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Abstract: It is known that children are more sensitive to the effects of medical treatments and
environment than adults. Today there is limited information regarding the differences in genotoxic
effects in children. The micronucleus assay is a method that is used to monitor genotoxicity, and it was
validated several years before. Today there is international interest for exfoliated buccal cells. Most of
the micronuclei studies in children have been performed with the analyses of lymphocytes. However,
there is vast interest in using exfoliated cells from the oral cavity. The reason is that other type of
cells are acquired non-invasively, this is an important issue in paediatric cohorts. Unfortunately a
limitation of measuring micronuclei frequency is that it has been observed to be low in newborns and
on the other hand there are a large number of patients and cell sample counts. It has been observed
that radiation exposure and environmental pollutants increase the micronuclei frequency in newborn
and children. Regarding the medical treatments, there is little data and several studies are needed
to optimise the doses. There is the need to observe if there is a relationship between micronuclei in
lymphocytes and exfoliated cells and to identify the baseline of the micronuclei levels. Moreover,
we evaluate the changes in response to the toxic agents. Prospective cohorts studies will clarify the
predictive value of micronuclei for cancer and chronic diseases for both children and adults. Novel
molecular technologies will assist in the elucidation of different biological pathways and molecular
mechanisms connected with the micronulcei levels in newborn and children.

Keywords: radiation; newborn; children; environment pollutants; biomarker; environmental exposure;
genetic damage; micronucleus assay

1. Introduction

In the present review we will provide information regarding the micronucleus (MN)
assay in lymphocytes. Moreover, additional information will be given for exfoliated ep-
ithelial cells of children with a timeline from birth to adolescence. Children have higher
sensitivity to genotoxic agents compared to adults. Furthermore, the genetic damage in
younger ages affects adulthood health outcomes [1–3]. In recent years there has been a large
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number of studies with novel biomarkers of exposure that affect children. Several of these
studies include genotoxicity assessments and micronuclei measurements in children [4,5].
As previously reported, the MN assay is the method of choice for evaluation of genotoxi-
city in newborns and children because it is cost-effective and efficient. The main factors
affecting the micronuclei assay in newborn and children are: (a) age, (b) tissue specificity,
(c) sex, (d) health status, and (e) environmental exposure. Firstly we present the reflexion
of significance of micronuclei in newborns and then in children. Secondly, we present the
effect of age and sex in different cell types. Moreover, we present the use of the micronuclei
assay for monitoring of environmental exposures in paediatric patients along with chronic
diseases and/or at the same time are undergoing treatment. Furthermore, we present
the relationship of micronuclei as biomarkers of genotoxicity with the genetic polymor-
phisms and additional gene expressions. Thirdly and finally, we make an attempt to firstly
summarize current research in genotoxicity of newborn and children. The significance of
micronuclei in newborns and children micronuclei is observed in human T lymphocytes,
which are produced from spontaneous chromosome breakage. T lymphocytes accumulate
micronuclei; cells with abnormalities disappear except in the case of stable mutations in
stem cells. MN in T lymphocytes from adults provides predictive data for carcinogenesis
for early genetic diseases [6]. In newborns, the micronuclei in lymphocytes of umbilical
blood indicate genome instability. There are four important factors:

(a) T lymphocytes have to be investigated by micronuclei assay in circulating peripheral
blood for 6 months [7],

(b) T lymphocyte response to phytohaemagglutinin has been observed to be less efficient [8],
(c) it has been observed that the baseline of micronuclei frequency is low in newborns.

Their predictive value of micronuclei for chronic diseases, and childhood leukaemia,
requires still large prospective studies. In order for these future studies to be complete,
we should combine information from different studies on exposure like nutrition, health
lifestyle, and exposure to environmental factors during pregnancy. We should investigate
micronuclei frequencies and genetic/epigenetic effects in mother–child pairs with the
addition of disease record. Effects of age and sex on micronuclei levels. The connection
between age and sex on micronuclei levels in adult lymphocytes has been previously
established. Women have 30% higher levels of micronuclei than men and micronuclei
levels increase with age [9]. There are not enough data regarding micronuclei in exfoliated
epithelial cells [10]. Based on a meta-analysis of micronuclei frequency in children (age
range 0–18 years) and data gathered from a pooled analysis from previously published
studies and the Human Micronucleus International Collaborative Study (HUMN) database,
we estimated the connection between age and gender on micronuclei level in peripheral
lymphocytes [5,11]. There were low levels of micronuclei measured in lymphocytes for
both boys and girls [4]. However, it was observed that micronuclei frequency was low
at birth and increased by 66% in children ranging from 1–4 years of age. Micronuclei
were then observed to increase by up to 116% in children aged 15–18 years. Every year
there is a 6.5% increase in micronuclei frequency for children aged from to 5–13 years [12].
However, regarding buccal epithelial cells in another study with children aged from 14
to 18 years, there was no difference in micronuclei levels between boys and girls [13].
There have been additional studies on this issue with other studies reporting that the
mean micronuclaei levels in buccal cells for children from 0 to 6 years differed by 2-fold
(first study 1.2 and second study 3.8). This is thought to be influenced by the environmental
factors. Furthermore, in a study involving lymphocytes and buccal cells of childrenβετςεεν
ages 4 to 15 and their mothers, a 30% higher micronuclei frequency was observed in both
cell types for adults when compared to children [14–16]. However, in this study, no
statistical difference was observed in connection to age. On the other hand, there was a
study reported from Madrid on newborns reporting that the mean number of micronuclei in
binucleated cells was lower by 3.9 than in their parents 6.5 (Mothers) and 6.1 (Fathers) [17].
In another study from Mexico including four mother–child groups, a correlation was
observed between mothers and newborn lymphocyte micronuclei frequency. In these
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groups, the levels of micronuclei frequency were lower than in previously published
studies [18]. In another study including children of various ages, it was observed that the
major factor affecting the micronuclei frequency was the air pollution [19]. This report is
in accordance with the current information available that children are more vulnerable to
environmental exposures [3].

2. Micronuclei and Environment

It is known that micronuclei assay are used to study genome damage in several med-
ical situations like: (a) after transplacental and (b) accidental industrial/technological
overexposures. There are several known genotoxic factors like: (a) unknown mixtures of
airborne nanoparticles, (b) environmental tobacco smoke, (c) oil and coal combustion emis-
sions, and (d) food contaminants. Higher frequencies of micronuclei have been observed
in children exposed to environmental pollutants when compared to referent values [5].
Children exposed to air pollution have from 30 to 130% increase in the mean micronuclei
level in comparison to referent values [15,20,21]. An additional 30% increase in micronuclei
frequencies has been observed in those children exposed to indoor environmental tobacco
smoke [22]. Increased levels of micronuclei were observed in lymphocytes and buccal cells
of children due to the low regional ozone levels [16]. Based on a 4-year surveillance that
included children from 3 to 7 years of age who were exposed to airborne chemical industry
mixtures like: nitrates, ozone, formaldehyde, solvents and dust, a higher micronuclei
frequency was observed in buccal cells than control children; in addition, an increase in
the levels of micronuclei was observed in lymphocytes and buccal cells [23]. Higher mi-
cronuclei frequency was observed in binucleated lymphocytes Czech children aged from 5
to 13 years living in a polluted region, as compared with others of the same age living in
a rural area without environmental pollution [12]. Higher micronuclei frequencies have
been also observed in older children, meaning that there is a connection between age and
exposure. There was an increase in micronuclei by 240% in children living near a chemical
disposal site [24]. A 730% increase in micronuclei frequency has been observed in children
that were exposed to heavy metals [14]. A 630% increase in micronuclei frequency has been
observed in children exposed to arsenic [25]. In a study published from Poland, there were
elevated micronuclei frequencies in lymphocytes from 9-year-old children who had higher
blood lead levels in comparison to referant values [26]. Fluorescence in situ hybridization
(FISH) assay was used and showed that genome damage was caused primarily by an
aneugen mechanism. Moreover, it has been observed that natural sources of ionising
radiation are connected with elevated micronuclei frequencies in schoolchildren exposed
high radon levels [27]. Until now, the largest studies with ionising radiation in children
have been available from studies associated with the Chernobyl, a nuclear accident [28,29].
Those children were chronically exposed to radiation after the Chernobyl nuclear power
plant accident in 1986 and there was an increase in micronuclei levels in comparison to
normal values [30]. Moreover, the children of the cleaners had also significantly increased
micronuclei levels. Furthermore, it was observed that children from Belarus had higher
micronuclei frequencies than children from other nearby countries. It was observed that
there was a correlation between the levels of 137Cs and the presence of thyroid tumors in
Belarus children [31]. The micronuclei frequencies were elevated. Since then, the micronu-
clei assay has been used for biomonitoring of genetic damage in contaminated regions of
Belarus [32]. There is definitely a connection between early life environmental exposure
and genetic damage in children, disease, and treatment on micronuclei. There are several
studies published regarding the level of genetic damage of children with cancer with or
without a combination of chemotherapy and radiotherapy. In a published study, there was
no chromosome damage by micronuclei assay in lymphocytes of children and adolescents
with thyroid carcinoma after receiving 131I radio therapy [33]. Changes in gene expression
were evaluated and most patients had altered expression levels of DNA repair. In two
previously published studies that evaluated the local radiation, no long-term association
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between micronuclei frequency as a result of dental X-rays [34] or radiosynovectomy was
found [35]; as seen in Table 1.

Table 1. Micronuclei and environment.

(1) Higher frequencies of micronuclei have been observed
in children exposed to environmental pollutants

(2) 30% increase in micronuclei frequencies has been observed
in children exposed to indoor tobacco smoke

(3) There is a connection between age and exposure in the frequency of micronuclei

(4) FISH—Fluorescence in situ hybridization is the best method
to evaluate the micronuclei frequency

(5) There is a connection between tumorigenesis and micronuclei frequency

(6) Micronuclei frequencies can be used for biomonitoring of genetic damage

(7) There is definitely a connection between early life
environmental exposure and genetic damage in children.

Children who received 131I application for thyroid cancer around the vicinity of
Chernobyl had an increase in micronuclei frequency for at least 5 days after the treatment.
A decrease was observed from 4 to 7 months. In any case, the pretreatment levels were
never restored [36]. In another earlier study from Chernobyl including children, in different
parts of the former Soviet Union the results indicated increased levels of micronuclei in
children [37]. The same group performed research on genotoxic effects of radiotherapy and
chemotherapy for thyroid cancer. Most of the patients were treated with 131I and lower
micronuclei levels were observed post-treatment by x10 in lymphocytes when compared to
60Co radiotherapy [21,25–29]. It was observed that chemotherapy resulted in an increase
in micronuclei frequencies in lymphocytes and exfoliated buccal cells in paediatric patients
with acute lymphocytic leukaemia when compared to the levels before treatment and in
other healthy patients [38,39]. There are two additional examples where long-term therapies
with hydroxyurea for the treatment of sickle-cell anaemia and methylphenidine for the
treatment of deficit/hyperactivity disorder present long term genotoxicity [40]. Moreover,
it was observed that the elevated micronuclei frequency remained for at least 12 years
after hydroxyurea exposure. Increased micronuclei frequency was initially reported along
with increased cytogenetic damage in children treated with methylphenidine [41]. Again,
other later studies did not confirm this elevate micronuclei frequency in lymphocytes and
buccal cells [42], nor in prospective follow-up up to 12 months [43]. Micronuclei studies in
children have been conducted to characterize the differences in cytogenetic damage, which
is associated with disease itself. It has been observed that the buccal cytome and micronuclei
frequency are significantly altered in Down’s syndrome [44]. In other published studies in
this patient group, genomic instability in blood and oral mucosa was also observed [45–47].
There are other studies regarding ataxia-telangiectasia and anaemia [48] and inflammatory
bowel disease, where elevated micronuclei frequency was observed [49]. Based on the
previous findings, we should keep in mind the genotoxicity of the diseases and combine
with this information the adverse effects of chemo- and radiotherapy. By combining these,
we can minimise the doses of the treatment but also at the same time keep the clinical effect.
Moreover, we should monitor the genotoxicity of new treatment forms and the combination
of therapies because they usually have a synergistic effect.

3. Micronuclei and Biomarkers

Until now there has been limited information in children regarding the gene expression
and the relationship between the frequency of micronuclei and genetic polymorphisms.
In the study by Decordier et al. [50], the impact of oxidative stress induced by H2O2
and the effect on the micronuclei frequencies was investigated in newborn girls. In the
same study, the DNA repair (hOGG1, XRCC1, XRCC3, and XPD) and folate metabolism
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(MTHFR) polymorphisms were investigated. Increased micronuclei frequencies were
observed in children carrying XRCC1194 variant genotype. It has been observed that
newborns and children carrying the variant XRCC3241genotype are at higher risk for the
induction of micronuclei oxidative stress. In a recent study by Rossnerova et al. from
Czech Republic, the micronuclei frequency in the peripheral lymphocytes of children
diagnosed with asthma was investigated. In this region, a high level of air pollution
has been observed, which is assessed by concentrations of PM2.5 paricles, carcinogenic
polycyclic aromatic hydrocarbons, and benzo[a]pyrene (B[a]P). These are the highest
concentrations observed in Europe. It has been reported that the micronuclei levels in
asthmatic children from 6 to 15 years of age have an impact on the modifying impact of
genetic polymorphisms of GSTM1, GSTT1, and EPHX1. In this report, the micronuclei
frequency in binucleated lymphocytes in asthmatic children had similar measurements to
control subjects. Regarding GSTM1-positive subjects, a higher micronuclei frequency was
observed vs. control subjects. A significant difference was observed for GSTT1 vs. control
subjects. Furthermore, in this report, plasma analysis investigated vitamins C, A, and E
along with cotinine level in urine and parental smoking. A multivariate linear regression
analysis was performed and indicated the effect on GSTM1 gene regulation. In smoking
families, two other genes significantly affected the micronuclei frequency of the GSTT1
and EPHX1. The support role of GSTM1 and possibly GSTT1 and EPHX1 genes is very
important as they can be used to indicate the DNA damage in polluted environments. We
still need larger studies like the combined cohort analysed by the HUMN in adults but
also in children [51]. Currently there are ongoing studies attempting to investigate the
genetic damage in children by novel methodologies such as the etheno adducts in mother–
newborn pairs [52] and microarrays [34]. There is a report where micronuclei frequencies
and gene expression in the lymphocytes of children and adults are different in different
polluted areas [53]. In this study, very little difference was observed at the transcriptome
level between children and adults, however, there were differences observed in children
regarding the functions in nucleosome and immune response. Summary for micronuclei
frequencies in children: Currently, micronuclei assay is increasingly used in newborns
and children because of its public health significance. We can monitor the environmental
exposures such as air pollution, industrial toxicants, radiation, and of course the toxicity of
several medical treatments. We can also use this method to assess genotoxicity associated
with leukaemia and Down’s syndrome. There are also other chronic conditions such as
(a) asthma and (b) inflammatory bowel disease. Additional information has been gathered
when assessing the micronuclei frequencies such as the nutritional and nutritional status.
Today, the micronuclei frequency has been measured in children in lymphocytes and buccal
epithelium; however, it has rarely been measured in reticulocytes. Until now, we focused
on collecting lymphocytes for analyses, but in recent years, we collected exfoliated cells
from the oral cavity because they can be collected non-invasively. This is an important issue
when conducting paediatric studies [54]. Current information, as previously presented,
indicate that the baseline micronuclei levels in newborn are low compared to adult values.
Until now there has been a lack of knowledge regarding the effects of age and sex on
the micronuclei levels in lymphocytes and exfoliated cells during childhood and later
on in adolescence. We need further studies with a large number of subjects. There is
still a knowledge gap regarding the changes in response to environmental exposures like:
(a) chemical genotoxicants, (b) ionizing radiation, and (c) medical treatments that can
alter the genome. Several studies have added the measurement of cytome along with
the micronuclei that allows more detailed assessment of cell toxicity [44,54]. In other
studies, FISH analyses of micronuclei [12], flow cytometry [40], and automatic scoring of
micronuclei in different cell types has been used [55,56]. Fortunately, due to novel ‘omic’
and additional novel molecular methodologies with micronuclei studies [12], we will be
able to enlighten the molecular mechanisms and biological pathways of the micronuclei
levels in children.
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4. Conclusions and Future Directions

Unfortunately, the levels of micronuclei frequencies are difficult to understand in
paediatric populations due to interactions between environment, age, and sex. There is
also the dynamic growth of the individual and adaptation to the environment parameters.
Growth is a dynamic situation where several parameters have a significant impact to
genome damage, which is measured by the micronuclei assay. Other parameters such as
nutritional status and daily nutrition have not been taken under consideration in several
studies because the primary focus is usually only one factor that possibly affects the mi-
cronuclei measurements. Moreover, there are very few studies with information regarding
the health status and infectious diseases, which are also important factors and might affect
the micronuclei measurements. Furthermore, cell division rate in children is different than
in adults. It has been observed that epithelial cells from the oral cavity migrate to the
surface from the basal layer in 2–3 weeks in adults. On the other hand, this time is much
less in children and for different cell types. It is very important to know this time in the
children population because we need to collect the cells for toxicity investigation in the
right moment. To date, it is difficult to define the real biological significance of micronuclei
frequencies in newborns and children. We definitely need standardization of the protocol
blood collections or other cell types collections, maybe in correlation with the toxic factor
under investigation. We would like to have a world bank of data from different regions
and improve the quality of our results by comparing the length of the damage of a toxic
agent in different populations and in different regions. We need to make a predictive
cancer model for newborn and children. Definitely we need studies from pregnancy to
childhood to adulthood. Finally we need ‘omics’ and novel molecular technologies presents
for investigation of micronuclei in different cell types (Figures 1–3).
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Figure 2. Damage to cellular DNA is involved in mutagenesis and the development of cancer. The
DNA in a human cell undergoes a million damaging events per day, by both external (exogenous)
and internal metabolic (endogenous) processes. Genomic mutations can also be carried over into
daughter generations of cells if the mutation is not repaired prior to mitosis. Once cells lose their
ability to effectively repair damaged DNA, there are three possible responses.
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