X

i_j<M�

Xi

c¼0

pði; j; cÞPðBinði; xi;j;c;c� 1Þ � cÞ � 1ðvj� 1¼� KÞpði; j; iÞðy
i � ziÞ

" #

:

ð85Þ
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Note we may write ~Iðy; v; zÞ and ~Jðy; v; zÞ to indicate that we treat y as the variable and v, z
as the fixed parameters. To present the main results, we define the following optimization

problem.

Definition 11. Define the following optimization problem.

ð86Þ

min
y;v;z

K � ~rðy; v; zÞ þ ~Jðy; v; zÞ ð87Þ

st ð1 � yÞ ~Hðy; vÞ ¼ lvð1 � yÞ ð88Þ

~Iðy; v; zÞ ¼ y ð89Þ

xi;j;c;c� 1 ¼

y if K þ vj � 1 � 0 or c ¼ 0

1 � ð1 � yÞ ði� cÞK
ði� cþ1ÞKþvj� 1

if K þ vj � 1 < 0

and 1 � c < iþ Kþvj� 1

Ky

0 otherwise

8
>>>>>>><

>>>>>>>:

8ði; j; c; c � 1Þ 2 F� ð90Þ

0 � z � y � 1

y; v; z 2 R;
ð91Þ

where

~rðy; v; zÞ ¼
X

i_j<M�

f
Xi

c¼1

pði; j; cÞ

Xi

m¼c

Xc� 1

n¼0

ðm � cþ 1ÞPðMultinði; xi;j;c;c� 1; y � xi;j;c;c� 1; 1 � yÞ ¼ ðn;m � n; i � mÞÞ

þ1ðvj� 1¼� KÞpði; j; iÞðyi � ziÞg;

~Hðy; vÞ ¼
X

i_j<M�

maxf� K; vj � 1gi
Xi

c¼1

pði; j; cÞ

½PðBinði � 1; yÞ � c � 1Þ � PðBinði � 1; xi;j;c;c� 1Þ � cÞ�;

ð92Þ

where Bin(i, y) denotes a binomial random variable in i trials with the probability of

occurrence y, so PðBinði; yÞ � cÞ ¼
Pi

m¼c
i
m

� �
ymð1 � yÞi� m and Multin(i, x, y, 1 − x − y) =

(a, b, i − a − b) denotes a multinomial distribution in i trials with the probabilities of

occurrence of each of three types being x, y and 1 − x − y, and turns out to have a, b
and i − a − b occurrences of each type, respectively, so PðMultinði; x; y; 1 � x � yÞ ¼

ða; b; i � a � bÞÞ ¼ i
a;b;i� a� b

� �
xaybð1 � x � yÞi� a� b.

Remark 9. A feasible solution (y, v, z) has its own meanings for the optimal control problem

Eq (39) on the deterministic process (sτ)τ2[0,λ]: y ¼
tf
l

is the scaled end time of the process; v is

an intervention indicator in that we should intervene on nodes with out degree j satisfying

vj − 1� −K and v also determines the starting time of the intervention; z specifies the starting

time of the intervention for nodes in state (i, j, i, i − 1) when vj − 1 = −K. Moreover, the
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auxiliary variables (xi,j,c,c−1)(i,j,c,c−1)2F� specifies the starting time of interventions for nodes

with different (i, j) values.

Then we are ready to present the next main theorem about the optimal control policy.

Theorem 2. For the asymptotic control problem Eq (9), then

1. Consider a sequence of networks with initial conditions (Pn)n�1 satisfying assumption 1

where p = (p(i, j, c))i,j,0�c�i such that p(i, j, c) = 0 for i _ j�M�, 0� c� i.

2. Let (Gn)n�1 be the sequence of control policies for the contagion process on the sequence of

networks and (Gn)n�1 satisfy assumption 2.

3. Let (y�, v�, z�) be the optimal solution for the optimization problem Eq (86).

If y� = 1, or y� 2 [0, 1) and it is a stable fixed point of ~Iðy; v�; z�Þ, i.e. d
dy

~Iðy�; v�; z�Þ < 1, the

optimal control policy G�n ¼ ðg
ðnÞ�
1 ; . . . ; gðnÞ�m Þ satisfies that for 0� k�m − 1,

gðnÞ�kþ1 ðs;wÞ ¼

1ðk�nlðx�Þi;j;c;c� 1Þ if w ¼ ði; j; c; c � 1Þ 2 F� except

c ¼ i and v�j � 1 ¼ � K

1ðk�nlz�Þ if w ¼ ði; j; i; i � 1Þ and v�j � 1 ¼ � K

0 otherwise;

8
>>>>>>><

>>>>>>>:

ð93Þ

where

ðx�Þi;j;c;c� 1
¼

y� if K þ v�j � 1 � 0 or c ¼ 0

1 � ð1 � y�Þ ði� cÞK
ði� cþ1ÞKþv� j� 1

if K þ v�j � 1 < 0 and

1 � c < iþ Kþv� j� 1

Ky�

0 otherwise;

8
>>>>>>><

>>>>>>>:

ð94Þ

for (i, j, c, c − 1)2F�.

The next theorem states conclusions for the asymptotic fraction of final defaulted nodes

under the optimal policy satisfying theorem 2.

Theorem 3. For the asymptotic control problem Eq 9, then

1. Consider a sequence of networks with initial conditions (Pn)n�1 satisfying assumption 1

where p = (p(i, j, c))i,j,0�c�i such that p(i, j, c) = 0 for i _ j�M�, 0� c� i.

2. Let (Gn)n�1 be the sequence of control policies for the contagion process on the sequence of

networks and (Gn)n�1 satisfy assumption 2.

3. Let (y�, v�, z�) be the optimal solution for the optimization problem Eq (86).

Then under the optimal control policy G�n as in theorem 2, we have the following conclu-

sions for the asymptotic fraction of final defaulted nodes.

1. If y� = 1, then asymptotically almost all nodes default during the default contagion process,

i.e.

DTn

n
!
p

1: ð95Þ
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2. If y� 2 [0, 1) and it is a stable fixed point of ~Iðy; v�; z�Þ, i.e. d
dy

~Iðy�; v�; z�Þ < 1, then asymp-

totically the fraction of final defaulted nodes

DTn

n
!
p

~Jðy�; v�; z�Þ; ð96Þ

where xi,j,c,c − 1 in ~J is

xi;j;c;c� 1 ¼

y� if K þ v�j � 1 � 0 or c ¼ 0

1 � ð1 � y�Þ ði� cÞK
ði� cþ1ÞKþv� j� 1

if K þ v�j � 1 < 0

and 1 � c < iþ Kþv� j� 1

Ky�

0 otherwise;

8
>>>>>>><

>>>>>>>:

ð97Þ

for (i, j, c, c − 1) 2 F�. Particularly, if y� = 0 and d
dy

~Ið0; v�; z�Þ < 1, then

DTn

n
!
p X

i_j<M�

pði; j; 0Þ; ð98Þ

i.e. the final defaulted nodes only consist of the initially defaulted nodes.

In theorem 3 the first case indicates that the network is highly vulnerable and interventions

are costly, then the regulator rather lets the whole network default without implementing any

interventions, while in the second case interventions are less expensive or the contagion effect

is not as high, it is better for the regulator to implement interventions to counteract the conta-

gion process.

Discussion and summary. The key to solve Eq (86) depends on solving the two equations

Eqs (88) and (89). First we claim that the optimal v� for Eq (86) must be nonpositive.

Lemma 4. For Eq (86), the optimal v� � 0.

Here we give an algorithm to solve Eq (86) numerically.

Algorithm 1. Solving Eq (86) numerically.

1. Assume v = 0,

a. if K = 1, then solve Eqs (88) and (89) by e.g. Newton’s method, for y and z;

b. if K 6¼ 1, then Eq (86) does not depend on z, so solve for y and let z� y arbitrary.

2. Assume v< 0,

a. if K = 1, then Eq (86) does not depend on z, so solve for y and v such that v< 0 and let

z� y arbitrary;

b. if K 6¼ 1,

c. let y = z and solve Eqs (88) and (89) for y and v such that 0� y� 1 and v< 0;

d. if additionally K> 1, let v ¼ 1� K
j for j> 0 and solve Eqs (88) and (89) for y and z such

that 0� z� y� 1 for each j 2 {1, . . ., M�}.

3. Choose among all the solutions above (if any) the one that minimizes the objective function

Eq (87).

Recall that a node is in state (i, j, c, l) if it has in and out degree pair (i, j), the sum of initial

equity and accumulative interventions c (called total buffer) and l revealed in-links. Similar to
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[24], we call the in-links to a node that has only one unit of equity remaining (“distance to

default” equal to one) as “contagious” links. So a node in state (i, j, 1, 0) has i contagious links

and a node in state (i, j, 2, 1) has i − 1 contagious links and so on, as shown in Fig 5 the states

associated with contagious links are colored in blue. The insights from the optimal interven-

tions policy are summarized as follows.

1. It is never optimal to intervene on a node if it is not selected or has at least two units of

remaining equity when selected. Thus the optimal control policy described in theorem 2

only specifies the optimal intervention decision on a node that, when selected, has one unit

of equity remaining, i.e. l = c − 1. In other words, the use of interventions is to counteract

the effects of contagious links.

2. The optimal control policy depends strongly on K, the relative cost of interventions. At a

higher K value, interventions are costly and the regulator rather lets the contagion to evolve

without any interventions. At a lower K value, the regulator implements more and more

interventions, even a “complete” intervention strategy, that is, intervening on every selected

node having the “distance to default” of one since the beginning of the process.

3. The optimal control policy is “monotonic” concerning the number of out degree of a node.

There exists a cutoff value of the out degree such that it is only optimal to intervene on a

node with out degree larger than this cutoff value and not otherwise, regardless of its in

degree, total buffer and revealed in-links. For nodes with out degree equal to the cutoff

value, we have the singular control case that only those in state (i, j, i, i − 1) needs interven-

tions and the starting time of interventions is determined by the variable z from the optimi-

zation problem Eq (86).

4. For nodes that are candidates to receive interventions, the starting time of interventions

(depends on the variable xi,j,c,c−1) is “monotonic” in terms of the total buffer. The higher the

total buffer is, the earlier we should begin to intervene as illustrated in Fig 5 that xi,j,c,c−1 is

decreasing in c. Moreover, the starting time is also “monotonic” in terms of the in and

out degree. For the same out degree, the smaller the in degree is, the earlier the intervention

Fig 5. Optimal intervention policy summary where the states indicating one unit of equity remaining are colored in blue.

https://doi.org/10.1371/journal.pone.0209819.g005
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should begin. If v< 0, the larger the out degree is, the earlier the intervention should begin.

The economic meaning is that we should focus on systematically important nodes as well as

nodes that are close to invulnerability and thus easier to save. In other words, we achieve our

objective by protecting the nodes that would incur large impact on the network after default-

ing and by bringing easy-to-save nodes into invulnerable states.

5. Once we have begun intervening on a node we should keep implementing interventions on

it every time it is selected. In other words, we do not allow nodes that have received inter-

ventions to default. This is an interesting result. In the partial information setting, [3] con-

sider the interventions on banks that record more write-downs later and default as the

“wasted government money” and mention the tradeoff associated with intervention: poten-

tially wasted money versus less capital depletion. But our finding is that there is no wasted

money under the optimal policy and the tradeoff is the high intervention cost versus less

magnitude of defaults.

Indeed, following the optimal policy, we are able to achieve earlier termination time of

the contagion process and smaller fraction of final defaulted nodes. We can quantify the

improvement by comparing ~I and ~J in theorem 3 with I and J defined in theorem 1, respec-

tively. Note in the following we suppress the apostrophe “�” and the indexes (i, j) are in the

range i _ j<M�.

1. ~Iðy; v; zÞ plays the same role as I(y) in theorem 1, which represents the asymptotic scaled

total out degree from the default set at scaled time y. Since

IðyÞ � ~Iðy; v; zÞ

¼
1

l

X

i_j<M�

jf
Xi

c¼0

pði; j; cÞ½PðBinði; yÞ � cÞ � PðBinði; xi;j;c;c� 1Þ � cÞ�

þ1ðvj� 1¼� KÞpði; j; iÞðyi � ziÞg;

ð99Þ

and note that

xi;j;c;c� 1 � y for ði; j; c; c � 1Þ 2 F�; ð100Þ

thus

PðBinði; yÞ � cÞ � PðBinði; xi;j;c;c� 1Þ � cÞ � 0: ð101Þ

Then for the same initial conditions p = (p(i, j, c))i_j<M�,0�c�i, the smallest fixed point of

~Iðy; v�; z�Þ is no greater than that of I(y), which implies that the default contagion process

under optimal interventions terminates no later than under no interventions.

2. Similarly ~Jðy; v; zÞ plays the same role as J(y) in theorem 1, which represents the asymptotic

fraction of final defaulted nodes under the optimal control policy. The difference

JðyÞ � ~Jðy; v; zÞ

¼
X

i_j<M�

f
Xi

c¼0

pði; j; cÞ½PðBinði; yÞ � cÞ � PðBinði; xi;j;c;c� 1Þ � cÞ�

þ1ðvj� 1¼� KÞpði; j; iÞðyi � ziÞg � 0

ð102Þ
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quantifies the fraction of nodes that are prevented from default because of the optimal con-

trol policy.

Numerical experiments

Introduction

While the theoretical framework described before allows heterogeneous networks with degree

sequences and initial equity levels drawn from arbitrary distributions, we present a relatively

simplified case in numerical experiments for illustration purpose, in which the degree

sequences and initial equity levels satisfy specific distributions. Consider a sequence of

networks with the number of nodes n growing to infinity, whose in and out degrees are

between 1 and 10, and each node’s in degree equal to its own out degree, i.e. d−(v) = d+(v),

v 2 [n], respectively, so we call either the in or out degree as the degree of the node. This

allows us to combine two indexes i and j into one index i, so the state of a node becomes (i, c, l)
and the empirical probability Pn and the limiting probability p of the degree and initial

equity become Pn(i, c) and p(i, c) respectively. Additionally we assume the initial equity

levels between 1 and 10. In sum, we consider the degree and initial equity level pair in the set

G
0

:¼ fði; cÞ 2 N2

0
: 1 � i � 10; 0 � c � 10g.

Next we decide on the limiting probability p. Note that Γ0 contains three initial types of

nodes: defaulted (with c = 0), vulnerable (with c� i) and invulnerable (with c> i). In this

numerical experiment, we set the total fraction of initial defaults as ξ and assume the fraction

of initial defaults is the same across all degrees, i.e. pði; 0Þ ¼ x

10
for i 2 [1, 10]. For the initially

liquid nodes, the joint probability of the degree and initial equity conditional on being liquid is

constructed through a binormal copula with correlation ρ and two marginal probabilities. The

marginal probabilities of the degree and initial equity are assumed to follow the Zipf’s law, i.e.

Pðdeg ¼ iÞ ¼
i� ð1þa1Þ

P10

l¼1
l� ð1þa1Þ

;

Pðinitial equity ¼ cÞ ¼
c� ð1þa2Þ

P10

l¼1
l� ð1þa2Þ

;

ð103Þ

where a1, a2 > 0. The Zipf’s law is a form of the power law with Pareto tails, which is observed

for the distribution of the degrees and equity levels of the financial networks in many empirical

studies, see e.g. [19, 29].

In a network of size n with the joint probability Pn(i, c) of the degree and initial equity, a

contagion process under interventions occurs as described in section Dynamics. Recall that we

only need to consider intervening on a node that, when selected, has only one unit of equity

left, i.e. a node with “distance to default” equal to one. Here we consider two types of interven-

tion policies, the optimal policy and the alternative policy: intervening on nodes with degree

between 8 and 10 and “distance to default” equal to one from the beginning of the process.

The alternative policy implies interventions on nodes with high degrees and close to default,

representing the usual policy employed by the central bank or government in a real financial

crisis.

Our objective is to verify the convergence in probability of
RTn
n and

DTn
n as well as the conver-

gence of the scaled termination time
Tn
m as stated in proposition 5. Moreover, we shall study the

convergence rate of the standard deviation and IQR (interquartile range) to examine if the

asymptotic variables provide good approximations under realistic n values.
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Under the optimal policy in the form given in theorem 2, the limits for
RTn
n ,

DTn
n and

Tn
m as

n!1 are ~rðy�; v�; z�Þ, ~Jðy�; v�; z�Þ and y�, respectively in Eq (86) where (y�, v�, z�) is the opti-

mal solution. On the other hand, the alternative policy is that for 0� k�m − 1,

gðnÞ;altkþ1 ðs;wÞ ¼

( 1
ðk�nlxi;c;c� 1

alt Þ
if w ¼ ði; c; c � 1Þ 2 F0

0 otherwise;
ð104Þ

where for (i, c, c − 1)2F0,

xi;c;c� 1

alt ¼

(
0 if i 2 f8; 9; 10g

y otherwise;
ð105Þ

and y is the solution of 1

l

P10

i¼0
i
Pi

c¼0
pði; cÞPðBinði; xi;c;c� 1

alt Þ � cÞ ¼ y. Then the limits for
RTn
n ,

DTn
n and

Tn
m as n!1 can be calculated as:

RTn

n
!
p X10

i¼0

Xi

c¼1

pði; cÞ

Xi

m¼c

Xc� 1

n¼0

ðm � cþ 1ÞPðMultinði; xi;c;c� 1

alt ; y � xi;c;c� 1

alt ; 1 � yÞ

¼ ðn;m � n; i � mÞÞ;

DTn

n
!
p X10

i¼0

Xi

c¼0

pði; cÞPðBinði; xi;c;c� 1

alt Þ � cÞ;

Tn

m
!
p

y;

ð106Þ

where PðBinði; yÞ � cÞ ¼
Pi

m¼c
i
m

� �
ymð1 � yÞi� m and

PðMultinði; x; y; 1 � x � yÞ ¼ ða; b; i � a � bÞÞ ¼ i
a;b;i� a� b

� �
xaybð1 � x � yÞi� a� b.

Simulation

The set up. We have the following setup.

1. A sequence of six networks with increasing number of nodes n 2 {54, 64, . . ., 104} and there

are 100 runs for each network under either intervention policy.

2. To determine the asymptotic fraction p(�, �) of the degree and initial equity pair (i, c) where

(i, c) 2 Γ0, we set the following parameters.

a. The fraction of initial defaults ξ = 0.5, indicating half of the nodes have defaulted. As

stated before, we assume in this numerical experiment that the fraction of initial defaults

is the same across all degrees, thus pði; 0Þ ¼ x

10
for i 2 [1, 10].

b. The probability of the degree and initial equity for liquid nodes p(i, e), i 2 {1, . . ., 10},

e 2 {1, . . ., 10} is determined by a binormal coupula with the exponents of the marginal

probabilities of the degree and initial equity (a1, a2) = (0.8, 0.7) and the correlation

coefficient ρ = 0.9. Note that a smaller a1 indicates larger fraction of nodes with higher

degrees, thus higher connectivity and a smaller a2 indicates larger fraction of nodes with

higher initial equities, and ρ implies how likely that higher degree nodes have higher ini-

tial equities.
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3. After determining the asymptotic fraction p(�, �), we construct a sequence of empirical frac-

tions Pn(�, �) for each network that converge to p(�, �) by

Pnði; cÞ ¼
½npði; cÞ�

n
ði; cÞ 2 G

0

; ð107Þ

where [�] is the round function. In other words, the number of nodes with degree i and ini-

tial equity c are [np(i, c)] for a network of n nodes.

4. We consider two intervention policies described as before.

5. The relative cost for the interventions K = 0.5.

In the following we suppress Tn in the subscripts and write R
n,

D
n and T

m in stead of
RTn
n ,

DTn
n and

Tn
m respectively.

Theoretical results. The theoretical limits of R
n,

D
n and T

m under the optimal and alternative

policies are summarized in Table 1.

We first verify that the objective function K R
n þ

D
n in Eq (86) is indeed less under the optimal

policy. Moreover, compared with the alternative policy, the optimal policy intervens more but

results in smaller fraction of final defaulted nodes and ends the contagion process earlier.

Simulation results. We show the plots for R
n,

D
n and T

m under the optimal and alternative

policies as shown in Figs 6–11.

1. Under either policy and for each variable, there are four plots in each figure. The first two

plots are two boxplots. The above boxplot visualizes five summary statistics (min, mean

−standard deviation, mean, mean+ standard deviation, max) while the bottom boxplot

uses another set of summary statistics (1st quartile−1.5IQR, 1st quartile, median, 3rd

quartile, 3rd quartile+ 1.5IQR) and the data outside the range are treated as outliers,

where IQR stands for interquartile range, i.e. the difference between the third and the first

quartiles.

2. The blue dashed horizontal line in each plot indicates the theoretical limits of R
n,

D
n and T

m

based on p(�, �) and the red solid line in each box indicates the theoretical limits of those

values calculated with Pn(�, �) for each n. We calculate the theoretical values in both ways

because for small n, Pn(�, �) determined by Eq (107) has a relatively large rounding error

and thus deviates a bit from p(�, �) but calculating using Pn(�, �) instead of p(�, �) can effec-

tively remove the deviations in the inputs to the model. However, given p(�, �), Pn(�, �) is dif-

ferent for different n values, thus the theoretical values of a variable calculated with Pn(�, �)
are also different for different n’s.

3. The black dots in the boxplots indicates the results of 100 runs and they are jittered by a

random amount left and right to avoid overplotting. From the black dots we can see the dis-

tributions of the results. Note that the black dots in the above and bottom boxplots show

Table 1. Theoretical limits of R
n, D

n and T
m under the optimal and alternative policies.

Policies R
n

D
n K R

n þ
D
n

T
m

Optimal 0.306 0.503 0.657 0.728

Alternative 0.019 0.821 0.830 0.866

https://doi.org/10.1371/journal.pone.0209819.t001
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the same results for each n. They look different because they are jittered left and right by a

different random amount.

4. The last two plots in every figure shows the log-log plot of the standard deviation and IQR

of R
n,

D
n and T

m against n and a fitted straight line with the slope.

From the simulation results, we make the following conclusions.

1. From the boxplots of R
n,

D
n and T

m under both intervention policies, we observe that the mean

or median converge to the calculated theoretical value with shrinking standard deviation or

IQR. Because the theoretical value is a constant given the joint probability of degree and ini-

tial equity p(�, �), convergence of mean to the theoretical value with variance converging to

zero is equivalent to convergence in probability, this observation provides evidence for the

convergences in probability of Rn,
D
n and T

m to their theoretical values, thus proving proposition

5 and theorem 3.

2. Be comparing the blue dashed line and the red solid line we see that the mean or median is

closer to the red solid line, i.e. the theoretical value calculated with Pn(�, �) instead of p(�, �).

Fig 6. The boxplot and log-log plot of standard deviation and IQR for R/n under optimal policy.

https://doi.org/10.1371/journal.pone.0209819.g006
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This reflects the rounding error caused by Eq (107) in the inputs into the calculation. By

using the more accurate fraction we observe that the closeness of the mean or median to

the theoretical value does not vary in n although the results of different runs are more and

more concentrated around the mean or median as n grows.

3. The log-log plots of the standard deviation and IQR of each variable with the fitted straight

lines further show that both of them decrease with power law tails, i.e. in the form of z =

Cx−a where C is a constant and a> 0 is the exponent. The absolute value of the slope of the

straight line serves as the exponent. It is interesting to observe that the exponents for the

standard deviation and IQR of different variables are in the range 0.4� 0.5 under both

intervention policies. This implies that the dispersions of all variables converge to zero at

roughly the same rate under both policies.

Conclusion. From the simulation part we can make the following conclusions.

1. The convergences of R
n,

D
n and T

m to their theoretical values (stated in proposition 5) are sup-

ported by the simulation results. It is worth noting that the closeness of the mean or median

Fig 7. The boxplot and log-log plot of standard deviation and IQR for D/n under optimal policy.

https://doi.org/10.1371/journal.pone.0209819.g007
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to the theoretical value does not vary for different n after the rounding error in the initial

fractions are removed, but the dispersion of the variable shrinks as n grows.

2. The dispersion of each variable decreases following a power law. The exponents are close to

each other under both intervention policies and for all variables, indicating a uniform con-

vergence rate of the dispersions of all the variables under both policies.

Appendix A: Proofs

Proof of proposition 1

We give a proof in words similar to the proof of proposition 3.4 in [2] for a different objective

function of optimizing the value of the financial system at the end of the process under some

budget constraint. We observe that the objective function Jn depends on the set of defaulted

nodes only through its cardinality. Any node will affect the states of other nodes only after it

defaults because the set of unrevealed out links of the default set determining the contagion

process grows only after a node defaults. And it is possible for a default to occur only when a

node has one unit of equity (distance to default equal to one) at the time of being selected.

Fig 8. The boxplot and log-log plot of standard deviation and IQR for T/m under optimal policy.

https://doi.org/10.1371/journal.pone.0209819.g008
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Before that time, the equity only decreases by one every time it is selected. Moreover, there is

always a chance to intervene on a node before it defaults. However, if we intervene on a node

that is not selected at the current step or has more than one units of remaining equity when

selected, it is possible that the node may not be selected in the following steps before the pro-

cess ends in which case we implemented redundant interventions without reducing the num-

ber of defaults.

Proof of proposition 2

Proof. Assume uτ = b :¼ (bβ)β2F a constant vector for τ 2 [τ1, τ2)� [0, λ), 0� τ1 < τ2 <1

and bβ 2 {0, 1}. Note that the ODEs are “separable” in that si;j;c;l
t

only depends on the entries of

sτ with the same (i, j), so we can only focus on the system of ODEs with the same (i, j). For the

same (i, j), define Γi,j :¼ {(c, l):0� l< c� i or c = i + 1, l = i} and suppress (i, j) in the super-

scripts in definition 4, then we obtain the system of ODEs for τ 2 [τ1, τ2) with the initial condi-

tion st1 ¼ s1 :¼ ðsc;l1 Þðc;lÞ2Gi;j .

Fig 9. The boxplot and log-log plot of standard deviation and IQR for R/n under alternative policy.

https://doi.org/10.1371/journal.pone.0209819.g009
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Letting t = −ln(λ − τ), t1 = −ln(λ − τ1) and t2 = −ln(λ − τ2), we have an autonomous system

of ODEs for t 2 [t1, t2) that

dsc;0t
dt
¼ � isc;0t for 1 � c � i;

dsc;lt
dt
¼ ði � l þ 1Þsc;l� 1

t � ði � lÞsc;lt

for 3 � c � i; 1 � l � c � 2;

dsc;c� 1
t

dt
¼ ði � cþ 2Þsc� 1;c� 2

t bc� 1;c� 2

þði � cþ 2Þsc;c� 2
t � ði � cþ 1Þsc;c� 1

t

for 2 � c � i;
dsiþ1;i

t

dt
¼ si;i� 1

t bi;i� 1;

ð108Þ

with the initial condition st1 ¼ s1.

Fig 10. The boxplot and log-log plot of standard deviation and IQR for D/n under alternative policy.

https://doi.org/10.1371/journal.pone.0209819.g010
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By induction, we can prove the solution st on [t1, t2) is

sc;lt ¼ eði� lÞðt1 � tÞ
Xl

r¼0

sc;r
1

i � r
l � r

� �

ð1 � et1 � tÞl� r

for 2 � c � i; 0 � l � c � 2;

sc;c� 1
t ¼ eði� cþ1Þðt1 � tÞ

Xc� 1

r¼0

Xc

q¼rþ1

Yc� 1

k¼q

bk;k� 1sq;r1

i � r
c � 1 � r

� �

ð1 � et1 � tÞc� 1� r

for 1 � c � i;

siþ1;i
t ¼ siþ1;i

1 þ
Xi� 1

r¼0

Xi

q¼rþ1

Yi

k¼q

bk;k� 1sq;r1 ð1 � et1 � tÞ
i� r
;

ð109Þ

where
Qc� 1

k¼c b
k;k� 1 :¼ 1.

By changing the variable t to τ by t = −ln(λ − τ), Eqs (15), (16) and (17) follow. Let the initial

condition be si;j;c;l
t1
¼ pði; j; cÞ1ðl¼0Þ for (i, j, c, l) 2 Γ at τ1 = 0, then Eq (18) follows from Eq (15).

Fig 11. The boxplot and log-log plot of standard deviation and IQR for T/m under alternative policy.

https://doi.org/10.1371/journal.pone.0209819.g011
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Proof of proposition 3

Proof. For the following proof we need to adapt the Wormald’s theorem in Appendix B: Wor-

mald’s theorem. For notational convenience we suppress the tilde sign for ~R, ~r . Since m
n ! l as

n!1, for the given � and l̂ ¼ l � 2, we can find n0 2 N, such that 0 < l̂ < m
n < lþ 0:1

for n� n0. Let z = (zα)α2Γ� and

U ¼
n
ðt; z; rÞ 2 RjG� jþ2 : � � < t < l̂; � � < za < 1:1 ; � � < r < lþ 0:1

o
; ð110Þ

then U contains the closure of

fð0; z; 0Þ : PðSa
0
¼ zan; 8a 2 G�;R0 ¼ 0Þ 6¼ 0 for some ng: ð111Þ

Define the stopping time TU ¼ min 1 � k � m : k
n ;

Sk
n ;

Rk
n

� �
=2 U

� �
.

By definition 1 and definition of Rk, 0 � Sak � n, α 2 Γ� and 0� Rk� (λ + 0.1)n hold

8k� 0 and n� n0. Recall that Sk ¼ ðSakÞa2G2 and
Sk
n ¼

Sak
n

� �

a2G2
. The following conditions hold:

1. For 0� k< TU and α 2 Γ�,

jSakþ1
� Sakj � 1;

jRkþ1 � Rkj � 1;
ð112Þ

i.e. ρ1 = 1.

2. There exists ρ2 = O(n−1) such that for 0� k< TU and α 2 Γ�,
�
�
�
�E Sakþ1

� SakjF k

� �
� ha

k
n
;
Sk
n

� ��
�
�
� � r2;

�
�
�
�E Rkþ1 � RkjF k

� �
� h0

k
n
;
Sk
n

� ��
�
�
� � r2;

ð113Þ

where h = (hα)α2Γ� and h0 are

hi;j;c;lðt; zÞ ¼

�
izi;j;c;0

l � t
if 1 � c � i; l ¼ 0

ði � lþ 1Þzi;j;c;l� 1

l � t
�
ði � lÞzi;j;c;l

l � t
if 3 � c � i; 1 � l � c � 2

ði � cþ 2Þzi;j;c� 1;c� 2

l � t
ui;j;c� 1;c� 2

t

þ
ði � cþ 2Þzi;j;c;c� 2

l � t
�
ði � cþ 1Þzi;j;c;c� 1

l � t
if 2 � c � i

zi;j;i;i� 1

l � t
ui;j;i;i� 1

t if c ¼ i; l ¼ i � 1;

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

h0ðt; zÞ ¼
X

ði;j;c;c� 1Þ2F�

ði � cþ 1Þzi;j;c;c� 1

l � t
ui;j;c;c� 1

t :

ð114Þ
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In particular, Eq (113) follows from

�
�
�
�
�

X

ði;j;c;c� 1Þ2F�

ði � cþ 1ÞSi;j;c;c� 1

k

m � k
ui;j;c;c� 1
k
n

�
X

ði;j;c;c� 1Þ2F�

ði � cþ 1Þ
Si;j;c;c� 1

k
n

l � k
n

ui;j;c;c� 1
k
n

�
�
�
�
�

�
X

ði;j;c;c� 1Þ2F�

�
�
�
�
�

ði � cþ 1Þ
Si;j;c;c� 1

k
n

m
n �

k
n

ui;j;c;c� 1
k
n

�
ði � cþ 1Þ

Si;j;c;c� 1

k
n

l � k
n

ui;j;c;c� 1
k
n

�
�
�
�
�

¼ Oðn� 1Þ:

ð115Þ

However, for β 2 F�, hβ and h0 are not Lipschitz continuous because ub
t

can have step

changes on [0, λ). So we need to adapt the proof. Note that ub
t

is piecewise constant {0, 1}

valued function thus hβ(τ, s) and h0(τ, s) are Lipschitz continuous in each interval where

~u ¼ ðubÞ
b2F2

is a constant vector and then we can apply the Wormald’s theorem in Appendix

B: Wormald’s theorem. In the following define sτ(τ0, x) as the solution of the ODEs,

d
dt
st ¼ hðt; stÞ; ð116Þ

with initial condition at τ0, sτ0 = x :¼ (xα)α2Γ�.

In what follows define the points where any component of ~ut has a step change.

tl :¼ infft > tl� 1 : ub
t
has a step change for some b 2 F2g ^ l̂ for l� 1 and τ0 :¼ 0. Also let

kl = dnτle, where d�e is the ceiling function. As a result, kl − 1< nτl� kl. Recall the initial con-

dition s0 ¼ ðsa0Þa2G2 with si;j;c;l0 ¼ pði; j; cÞ1ðl¼0Þ. Because every uβ for β 2 F� has only a finite

number of step changes on [0, λ) and F� is a finite set, there are in total a finite number of step

changes for all the component functions of ~u on [0, λ).

Then by the Wormald’s theorem, let r ¼ n� 1
4, it follows that

sup
0�k�k1 � 1

Sak
n
� sak

n
ð0; s0Þ ¼ Oðn� 1

4Þ ð117Þ

with probability 1 � O n1
4 exp � n1

4

� �� �
, 8α 2 Γ�. Note that we will write “with probability

1 � O n1
4 exp � n1

4

� �� �
” as whp hereinafter.

In particular, we have that

Sak1 � 1

n
� sak1 � 1

n
ð0; s0Þ ¼ Oðn� 1

4Þ whp: ð118Þ

Additionally by the Wormald’s theorem again we have that

sup
k1�k�k2� 1

Sak
n
� sak

n
ð
k1

n
;
Sk1

n
Þ ¼ Oðn� 1

4Þ whp: ð119Þ

Note that

�
�
�
�

Sak1

n
�
Sak1 � 1

n

�
�
�
� �

1

n
8a 2 G�; ð120Þ
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and by the Lipschitz continuity of sa
t
ð0; s0Þ on ð0; t�

1
Þ,

sak1 � 1

n
ð0; s0Þ � sat1ð0; s0Þ ¼ Oðn� 1Þ: ð121Þ

So by Eqs (118), (120) and (121), we have

�
�
�
�

Sak1

n
� sa

t1
ð0; s0Þ

�
�
�
� �

�
�
�
�

Sak1

n
�
Sak1 � 1

n

�
�
�
�þ

�
�
�
�

Sak1 � 1

n
� sak1 � 1

n
ð0; s0Þ

�
�
�
�

þ

�
�
�
�s
a
k1 � 1

n
ð0; s0Þ � sat1ð0; s0Þ

�
�
�
�

¼ n� 1 þ O n� 1
4

� �
þ Oðn� 1Þ whp:

ð122Þ

Thus we have that

�
�
�
�
Sk1

n
� st1ð0; s0Þ

�
�
�
� ¼ O n� 1

4

� �
þ Oðn� 1Þ whp: ð123Þ

where kηk is the norm for Z 2 RjG2j. We do not specify the norm because all norms inRl
are

equivalent, l 2 N. From proposition 2 we see that the partial derivatives of sa
t
ðt0; xÞ with respect

to the initial time τ0 and every entry of x are continuous in τ0 and every entry of x respectively,

and are bounded for any τ in a subinterval of ½0; l̂Þ on which ~u is a constant vector function,

i.e.

�
�
�
�
@sa

t
ðt0; xÞ

@ðt0; xÞ

�
�
�
� � M1 <1 ð124Þ

where M1 is a constant. Recall that j
k1

n � t1j < n� 1, so by Eqs (123) and (124), it follows from

the fundamentals of calculus (e.g. theorem 9.19 and 9.21 in [31]) that

sa
t
ð
k1

n
;
Sk1

n
Þ � sa

t
ðt1; st1ð0; s0ÞÞ

¼ sa
t
ð
k1

n
;
Sk1

n
Þ � sa

t
ð0; s0Þ

¼ O n� 1
4

� �
þ Oðn� 1Þ whp;

ð125Þ

for τ 2 (τ1, τ2). So it follows from Eq (119) that 8α 2 Γ�,

sup
k1�k�k2 � 1

Sak
n
� sak

n
ð0; s0Þ ¼ O n� 1

4

� �
whp: ð126Þ

Similarly for Rk, define rτ(τ0, x, y) as the solution of

d
dt
rt ¼ h0ðt; stÞ; ð127Þ

with the initial condition at τ0, (sτ0, rτ0) = (x, y). Applying the Wormald’s theorem for Rk and rτ
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gives that,

sup
0�k�k1 � 1

Rk

n
� rk

n
ð0; s0; 0Þ ¼ O n� 1

4

� �
whp;

sup
k1�k�k2 � 1

Rk

n
� rk

n
ð
k1

n
;
Sk1

n
;
Rk1

n
Þ ¼ O n� 1

4

� �
whp:

ð128Þ

In particular,

Rk1 � 1

n
� rk1 � 1

n

ð0; s0; 0Þ ¼ O n� 1
4

� �
whp; ð129Þ

Further note that

�
�
�
�
Rk1

n
�
Rk1 � 1

n

�
�
�
� �

1

n
8a 2 G�; ð130Þ

and by the Lipschitz continuity of rτ(0, s0, 0) on ð0; t�
1
Þ,

rk1 � 1

n

ð0; s0; 0Þ � rt1ð0; s0; 0Þ ¼ Oðn� 1Þ: ð131Þ

So by Eqs (129), (130) and (131) we have

�
�
�
�
Rk1

n
� rt1ð0; s0; 0Þ

�
�
�
� �

�
�
�
�
Rk1

n
�
Rk1 � 1

n
j þ

�
�
�
�
Rk1� 1

n
� rk1 � 1

n

ð0; s0; 0Þ
�
�
�
�

þ

�
�
�
�rk1 � 1

n

ð0; s0; 0Þ � rt1ð0; s0; 0Þ
�
�
�
�

¼ n� 1 þ O n� 1
4

� �
þ Oðn� 1Þ whp:

ð132Þ

Here we apply the fact we shall prove later that the partial derivatives of rτ(τ0, x, y) with

respect to the initial time τ0 and every entry of x and y are continuous in τ0, every entry of x
and y respectively, and are bounded for any τ in a subinterval of ½0; l̂Þ on which ~u is a constant

vector function, i.e.

�
�
�
�
@rtðt0; x; yÞ
@ðt0; x; yÞ

�
�
�
� � M2 <1 ð133Þ

for some constant M2. Recall that j
k1

n � t1j < n� 1, so by Eqs (123), (132) and (133), it follows

from the fundamentals of calculus that

rtð
k1

n
;
Sk1

n
;
Rk1

n
Þ � rtðt1; st1ð0; s0Þ; rt1ð0; s0; 0ÞÞ

¼ rtð
k1

n
;
Sk1

n
;
Rk1

n
Þ � rtð0; s0; 0Þ

¼ O n� 1
4

� �
þ Oðn� 1Þ whp;

ð134Þ

for τ 2 (τ1, τ2). So it follows from Eq (128) that

sup
k1�k�k2 � 1

Rk
n
� rk

n
ð0; s0; 0Þ ¼ O n� 1

4

� �
whp: ð135Þ
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We can repeat the above procedure every time any ub
t

has a step change, β 2 F� and

there are only a finite number of step changes in [0, λ). Because sa
t
� 1 and rτ� λ,

d1 st; rtð Þ; @Uð Þ � 0:1 � Cn� 1
4, for a sufficiently large constant C. Thus the supremum of τ

that (sτ, rτ) can be extended to the boundary of U is l̂, i.e. in Eq (177) of the Wormald’s theo-

rem in Appendix B: Wormald’s theorem,

s ¼ sup
n
t � 0 : d1 st; rtð Þ; @Uð Þ � Cn� 1

4

o

¼ l̂:

ð136Þ

So it follows that

sup
0�k�nl̂

Sak
n
� sak

n
ð0; s0Þ ¼ O n� 1

4

� �
whp;

sup
0�k�nl̂

Rk

n
� rk

n
ð0; s0; 0Þ ¼ O n� 1

4

� �
whp:

ð137Þ

At last we prove the claim that the partial derivatives of rτ(τ0, x, y) with respect to the initial

time τ0 and every entry of x and y are all continuous and bounded as in Eq (133) for any τ in a

subinterval of ½0; l̂Þ on which ~u is a constant vector function b = (bβ)β2F�. Note first that rτ
with initial condition �s ¼ ðst0 ; rt0 Þ at τ = τ0 in a subinterval of ½0; l̂Þ on which ~u ¼ b satisfies

that

rt ¼ rt0 þ
Z t

t0

X

ði;j;c;c� 1Þ2F�

ði � cþ 1Þbi;j;c;c� 1

l � y
si;j;c;c� 1

y ðt0; st0 Þdy: ð138Þ

We shall prove the boundedness by showing the boundedness of k
@rt
@�s k and j

@rt
@t0
j, seperately.

First we take the derivatives of rτ with respect to the initial condition �s and obtain

@rt
@�s
¼ elast þ

Z t

t0

X

ði;j;c;c� 1Þ2F�

ði � cþ 1Þbi;j;c;c� 1

l � y
@si;j;c;c� 1

y ðt0; st0 Þ
@�s

dy; ð139Þ

where elast is a vector of zeros except an entry of one at the last. The continuity of every entry

in
@rt
@�s is obvious. For boundedness,

�
�
�
�
@rt
@�s

�
�
�
� � 1þ

Z t

t0

X

ði;j;c;c� 1Þ2F�

ði � cþ 1Þbi;j;c;c� 1

l � y

�
�
�
�
�

@si;j;c;c� 1
y ðt0; st0 Þ

@�s

�
�
�
�
�
dy: ð140Þ

By Eq (124),

�
�
�
�
@si;j;c;c� 1
y
@�s

�
�
�
� < M1, so k

@rt
@�s k is bounded. Next we take the derivative of rτ with

respect to the initial time τ0 by the Leibniz integral rule and obtain that

@rt
@t0
¼ �

X

ði;j;c;c� 1Þ2F�

ði � cþ 1Þbi;j;c;c� 1

l � t0
si;j;c;c� 1

t0 ðt0; st0 Þ

þ

Z t

t0

X

ði;j;c;c� 1Þ2F�

ði � cþ 1Þbi;j;c;c� 1

l � y
@si;j;c;c� 1

y ðt0; st0 Þ
@t0

dy;
ð141Þ

where si;j;c;c� 1

t0 ðt0; st0 Þ ¼ si;j;c;c� 1

t0 . The continuity of
@rt
@t0

follows. By Eq (124),

�
�
�
�
@si;j;c;c� 1
y ðt0 ;st0 Þ

@t0

�
�
�
� is

bounded, so j
@rt
@t0
j is bounded. We have proved Eq (133).
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Proof of proposition 4

Proof. For some [τ1, τ2)� [0, λ) on which uτ is a constant vector function, by remark 5 we

have for every fixed (i, j) pair and Γi,j = {(c, l):0� l< c� i or c = i + 1, l = i} that

X

ðc;lÞ2Gi;j

si;j;c;l
t
�
X

1�c�i

pði; j; cÞ;
ð142Þ

and thus it follows from Eq (23) that

0 �
X

i_j�M�

X

0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2GnG�
jsi;j;c;l
t

�
X

i_j�M�

X

0�c�i

jpði; j; cÞ < �:
ð143Þ

Similarly because by the definition of Si;j;c;lk for 1� k�m, for fixed (i, j) pair, (i, j, c, l) 2 Γ,

0 �
X

c;l

Si;j;c;lk

n
�
X

1�c�i

Pnði; j; cÞ; ð144Þ

thus it follows from Eq (25) that

0 �
X

i_j�M�

X

0�c�i

jPnði; j; cÞ �
X

ði;j;c;lÞ2GnG�
j
Si;j;c;lk

n

�
X

i_j�M�

X

0�c�i

jPnði; j; cÞ < �:

ð145Þ

For any k where 0 � k � l̂, by proposition 3, it follows that

�
�
�
�
D�k
n
� d�k

n

�
�
�
� <

�
�
�
�
�

X

i_j<M�;0�c�i

jPnði; j; cÞ �
X

ði;j;c;lÞ2G�
j
Si;j;c;lk

n

�
X

i_j<M�;0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2G�
jsi;j;c;lk
n

 !�
�
�
�
�
þ 2�

¼

�
�
�
�
�

X

i_j<M�;0�c�i

jðPnði; j; cÞ � pði; j; cÞÞ

�
X

ði;j;c;lÞ2G�
j
Si;j;c;lk

n
� si;j;c;lk

n

 !�
�
�
�
�
þ 2�

�
X

i_j<M�;0�c�i

jjPnði; j; cÞ � pði; j; cÞj

þ
X

ði;j;c;lÞ2G�
j

�
�
�
�
�

Si;j;c;lk

n
� si;j;c;lk

n

�
�
�
�
�
þ 2�

� M�jG�jðoð1Þ þ opð1ÞÞ þ 2�

¼ opð1Þ þ 2�;

ð146Þ
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and similarly,

�
�
�
�
Dk

n
� dk

n

�
�
�
� <

�
�
�
�
�

X

i_j<M�;0�c�i

Pnði; j; cÞ �
X

ði;j;c;lÞ2G�

Si;j;c;lk

n

�
X

i_j<M�;0�c�i

pði; j; cÞ �
X

ði;j;c;lÞ2G�
si;j;c;lk
n

 !�
�
�
�
�
þ 2�

¼

�
�
�
�
�

X

i_j<M�;0�c�i

ðPnði; j; cÞ � pði; j; cÞÞ

�
X

ði;j;c;lÞ2G�

Si;j;c;lk

n
� si;j;c;lk

n

 !�
�
�
�
�
þ 2�

�
X

i_j<M�;0�c�i

jPnði; j; cÞ � pði; j; cÞj

þ
X

ði;j;c;lÞ2G�

�
�
�
�
�

Si;j;c;lk

n
� si;j;c;lk

n

�
�
�
�
�
þ 2�

� jG�jðoð1Þ þ opð1ÞÞ þ 2�

¼ opð1Þ þ 2�:

ð147Þ

Proof of proposition 5

Proof. By Eq (25) for n large enough and 1� k�m, we have

1

n

Xk

‘¼1

X

i_j�M�

X

1�c�i

1ðW‘¼ði;j;c;c� 1ÞÞu
i;j;c;c� 1
‘� 1
n

�
1

n

X

i_j�M�

X

1�c�i

i nPnði; j; cÞ

�
X

i_j�M�;c

iPnði; j; cÞ < �:

ð148Þ

The first inequality holds because the number of times nodes with states in the range i _ j�
M�, 1� c� i are selected during the process is bounded above by their total in degree. Simi-

larly by Eq (23), for t � l̂,

Z t

0

X

i_j�M�;1�c�i

ði � cþ 1Þsi;j;c;c� 1
t

l � t
ui;j;c;c� 1

t dt

�

Z t

0

X

i_j�M�;1�c�i

ipði; j; cÞ
l � t

dt

� �

Z t

0

1

l � t
dt

¼ � ln
l

l � t

� � ln
l

�
¼ Oð�Þ:

ð149Þ

Intervention on default contagion

PLOS ONE | https://doi.org/10.1371/journal.pone.0209819 January 15, 2019 48 / 60

https://doi.org/10.1371/journal.pone.0209819


For any k where 0 � k � nl̂, by proposition 3 it follows that

�
�
�
�
�

Rk
n
� rk

n

�
�
�
�
�
� j

~Rk

n
þ

1

n

Xk

‘¼1

X

i_j�M�

X

1�c�i

1ðW‘¼ði;j;c;c� 1ÞÞu
i;j;c;c� 1
‘� 1
n

� ð~rk
n

þ

Z k
n

0

X

i_j�M�;1�c�i

ði � cþ 1Þsi;j;c;c� 1
t

l � t
ui;j;c;c� 1

t dtÞj

�

�
�
�
�
�

~Rk

n
� ~rk

n

�
�
�
�
�
þ Oð�Þ

� opð1Þ þ Oð�Þ;

ð150Þ

thus we have that

sup
0�k�nl̂

j
Rk

n
� rk

n
j ¼ opð1Þ þ Oð�Þ: ð151Þ

If τf = λ, it implies that d�
t
> 0 for t 2 ð0; l̂Þ, then it follows from proposition 4 that

Tn
n ¼ l̂ þ Oð�Þ þ opð1Þ. Then because at each step there is at most one more node defaulting,

DTn
n ¼

D
bnl̂c
n þ Oð�Þ þ opð1Þ and from proposition 4 again,

D
½nl̂ �
n ¼ dl̂ þ Oð�Þ þ opð1Þ. b�c denotes

the floor function. Further by the continuity of dτ on [0, λ],
DTn
n ¼ dl þ Oð�Þ þ opð1Þ. Similarly,

by Eq (151) and the continuity of rτ on [0, λ], we have that
RTn
n ¼ rl þ Oð�Þ þ opð1Þ.

If τf< λ and d
dt d

�
tf
< 0, by definition 4, sτ is continuous and thus by Eq (33) d�

t
is also con-

tinuous. So there exists some τ0 > 0 such that d�
t
< 0 for τ 2 (τf, τf + τ0) by the continuity of

d�
t

. Since � is arbitrary, let � be small enough such that inf t2ðtf ;tfþt0Þd
�
t
< � 2� and t̂ be the first

time d�
t

reaches the minimum. Because d�
t̂
< � 2�, then by proposition 4

D�
bnt̂c
n < 0 with high

probability, so it holds that
Tn
n ¼ tf þ Oð�Þ þ opð1Þ. Again by the continuity of dτ and rτ on

[0, λ], proposition 4 and Eq (151),
DTn
n ¼ dtf þ Oð�Þ þ opð1Þ and

RTn
n ¼ rtf þ Oð�Þ þ opð1Þ.

In both cases we conclude that Eq (35) holds by tending �! 0.

To prove Eq (37), since RTn
� m � ðlþ 0:1Þn for large n and DTn

� n,
RTn ðGn ;PnÞ

n and

DTn ðGn ;PnÞ
n are bounded and thus uniformly integrable. For a sequence of uniformly integrable

random variables, convergence in probability implies convergence in expectation. Therefore

Eq (37) holds.

Proof of lemma 1

Proof. Solve (FOCP) for the optimal ð~u; ~t f Þ. Note that ~ub ¼ 0 for β 2 FnF�. If there exists

some p(i, j, c)>0, i _ j�M�, 0� c� i, then by remark 5, at ~t f by summing over (i, j) pairs sat-

isfying i _ j�M� we can show that

X

i_j�M�;0�c�i

pði; j; cÞ �
X

ði;j;c;lÞ2GnG�
si;j;c;l~t f
� 0; ð152Þ
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and by the definition of ~t f that

d�
~t f
¼

X

i_j�M�;0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2GnG�
jsi;j;c;l~t f

þ
X

i_j<M�;0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2G�
jsi;j;c;l~t f

� ~t f

¼
X

i_j�M�;0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2GnG�
jsi;j;c;l~t f

� 0:

ð153Þ

Now we construct a function u as ut ¼ ~ut, t � ~t f and ub
t
¼ 1, ~t f < t, β 2 F. Note that

under u, there are always interventions after ~t f , thus by remark 5, for a fixed (i, j) pair with the

set Γi,j = {(c, l):0� l< c� i or c = i + 1, l = i},
P
ðc;lÞ2Gi;j

si;j;c;l
t

will not change, i.e.
P
ðc;lÞ2Gi;j

si;j;c;l
t
¼

P
ðc;lÞ2Gi;j

si;j;c;l~t f
for t > ~t f . Let τf be the solution of d�

tf
¼ 0 under u, then it follows that

dtf �
~d~t f
¼

X

i;j;0�c�i

pði; j; cÞ �
X

ði;j;c;lÞ2G

si;j;c;l
tf

� ð
X

i_j<M�;0�c�i

pði; j; cÞ �
X

ði;j;c;lÞ2G�
si;j;c;l~t f
Þ

¼
X

i_j�M�;0�c�i

pði; j; cÞ � ð
X

ði;j;c;lÞ2G

si;j;c;l~t f
�

X

ði;j;c;lÞ2G�
si;j;c;l~t f
Þ

¼
X

i_j�M�;0�c�i

pði; j; cÞ �
X

ði;j;c;lÞ2GnG�
si;j;c;l~t f

�
X

i_j�M�;0�c�i

pði; j; cÞ < �;

ð154Þ

and similarly

rtf � ~r~t f
¼

X

i_j�M�;0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2GnG�
jsi;j;c;l~t f

�
X

i_j�M�;0�c�i

jpði; j; cÞ < �:
ð155Þ

By the definition of z and ~z,

zðu; tf ; pÞ � ~zð~u; ~t f ; pÞ þ ðK þ 1Þ�: ð156Þ

Recall ðu�; t�f Þ is the optimal solution for the infinite dimensional Eq (39). By remark 6,

(FOCP) assumes that the high degree nodes are invulnerable and because the ð~u; ~t f Þ is the

optimal solution for (FOCP), it provides the lower bound for the optimal objective function of

the infinite dimensional Eq (39), i.e.

~zð~u; ~t f ; pÞ � zðu�; t�f ; pÞ: ð157Þ

Let the objective function be z(u, τf, p) under u, then by the optimality of ðu�; t�f Þ, we have

that

zðu�; t�f ; pÞ � zðu; tf ; pÞ: ð158Þ
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In sum, we have that

~zð~u; ~t f ; pÞ � zðu�; t�f ; pÞ � zðu; tf ; pÞ � ~zð~u; ~t f ; pÞ þ ðK þ 1Þ�: ð159Þ

Thus the conclusion follows.

Proof of proposition 6

Proof. We apply the Extended Pontryagin Maximum Principle (EPMP) in Appendix C:

Extended pontryagin maximum principle. First we present the correspondence of a notation

A in EPMP and B in our application in the form A! B.

t ! t;

t0 ! t0;

tf ! tf ;

ðxitÞi2f1;...;nxg ! ðs
a
t Þa2G� ;

ðuitÞi2f1;...;nug ! ðu
b
t Þb2F� ;

U ! f0; 1g;

l
�

! w
�
;

ðl
i
tÞi2f1;...;nxg ! ðw

a
t Þa2G� ;

‘ðt; xt; utÞ ! K
X

i;j;1�c�i

ði � cþ 1Þsi;j;c;c� 1

t ui;j;c;c� 1

t ;

�ðtf ; xtf Þ ! dtf ;

ckðtf ; xtf Þ ¼ 0; k ¼ 1; . . . ; nc ! d�tf ¼ 0:

ð160Þ

Let ðw
�
;wtÞ be the adjoint variables then w

�
¼ 1, since otherwise the necessary conditions of

optimality becomes independent of the cost functional in Eq (42). The Hamiltonian function

Eq (48) is a direct result of Eq (183). Note that nψ = 1 and

cðt; sÞ ¼
X

i;j;0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2G�
jsi;j;c;l � lð1 � et0� tÞ: ð161Þ

Taking partial derivative yields @

@scðtf ; stf Þ ¼ ðj; j; . . . ; jÞ which has rank 1.

Since the Hamiltonian function is affine in the control variable ut, by condition (1) of

EPMP, we attain that, for 1� c� i,

ui;j;c;c� 1
t ¼

0 if ðK þ wi;j;cþ1;c
t Þsi;j;c;c� 1

t > 0

1 if ðK þ wi;j;cþ1;c
t Þsi;j;c;c� 1

t < 0

0 or 1 if ðK þ wi;j;cþ1;c
t Þsi;j;c;c� 1

t ¼ 0:

8
>>><

>>>:

ð162Þ

By distinguishing the two cases si;j;c;c� 1
t > 0 and si;j;c;c� 1

t ¼ 0, we have the equivalent form in

Eq (50).

Taking partial derivative of H with regard to s yields the differential equations of wt in con-

dition (2). Note that H is autonomous, then according to condition (3) of EPMP, Hðst; ut;wtÞ

is a constant for t 2 [t0, tf], which is condition (3).
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Then define

Cðt; sÞ :¼
X

i;j;0�c�i

pði; j; cÞ �
X

ði;j;c;lÞ2G�
si;j;c;l

þvð
X

i;j;0�c�i

jpði; j; cÞ �
X

ði;j;c;lÞ2G�
jsi;j;c;ltf

� lð1 � et0 � tf ÞÞ
ð163Þ

and taking partial derivatives with respect to s and t respectively by condition (4) of EPMP

together with the terminal condition Eq (47) leads to condition (4).

Proof of theorem 1

Proof. For the contagion process without intervention, we relate our model to the auxiliary

model used in the proof of theorem 3.8 in [24].

Recall that in Dynamics we are given a set of nodes [n] and the degree sequence (d−(v),

d+(v))v2[n] as well as the initial equity levels (e(v))v2[n] and the network is constructed sequen-

tially by matching any out half-link from the default set to a uniformly chosen unconnected in

half-link at every step. For each node v we assign each in half-link a number ranging in {1,. . .,

d−(v)}. Let
Pv be the set of all permutations of the in half-links of node v 2 [n], then a permu-

tation π 2
Pv specifies the order in which the in half-links are connected.

Because every in half-link of v represents one unit of loan, v will default after e(v) of its in

half-links have been connected (or e(v) of its in links have been revealed) for every permuta-

tion π 2 Sv. So the default threshold θ(v, π) for node v if the order in which the in half-links

are connected is specified by π is θ(v, π) = e(v), 8π 2 Sv. Further our assumption 1 is equivalent

to the assumption 4.1 and 4.2 in [24]. Moreover, under no intervention, the random graph

generated in Dynamics conforms to the model defined in definition 5.4 in [24] with in and out

degree sequences (d−(v), d+(v))v2[n] and default thresholds (e(v))v2[n] So by theorem 3.8 in [24]

we achieve the conclusions of theorem 1.

Proof of theorem 2

Proof. To simplify the notations we suppress the apostrophe “�”. In lemma 2 we have presented

the optimal control policy (ut)t2[t0,tf] in terms of t,t0,tf,ts,ti,j,c. Recall that in Eq (77) we have the

following relations,

y ¼ 1 � et0 � tf ;
z ¼ 1 � et0 � ts ;

xi;j;c;c� 1 ¼ 1 � et0 � ti;j;c

¼

y if K þ vj � 1 � 0 or c ¼ 0

1 � ð1 � yÞ ði� cÞK
ði� cþ1ÞKþvj� 1

if K þ vj � 1 < 0

and 1 � c < iþ Kþvj� 1

Ky

0 otherwise;

8
>>>>>><

>>>>>>:

ð164Þ

as well as t = −ln(λ − τ), t0 = −ln λ, so we can change the variable from t to τ. Particularly we
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apply mapping f(t) = 1 − et0−t which is strictly increasing in t, then we have

f ðtÞ ¼
t

l
;

f ðt0Þ ¼ 0;

f ðti;j;cÞ ¼ xi;j;c;c� 1;

f ðtsÞ ¼ z;

f ðtf Þ ¼ y:

ð165Þ

We replace each variable t, t0, tf, ts, ti,j,c in lemma 2 with its corresponding variable in Eq (165)

resulting in the expressions for ui;j;c;c� 1
t

. At last by assumption 2 on the relations between the con-

trol policy Gn ¼ ðg
ðnÞ
1 ; . . . ; gðnÞm Þ and the function u, we have the conclusion in theorem 2.

Proof of theorem 3

Proof. In proposition 7 we have obtained the expressions for d�tf and dtf with i _ j<M� in

terms of (v, tf, ts), after change of variables to (v, y, z) with y ¼ tf
l

we have the following expres-

sions for d�
tf

and dtf with their relations to ~Iðy; v; zÞ and ~Jðy; v; zÞ in definition 10.

d�
tf
¼

X

i_j<M�

j
�
Xi

c¼0

pði; j; cÞPðBinði; xi;j;c;c� 1Þ � cÞ

� 1ðvj� 1¼� KÞpði; j; iÞ
tf

l

� �i
� zi

� ��

� tf

¼ l ~I
tf

l
; v; z

� �
�
tf

l

� �
;

dtf ¼
X

i_j<M�

�
Xi

c¼0

pði; j; cÞPðBinði; xi;j;c;c� 1Þ � cÞ

� 1ðvj� 1¼� KÞp i; j; ið Þ
tf

l

� �i
� zi

� ��

¼ ~J
tf

l
; v; z

� �
:

ð166Þ

Suppose (y�, v�, z�) is an optimal solution for the optimization problem Eq (86) and note

that y� is the smallest fixed point of ~Iðy; v�; z�Þ and y� ¼
t�f
l
.

1. If y� = 1, then t�f ¼ l. By the definition of d�
tf

, it can only occur when

P
i_j<M2 j

Pi
c¼0

pði; j; cÞ ¼ l and z� ¼
t�f
l
¼ 1, thus we have dt�f ¼ dl ¼ 1, then by proposi-

tion 5,

DTn

n
!
p

1; ð167Þ

which proves (1) of theorem 3.
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2. If y� < 1 and ~I 0ðy�; v�; z�Þ < 1, then t�f < l and d
dt d

�
t�f
¼ ~I 0

t�f
l

; v�; z�
� �

� 1 < 0. Again it fol-

lows from proposition 5,

DTn

n
!
p
dt�f ¼

~Jðy�; v�; z�Þ: ð168Þ

which proves (2) of theorem 3. This concludes the proof of theorem 3.

It is important to note that the two cases in theorem 3 corresponds to t�f ¼ l, and t�f < l,

d
dt d

�
t�f
< 0, respectively. By proposition 5 they guarantees that the limits of E RTn ðGn;PnÞ

n and

E DTn ðGn ;PnÞ
n in Eq 9 as n!1 are well defined, which are rtf and dtf , respectively.

Proof of lemma 4

Proof. In the following we suppress “�”. Note first that if v> 0, xi,j,c,c−1 is increasing in j. This

implies that xi,j1,c,c−1 < xi,j2,c,c−1 for the two states inF�, (i, j1, c, c − 1) and (i, j2, c, c − 1) where j1
< j2. By theorem 2, this further implies that at some step k such that nλxi,j1,c,c−1� k� nλxi,j2,c,c−1,

we should intervene on a node in state (i, j1, c, c − 1) when it is selected at k but not on a node in

state (i, j2, c, c − 1). But this control policy is not optimal because both nodes are the same except

the out degree and the node in state (i, j2, c, c − 1) is systematically more important.

Appendix B: Wormald’s theorem

The following is from [30]. Let a� 2 be a fixed integer and ððYl
tÞ1�l�aÞt�0

denote a sequence of

real valued random variables indexed by n with its natural filtration ðF tÞt�0
. Assume that there

is a constant C0 > 0 such that jYl
t j � C0n for 8n, t� 0 and 1� l� a. Let fl : Raþ1

! R be

functions and U � Raþ1
be some bounded connected open set containing the closure of

fð0; z1; . . . ; zaÞ : PðYl
0
¼ zln; 1 � l � aÞ 6¼ 0 for some ng: ð169Þ

Define the stopping time TU ¼ inf t � 1 : t
n ;

Y1
t
n ; . . . ;

Yat
n

� �
=2 U

n o
. Assume the following

three conditions are satisfied:

1. (Boundedness) For some function ρ1 = ρ1(n)�1 and 8t< TU and 1� l� a,

jYl
tþ1
� Yl

t j � r1: ð170Þ

2. (Trend) For some function ρ2 = ρ2(n) = o(1) and 8t< TU and 1� l� a,
�
�
�
�E Yl

tþ1
� Yl

t jF t

� �
� flð

t
n
;
Y1
t

n
; . . . ;

Ya
t

n
Þ

�
�
�
� � r2: ð171Þ

3. (Lipschitz continuity) The functions (fl)1�l � a are continuous and satisfies a Lipschitz con-

dition on

U \ fðt; z1; . . . ; zaÞ : t � 0g ð172Þ

with the same Lipschitz constant for each l.

Then the following holds:
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1. For ð0; ẑ1; . . . ; ẑaÞ 2 U the system of differential equations

dzl

ds
¼ flðs; z

1; . . . ; zaÞ; 1 � l � a ð173Þ

has a unique solution in U for zl : R! R passing through

zl
0
¼ ẑ l; 1 � l � a ð174Þ

and which extends to points arbitrarily close to the boundary of U.

2. Let ρ> ρ2 and ρ = o(1). For a sufficiently large constant C, with probability

1 � O r1

r
exp � nr3

r3
1

� �� �
, it holds that

sup
0�t�ns

Yl
t

n
� zlt

n

� �

¼ OðrÞ ð175Þ

where zls is the solution in (1) with

zl
0
¼
Yl

0

n
ð176Þ

and

s ¼ sðnÞ ¼ supfs � 0 : d1ðððzlsÞ1�l�aÞ; @UÞ � Crg; ð177Þ

where d1(u, v) = max1�i � j|ui−vi| for u ¼ ðu1; . . . ; ujÞ 2 R
j
and v ¼ ðv1; . . . ; vjÞ 2 R

j
.

Appendix C: Extended pontryagin maximum principle

The following is from [32]. Consider the optimal control problem to minimize the cost func-

tional including a terminal term

J ðu; tf Þ :¼

Z tf

t0

‘ðt; xt; utÞdt þ �ðtf ; xtf Þ; ð178Þ

with fixed initial time t0 and free terminal time tf, subject to the dynamical system

_xt ¼ f ðt; xt; utÞ; xt0 ¼ x0; ð179Þ

where the vector function x 2 Ĉ1 ½t0;T�
nx represents the state variables characterizing the

behavior of the system at any time instant t, and some general terminal constraints

ckðtf ; xtf Þ ¼ 0; k ¼ 1; . . . ; nc: ð180Þ

The admissible controls shall be taken in the class of piecewise continuous functions

u 2 U½t0;T� :¼ fu 2 Ĉ½t0;T�
nu : ut 2 U for t0 � t � tfg; ð181Þ

with tf 2 [t0, T], where T> t0 and the nonempty, possibly closed and nonconvex set U denotes

the control region.

Suppose ℓ and f are continuous and have continuous first partial derivatives with respect to

(t, x, u) on ½t0;T� � R
nx � Rnu , and also ϕ and c :¼ ðckÞk¼1;...;nc

are continuous and have con-

tinuous first partial derivatives with respect to (t, x) on ½t0;T� � R
nx . Suppose that the terminal
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constraints Eq (180) satisfy the constraint qualification

rank
@c

@x
ðt�f ; x

�

t�f
Þ

� �

¼ nc ð182Þ

where @c

@x ðt
�
f ; x

�
t�f
Þ denotes the Jacobian matrix of the partial derivatives of components of ψ with

respect to x evaluated at ðt�f ; x
�
t�f
Þ. Define the Hamiltonian function

Hðt; x; u; l
�

; lÞ ¼ l
�

‘ðt; x; uÞ þ lTf ðt; x; uÞ: ð183Þ

Let ðu�; t�f Þ 2 Ĉ½t0;T�
nu � ½t0;TÞ denote a minimizer for the problem, and x� 2 Ĉ1 ½t0;T� the

optimal state, then there exists a nx dimensional piecewise continuously differentiable vector

function l
�

t and l
�
� 2 f0; 1g (ðl

�
�; l

�

t Þ are called adjoint variables) and a Lagrange multiplier

vector v� 2 Rnc such that ðl
�
�; l

�

t Þ 6¼ 0 for every t 2 ½t0; t�f � and the following conditions hold:

1. The function Hðt; x�t ;w; l
�
�; l

�

t Þ attains its minimum on U at w ¼ u�t for every t 2 ½t0; t�f �,
i.e.

Hðt; x�t ;w; l
�
�; l

�

t Þ � Hðt; x�t ; u
�
t ; l
�
�; l

�

t Þ; 8w 2 U: ð184Þ

2. ðx�t ; u
�
t ; l
�
�; l

�

t Þ verifies the equations

d
dt
x�t ¼ f ðt; x�t ; u

�
t Þ;

d
dt
l
�

t ¼ �
@

@x
Hðt; x�t ; u

�

t ; l
� �
; l
�

t Þ

ð185Þ

at each instant t of continuity of u� and l
�
� 2 f0; 1g.

3. Hðt; x�t ; u
�
t ; l
�
�; l

�

t Þ ¼ Hðt�f ; x
�
t�f
; u�t�f ; l

�
�; l

�

t�f
Þ �

R t�f
t

@

@t Hðt; x
�
t
; u�

t
; l
�

; l
�

t
Þdt. Therefore, if

@

@t H ¼ 0, i.e. H is autonomous, then H is a constant over time.

4. (Transversal condition) DefineCðt; xÞ :¼ l
�
��ðt; xÞ þ v�Tcðt; xÞ, then

l
�

t�f
¼

@

@x
Cðt�f ; x

�

t�f
Þ;

Hðt�f ; x
�
t�f
; u�t�f ; l

��

t�f
; l
�

t�f
Þ ¼ �

@

@t
Cðt�f ; x

�

t�f
Þ

ð186Þ

together with the terminal condition Eq (180) at t ¼ t�f , i.e. ckðt�f ; x
�
t�f
Þ ¼ 0 for k = 1, . . ., nψ.

5. The optimal control u� may or may not be continuous; in the latter case we have a corner

point. In particular, the conditions that must hold at any corner point y 2 ½t0; t�f � are

x�
y�
¼ x�

yþ
;

l
�

y�
¼ l

�

yþ
;

Hðy� ; x�
y
; u�

y�
; l
�
�; l

�

y
Þ ¼ Hðyþ; x�

y
; u�

yþ
; l
�
�; l

�

y
Þ:

ð187Þ
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Proof. See theorem 3.33 and theorem 3.34 in [32].

Appendix D: Preliminary list of notations

Dk: the default set at step k;

Dk ¼ jDkj;

DTn
: the number of defaulted nodes by the end of the process Tn;

D�k : the number of unrevealed out links from the default set at step k;

En: the set of links in a random network;

Grn: a graph on n nodes;

Gn,m: the set of networks on n nodes with at most m directed links;

ðGkÞ0�k�m: the filtration on the default contagion process;

Gn ¼ ðg
ðnÞ
1 ; . . . ; gðnÞm Þ: a control policy for a network of size n;

I(y),J(y), ~Iðy; v; zÞ, ~Jðy; v; zÞ: special functions defined for theorem 1, theorem 2 and theo-

rem 3;

K: the “cost” of an intervention relative to a defaulted node;

M�: an integer defined based on �;

N0 :¼ f0; 1; 2; . . .g;

N :¼ f1; 2; . . .g, the set of positive integers;

P: probability measure on the set Gn,m;

Pn(i, j, c): the empirical probability of the degrees and initial equity levels and Pn = (Pn(i, j,
c))i,j,0�c�i;
Qk: the set of hidden out links from the default set at step k;

Rk: the accumulative number of interventions by step k;

RTn
: the accumulative number of interventions by the end of the process Tn;

Si;j;c;lk : the number of nodes that are vulnerable initially and in state (i, j, c, l) at step k and

Sk :¼ ðSakÞa2G;

Tn: the contagion process end time;

U: the set of all ðGkÞ0�k�m adapted process μ;

(Vk, Wk): a pair of random variables denoting the link from node Vk to node Wk revealed at

step k; By abuse of notation, Wk denotes the state of the node selected at k when there is no

confusion;

b :¼ (bβ)β2F: a vector of {0, 1} constants;

cvk: the sum of initial equity and accumulative interventions of node v at step k;

d−(v),d+(v): the in and out degree of a node v;

d�
t

: the asymptotic number of unrevealed out links of the default set at time τ;
dτ: the asymptotic fraction of defaults at time τ;
e(v): the initial equity of a node;

gðnÞk : the control function at step k for a network of size n;

h: the set of ODEs of sτ and st;
h0: the set of ODEs of wt;
lvk: the number of revealed in links of node v at step k;

m = m(n): the total in or out degree of a network of size n, maybe index variable as well;

n: the number of nodes, may be index variable as well;

[n] = {1, . . ., n};

ui;j;c;c� 1
t

: a piecewise constant function; ut ¼ ðubt Þb2F;

rτ: the asymptotic scaled number of interventions by time τ;
v: the Lagrange multiplier;
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(vk, wk): the link from node vk to node wk revealed at step k;

wi;j;c;l
t : the adjoint variable;

�: a positive real;

λ: the asymptotic mean of in (out) degree;

l̂ :¼ l � 2;

μk: intervention at step k and μ = (μk)1�k�m;

μn: in Introduction denotes an intervention sequence for a network of n nodes;

τf: the end time in of the asymptotic process;

kk: any norm of Rl
for some l 2 N;

d�e: the ceiling function;

[�]: the round function;

~: the corresponding variable resulted by the constraint i _ j<M�, e.g. ~Rk, ~u, ~t f , ~rt, ~dt;
Bin(i, y): a binomial random variable in i trials with the probability of occurrence y;

Multin(i, x, y, 1 − x − y) = (a, b, i − a − b): a multinomial distribution in i trials with the

probabilities of occurrence of each of three types being x, y and 1 − x − y, and turns out to have

a, b and i − a − b occurrences of each type.

Important sets:

F :¼ fði; j; c; c � 1Þ : 0 � i; 0 � j; 1 � c � ig;

F� :¼ fði; j; c; c � 1Þ : i _ j < M�; 1 � c � ig:

Gþ :¼ fði; j; c; lÞ : 0 � i; 0 � j; 0 � c; 0 � l � ig;

G :¼ fði; j; c; lÞ : 0 � i; 0 � j; 0 � l < c � i or c ¼ iþ 1; l ¼ ig;

G� :¼ fði; j; c; lÞ : i _ j < M�; 0 � l < c � i or c ¼ iþ 1; l ¼ ig;

Gi;j :¼ fðc; lÞ : 0 � l < c � i or c ¼ iþ 1; l ¼ ig:

ð188Þ

Supporting information

S1 Dataset. Dataset generated from the numerical experiments and based on which Figs 6–

11 are presented. The spreadsheet contains two tables which includes respectively, under the

optimal and alternative intervention policies the scaled number of interventions
RTn
n , the scaled

number of defaults
DTn
n , the scaled process end time

Tn
m and the objective function value for the

number of nodes n = 54, 64, . . ., 104 and there are 100 runs for each n. The dataset is publicly

available via https://figshare.com/articles/Simulation_result/7477562 with DOI 10.6084/m9.

figshare.7477562.

(XLSX)
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