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Nesfatin-1 is an anorectic peptide expressed in both peripheral tissues and brain areas
involved in the regulation of feeding, emotion and emesis. The aim of the present study is to
characterize the distribution of NUCB2/nesfatin-1 in Suncus murinus and to investigate the
actions of nesfatin-1 to affect gastrointestinal contractility, emesis, food and water intake,
and locomotor activity. The deduced amino acid sequence of S. murinus nesfatin-1 using
in silico cloning showed high homology with humans and rodents. NUCB2 mRNA was
detected throughout the entire brain and in the gastrointestinal tract, including the stomach
and gut. Western blot analysis and immunohistochemistry confirmed the expression of
nesfatin-1 protein in these regions. The NUCB2 mRNA levels in the hypothalamus,
hippocampus and brainstem were significantly decreased, whereas that in the striatum
were increased after 24 h starvation compared to ad libitum-fed animals (p < 0.05). In
in vitro studies, nesfatin-1 (0.3–1,000 pM) failed to contract or relax the isolated gastric
antrum and intestinal segments. In conscious, freely moving animals,
intracerebroventricular administration of nesfatin-1 (1–50 pmol) induced emesis (p <
0.05) and suppressed 6-h cumulative food intake (p < 0.05), without affecting the
latency to feeding. Nesfatin-1 (25 pmol, i.c.v.) decreased 24-h cumulative food and
water intake by 28.3 and 35.4%, respectively (p < 0.01). No significant differences in
locomotor activity were observed. In conclusion, NUCB2/nesfatin-1 might be a potent
regulator of feeding and emesis in S. murinus. Further studies are required to elucidate the
mechanism of actions of this peptide as a mediator linking the brainstem NUCB2/nesfatin-
1 to forebrain system.
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INTRODUCTION

The gut–brain axis plays a critical role in the homeostatic regulation of energy balance and appetite
(Hussain and Bloom, 2013). Numerous peptides that act as neurotransmitters/neuromodulators and
act at both peripheral and central receptors modulate appetite and gastric emptying may possibly be
involved in mechanism regulating the sensation of nausea and emesis (Noetzel et al., 2009; Chan
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et al., 2013; Rudd et al., 2018; Lu et al., 2020). The hypothalamus
integrates signals to regulate feeding and glucose homoeostasis
(Oh et al., 2006; Yang et al., 2012), whereas the brainstem is
involved in the autonomic regulation of visceral-endocrine
functions (Goebel et al., 2009) and the mechanisms of nausea
and emesis (Lu et al., 2017).

Nesfatin-1 is an 82-amino acid anorectic peptide derived
from nucleobindin2 (NUCB2), a 396-amino acid protein that is
highly conserved in humans, rats and mice (Oh et al., 2006;
Mohan and Unniappan, 2013). While post-translational
processing of NUCB2 results in nesfatin-1 (aa 1-82),
nesfatin-2 (aa 85-163) and nesfatin-3 (aa 166-369), only
nesfatin-1 has biological activity (Oh et al., 2006). NUCB2/
nesfatin-1 immunoreactivity are expressed in peripheral tissues
i.e., the stomach, pancreas and adipose tissues (Zhang et al.,
2010) and the brain, including the cortical areas, the limbic
system, thalamus, hypothalamus as well as medullary nuclei
such as the nucleus tractus solitarius (NTS) and dorsal motor
nucleus of the vagus (DMNV), (Oh et al., 2006; Foo et al., 2008;
Goebel-Stengel and Wang, 2013), and these brain areas have
been implicated in feeding, emotion and emesis (Oh et al., 2006;
Maejima et al., 2009; Goebel-Stengel et al., 2011).

Intracerebroventricular administration of nesfatin-1 potently
reduces dark-phase food intake (Oh et al., 2006; Maejima et al.,
2009). Conversely, intracerebral third ventricular administration
of a NUCB2 antisense oligonucleotide increases body weight gain
(Oh et al., 2006). Furthermore, there is growing evidence that
NUCB2/nesfatin-1 is implicated in the long-term modulation of
energy balance, making it a promising target for drug treatment
of obese patients (Stengel et al., 2011). However, despite the
increasing knowledge on the roles of nesfatin-1, its corresponding
receptor has not yet been identified. Up to now, the potential
involvement of nesfatin-1 in emesis control is less well
understood because common laboratory animals (e.g., rat and
mouse) are incapable of emesis and therefore the role of nesfatin-
1 as a transmitter linking the forebrain and brainstem being
involved in feeding and the control of nausea and emesis has been
overlooked.

In the present study, therefore, we deduced the amino acid
sequence of Suncus murinus NUCB2/nesfatin-1 using in silico
cloning. We identified the expression of NUCB2 mRNA using
reverse transcription PCR and investigated its levels of expression
in the fed and 24 h fasted states using real-time PCR. The
distribution and protein expression of nesfatin-1 peptide were
determined using immunohistochemistry and western blotting,
respectively. We then investigated the effect of nesfatin-1 on
isolated gastric antrum and gut regions. Finally, we investigated
the action of nesfatin-1 following intracerebroventricular
administration to affect locomotor activity, feeding and emesis
in conscious, freely moving animals.

MATERIALS AND METHODS

Animals
Male S. murinus (45–70 g) was purchased from the Laboratory
Animal Services Centre of the Chinese University of Hong

Kong. Animals were housed in a temperature-controlled
room at 24 ± 1 °C with humidity at 50 ± 5% and lights on
0600–1800 h. Water and dry pelleted cat chow (Feline Diet
5003, PMI® Feeds, St. Louis, United States) were given ad
libitum. The Feline Diet 5003 has been used in our group
and others in research investigating feeding and emesis
(Rudd et al., 1999; Chan et al., 2013; Borner et al., 2020). All
the animal experiments were performed under license from the
Government of Hong Kong SAR and under the approval of the
Animal Experimentation Ethics Committee of the Chinese
University of Hong Kong.

In Silico Analysis
Nesfatin-1 amino acid sequence of S. murinus was deduced from
the S. murinus genome browser. Amino acid sequence from
various species, including human, rats and mice were obtained
from GenBank.

Reverse Transcription PCR (RT-PCR)
Three S. murinus were euthanized by CO2 anesthesia followed by
cervical dislocation. Stomach, duodenum, ileum, colon, and brain
tissues including the olfactory bulb, cortex, striatum, thalamus,
hypothalamus, hippocampus, amygdala, midbrain, cerebellum,
and brainstem were quickly collected and stored at −80°C. Total
RNA was extracted using a TaKaRa MiniBest universal RNA
Extraction kit (Catalog number: 9767, Takara Bio Inc., Japan)
according to the manufacturer’s protocol. The RNA (0.5 µg) was
reverse-transcribed into cDNA by using a TaqMan® Reverse
Transcription Kit (Catalog number: N8080234; Thermo Fisher
Scientific, United States), following the manufacturer’s protocol.
Conventional PCR was performed in 15 µl of buffer solution
containing 1 µl of template cDNA, 7.5 µl GoTaq® G2 Hot Start
Green Master Mix and 10 pmol of each primer. The primers were
as follow: NUCB2, forward 5′- TCCAATCCATCAGATTCT
TCC-3′ and reverse 5′-CCTGACAAGTTTGAGCCCAC-3’;
GAPDH, forward 5′-ACCACAGTCCATGCCATCAC -3′ and
reverse 5′-TCCACCACCCTGTTGCTGTA -3’. The optimum
temperature cycling protocol was as follow: 95°C for 2 min, 40
cycles with 95°C for 30 s, 56°C for 30 s and 72°C for 1 min, then
72°C for 5 min, using a MiniAmp Plus thermal cycler (Thermo
Fisher Scientific Company). The PCR products were run on a 2%
agarose gel and visualized with GelRed® Nucleic Acid Gel Stain
agent on a Syngene G:BOX Chemi XRQ gel imaging system. The
specificity of the PCR product was confirmed by direct
sequencing.

Quantitative Real-Time PCR (qRT-PCR)
To investigate the level of expression of NUCB2 mRNA under ad
libitum-fed and fasting conditions, animals were randomly
divided into two groups of three animals each. In the fed
group, animals were given free access to food whereas in the
food deprivation group, animals were fasted for 24 h before tissue
collection. The level of expression of NUCB2mRNAwas assessed
using quantitative real-time PCR. Real-time PCR was performed
in an ABI QuantStudio 7 (QS7) Flex Real Time PCR System using
TB Green® Premix Ex Taq™ (Catalog number: RR420L; Takara,
Bio Inc.,). The optimum temperature cycling protocol was as
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follow: 48°C for 2 min, 95°C for 10 min, and 95°C for 15 s, 60°C
1 min for 45 cycles. The primers were as follow: NUCB2, forward
5′- TCCAATCCATCAGATTCTTCC-3′ and reverse 5′-CCT
GACAAGTTTGAGCCCAC-3’; GAPDH, forward 5′-ACCACA
GTCCATGCCATCAC -3′ and reverse 5′-TCCACCACCCTG
TTGCTGTA -3’. The NUCB2 mRNA expression was
normalized to GAPDH. The relative mRNA expression of
NUCB2 was calculated by the 2-ΔΔCt method.

Western Blot Analysis
The stomach, gut and brain tissues of three S. murinus were lysed
in sodium dodecyl sulphate (SDS) lysis buffer containing protease
inhibitor cocktail tablets (Complete Mini, Roche). The
concentration of protein in each extract was measured using a
Bio-Rad Protein Assay Kit (Bio-Rad Laboratories, Hercules, CA,
United States) according to manufacturer’s instructions. Briefly,
25 μg of tissue was added to 10% polyacrylamide gels which were
then transferred to nitrocellulose membranes, blocked for 1 h at
room temperature with 5% bovine serum albumin in washing
buffer, and then incubated overnight at 4°C with the nesfatin-1
primary antibody (Catalog number: H-003-22, 1:1,000, Phoenix
Pharmaceuticals Inc., United States). Membranes were washed
for 3 times, 5 min each, and then incubated with anti-rabbit IgG
horseradish peroxidase conjugate (1:2000, Thermo Fisher
Scientific, United States) for 1 h, and washed again (4 ×
5 min) before incubating with a chemiluminescence detection
reagent for 5 min. A ChemDoc XRS detection system (Bio-Rad,
Milan, Italy) was used to visualize the protein. GAPDH was
served as an internal control, and it was similarly detected using a
horseradish peroxidase conjugated mouse anti-GAPDH as the
primary antibody.

Immunohistochemistry
For the gut tissues, 5 µm cross sections were collected onto the
slides using a freezing microtome. For the brain tissues, frozen
tissues were sectioned at 40 μm in the coronal plane using a
freezing microtome and were collected as free-floating sections.
The brain and gut sections were first incubated with 0.01%H2O2

at room temperature for 1 h followed by blocking with 1.5%
normal goat serum containing 0.3% Triton X-100 in PBS
(Vectastain Elite ABC kit, Vector Laboratories, Burlingame,
United States) for 1 h. Sections were then incubated with
rabbit anti-nesfatin-1 antibody (1:10,000, #H-003-22, Phoenix
Pharmaceuticals, United States) for 48 h at 4°C. The sections
were subsequently washed and incubated with secondary goat-
anti-rabbit antibody (1:200; Vector Laboratories) for 1 h,
followed by Vectastain avidin–biotin complex reagent for 1 h
(1:100; Vectastain Elite ABC kit, Vector Laboratories,
Burlingame, United States). A control for nonspecific binding
of the secondary antibody was performed by omitting the
nesfatin-1 primary antibody. Nesfatin-1 expression was
visualized using a commercially available peroxidase substrate
(Vector® VIP kit, Vector Laboratories, Burlingame,
United States). The number of nesfatin-1-immunoreactive
cells was assessed manually using a Zeiss Axioskop two plus
microscope (Carl Zeiss Inc. Thornwood, United States)
equipped with a Zeiss Axiocam 2 camera.

Organ Bath Studies
The segments of the gastric antrum, duodenum, jejunum, ileum,
and colon from nine animals were mounted longitudinally under
~0.5 g resting tension in a 10 ml organ bath filled with Krebs
solution (composition in mM: NaCl 118, KCl 4.7, KH2PO4 1.2,
MgSO4•7H2O 1.2, CaCl2•2H2O 2.5, NaHCO3 25 and glucose
10) and gassed with 95% O2 and 5% CO2. The isometric
contractions of tissues were recorded using Grass transducers
via a MacLab® system (ADInstruments Pty Ltd., New South
Wales, Australia) connected to a Power Macintosh G3
computer (Apple Computer, Inc., California, United States).
The amplitude and frequency of the contractions was
displayed and analysed using an Analytical software (Chart,
version 3.5 s/s MacLab®, NSW, Australia). The contractile
responses were determined by the change of tension (g) before
and after the stimuli. The frequency of contractions was
measured over a period of 1 min before and after drug
exposure. After an equilibration period of 30 min, KCl
(120 mM) was added to provide a reference contractile
response followed by washout.

Effects of Nesfatin-1 on the Contractile Response of
the Stomach and Gut Tissues
After 60 min of equilibration, nesfatin-1 (0.3–1,000 pM) was
added to the organ bath cumulatively using a 2–3 min dosing
schedule. At the end of the experiment, KCl (120 mM) was added
again to check the viability and contractility of the tissues.

Effects of Nesfatin-1 on the Response of
Carbachol-pre-contracted Stomach and Gut Tissues
The stomach and gut tissues were pre-contracted using carbachol
(10 μM). After reaching a stable maximum contraction, nesfatin-
1 (0.3–1,000 pM) was added cumulatively using a 2–3 min dosing
schedule, followed by atropine (10 μM). At the end of each
experiment, carbachol was washed out followed by adding KCl
(120 mM) to check the viability of the tissues.

Effects of Nesfatin-1 on the Response of Electrical
Field Stimulated–Stomach and Gut Tissues
After equilibration, the stomach and gut tissues were contracted
by electrical field stimulation (EFS) to produce a sub-maximal
contraction. The EFS parameters were: train duration, 10 s;
voltage, 90 V; pulse width, 1 ms; frequency, 2–32 Hz; interval,
1 min. After reaching a stable contraction, nesfatin-1
(0.3–1,000 pM) was added cumulatively using a 2–3 min
dosing schedule. At the end of each experiment, EFS was
stopped and KCl (120 mM) was added to check the viability
of the gut tissues.

Stereotaxic Surgery
A total of 30 animals were fasted overnight and then
anaesthetized with sodium pentobarbital (40 mg/kg, i. p.)
before being placed into a stereotaxic frame equipped with
custom-made ear-bars and mouthpieces (David Kopf
Instruments, Tujunga, United States). An incision was made
in the skin from just behind the nose to the back of the head,
and the temporalis muscles on either side of the sagittal crest
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were displaced. The skull surface in the immediate vicinity of
the crest was then cleared of connective tissue. A hole was
drilled in the skull according to the following coordinates for
the lateral ventricle: 8.2 mm anterior to lambda and 0.9 mm
lateral to the midline. A 30-gauge cannula was then inserted
into the hole 1.2 mm below the surface of the dura. Animals
were then individually housed and allowed a postsurgical
recovery period of 7 days before the commencement of the
experiment.

Administration of Drugs
One day prior to experimentation, animals were transferred to
the observation room with controlled lighting (15 ± 2 Lux) and

habituated individually to clear Perspex observation chambers
(21 × 14 × 13 cm3). The animals were food deprived 12 h prior
to the administration of drugs; water was given ad libitum
unless otherwise stated. On the day of experiment, animals
were centrally administered with nesfatin-1 (1, 5, 25 and
50 pmol, i.c.v.) or saline (5 μl, i.c.v.). The dose range of
nesfatin-1 was chosen based on the results of previous
studies (Oh et al., 2006; Maejima et al., 2009). Emesis
behaviours and locomotor activities were measured for 6 h
whereas food and water consumption was measured hourly for
6 h and at 24 h post-administration. Total food and water
consumption at each period were measured by calculating the
difference in the weight of the pre-weighted food and water

FIGURE 1 | Comparison of nesfatin-1 amino acid sequence in human, rat, mouse and Suncus murinus. p (asterisk) denotes positions which have a single, fully
conserved residue (space) denotes conservation between groups of similar properties.

FIGURE 2 | NUCB2/nesfatin-1 expression in various tissues of Suncus murinus. (A) Conventional PCR analysis of NUCB2 mRNA (~283 bp) in the stomach, gut
and brain. (B) Western blot analysis of nesfatin-1 protein (~42 kDa) in the stomach, gut and brain.
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before and after each period. Episodes of emesis were
characterized by rhythmic abdominal contractions that were
associated with either oral expulsion of solid or liquid
materials from the gastrointestinal tract (i.e., vomiting) or
without the passage of materials (i.e., retching movements).
Two consecutive episodes of retching and/or vomiting were
considered separate when an animal changed its location in the
observation chamber or when the interval between retches
and/or vomits exceeded 2 s (Lau et al., 2005). An EthoVision
Color Pro system (Version 2.3; Noldus Information
Technology, Costerweg, Netherlands) was used to assess the
changes in locomotor activity captured by a closed-circuit
camera (Panasonic, WV-PC240, China).

Statistical Analysis
All data are expressed as mean ± s.e.m. Expression of NUCB2
mRNA in fed and fasted states were assessed using unpaired t-test.
Contractile responses, emetic episodes, locomotor activity data, and
food and water intake were analysed using one-way analysis of
variance (ANOVA) or two-way ANOVA (for cumulative data)
followed by the Bonferroni multiple comparison tests, as
appropriate. Latency data to first emetic episode were assessed by
a Kruskal–Wallis test followed by Dunn’s multiple comparison tests,
as appropriate (GraphPad Prism version 7.0, Inc. Version,
California, United States). When an animal failed to exhibit
retching and/or vomiting, a latency value equal to the test period
observation time (i.e. 6 h) was used to perform the statistical analysis.
Differences were considered statistically significant when p < 0.05.

RESULTS

In Silico Analysis of Nesfatin-1 Peptide
The S. murinus nesfatin-1 amino acid showed high sequence identity
with humans and rodents and shared an 86.6, 86.6 and 85.4%
homology with humans, rats, and mice, respectively (Figure 1).

Expression of NUCB2mRNA and Nesfatin-1
Protein
NUCB2 mRNA detected by RT-PCR was expressed in the
gastrointestinal tract, including the stomach, duodenum,
ileum and colon. NUCB2 mRNA were also detected
throughout the entire brain, including the olfactory blub,
cortex, striatum, thalamus, hypothalamus, hippocampus,
amygdala, midbrain, cerebellum and brainstem (Figure 2A).
Western blot analysis confirmed nesfatin-1 protein expression
in the stomach, duodenum, ileum and colon and all the brain
tissues examined (Figure 2B). Further investigation of the levels
of NUCB2 mRNA in ad libitum-fed animals and 24 h fasted
animals by quantitative RT-PCR showed that the mRNA levels
in the hypothalamus, hippocampus and brainstem were
significantly decreased (hypothalamus 0.49 ± 0.09 fold,
hippocampus 0.44 ± 0.12 fold and brainstem 0.07 ± 0.04
fold) while that in the striatum were increased (2.50 ± 0.34
fold) following food deprivation for 24 h compared to ad
libitum-fed animals (p < 0.05, n = 3), whereas GADPH was
not changed. Conversely, the mRNA expression in the
gastrointestinal tissues was not affected by food deprivation
(Table 1).

Expression of Nesfatin-1 Immunoreactive
Cells
In the stomach, immunohistochemical staining showed that the
nesfatin-1 immunoreactive cells was mainly detected in the
myenteric plexus of the antrum. Nesfatin-1 immunoreactive
cells were also detected in the submucosal plexus and the
mucosa region of the antrum, duodenum, ileum and colon
(Figure 3). In the brain, nesfatin-1-immunoreactive cells were
detected in the brainstem, especially in the DMNV and the NTS.
Weaker immunoreactivity were observed at the area postrema
(AP). In the forebrain areas, the nesfatin-1 immunoreactive cells
were detected in the hypothalamic paraventricular nucleus

TABLE 1 | The relative NUCB2 mRNA expression levels between 24 h-fasted versus ad libitum-fed S. murinus.

Tissues 24 h-Fasted versus ad libitum-Fed Animals (Fold
Change; Mean ± s.e.m.)

p Values

Gastrointestinal
Stomach 1.27 ± 0.53 0.6366
Duodenum 1.30 ± 0.68 0.684
Ileum 2.20 ± 0.89 0.2477
Colon 4.94 ± 1.59 0.0682

Brain
Olfactory bulb 2.89 ± 1.34 0.2311
Cortex 2.40 ± 1.28 0.3344
Striatum 2.50 ± 0.34 0.011*
Thalamus 6.23 ± 2.92 0.1476
Hypothalamus 0.49 ± 0.09 0.0038**
Hippocampus 0.44 ± 0.12 0.0105*
Amygdala 13.17 ± 12.13 0.3725
Midbrain 0.63 ± 0.39 0.3913
Cerebellum 4.24 ± 3.03 0.3452
Brain stem 0.07 ± 0.04 <0.0001***

The results represent the mean ± s.e.m. of three determinations. Significant differences between animals fasted for 24 h vs ad libitum-fed animals are indicated as pp < 0.05, ppp < 0.01,
pppp < 0.001 (Unpaired t-test).
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FIGURE 3 | Representative photomicrographs illustrating nesfatin-1 immunoreactive cells (arrows) in the stomach, duodenum, ileum, colon, brainstem and
hypothalamus inSuncusmurinus. (A)Nesfatin-1 immunoreactive cells detected in the gastric antrum, (B) duodenum, (C) ileum, (D) colon, (E) area postrema, (F) nucleus
tractus solitarius, and (G) hypothalamic paraventricular nucleus. Negative control section in the (H) gastric antrum and (I) brainstem that omits the primary antibody.
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(PVN) (Figure 3). The staining was absent when the primary
antibody was omitted.

Effects of Nesfatin-1 on the Contractile
Response of Isolated Gut Tissues
Regular spontaneous contractions were observed in the gastric
antrum and the segments of duodenum, jejunum, ileum and
colon, and the amplitude and frequency are shown in Table 2.

Representative traces from duodenal segments are shown in
Figure 4. A rapid and reversible contraction in the gastric
antrum and gut was induced by 120 mM KCl (data not
shown). Nesfatin-1 (0.3–1,000 pmol) failed to affect the
spontaneous contractile activity or influence the oscillation
frequency of the gastric antrum and gut tissues (n = 3). In
another set experiments, carbachol (10 µM) was used to
induce a contraction of the gastric antrum and gut to
determine if nesfatin-1 has a potential to induce relaxation of

TABLE 2 | Summary of the contraction frequency and amplitude of the gastrointestinal tract tissues in vitro.

Frequency of
spontaneous
Contractions

(Cycles/
min) (n = 9)

Amplitude of
spontaneous
Contractions
(g) (n = 9)

Amplitude
of
KCl

Response
(g) (n = 9)

Amplitude of
carbachol
Response
(g) (n = 3)

Amplitude of EFS-Induced Response (g) (n = 3)

2 Hz 4 Hz 8 Hz 16 Hz 32 Hz

Gastric
antrum

12.2 ± 0.7 1.44 ± 0.17 4.33 ± 0.54 3.43 ± 1.05 3.52 ± 0.46 4.76 ± 0.23 5.08 ± 0.34 5.55 ± 0.51 5.14 ± 0.52

Duodenum 32.6 ± 2.2 0.71 ± 0.08 3.19 ± 0.28 3.48 ± 0.16 2.86 ± 0.54 3.13 ± 0.54 3.13 ± 0.59 3.13 ± 0.59 3.02 ± 0.62
Jejunum 28.6 ± 2.0 0.66 ± 0.07 3.93 ± 0.24 3.78 ± 0.40 3.13 ± 0.60 3.28 ± 0.63 3.44 ± 0.63 3.64 ± 0.63 3.71 ± 0.65
Ileum 26.8 ± 1.8 0.64 ± 0.06 3.74 ± 0.30 3.26 ± 0.84 3.05 ± 0.82 4.09 ± 0.55 4.45 ± 0.53 4.58 ± 0.64 4.56 ± 0.61
Colon 28.3 ± 1.5 0.81 ± 0.17 4.94 ± 0.39 5.41 ± 1.14 4.51 ± 1.13 5.41 ± 0.69 5.88 ± 0.83 6.02 ± 1.01 5.95 ± 1.02

Data represents the mean ± s.e.m.

FIGURE 4 | Representative tracings illustrating the contractile responsiveness of Suncus murinus duodenal segments to nesfatin-1, carbachol, electrical field
stimulation (EFS) and atropine. (A) Effect of nesfatin-1 (0.3–1,000 pM), (B) effect of nesfatin-1 (0.3–1,000 pM) on the carbachol (10 μM) pre-contracted duodenal
segments, and (C) effect of nesfatin-1 (0.3–1,000 pM) and atropine (10 μM) on the EFS pre-contracted (2, 4, 8, 16, 32 Hz with 1 min interval) duodenal segments.
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the gastric antrum and gut. The results showed that carbachol
induced a sustained contraction but nesfatin-1 (0.3–1,000 pmol)
failed to affect the carbachol-induced contraction (n = 3).
Conversely, atropine (10 µM) significantly reduced the
amplitude of carbachol-induced contraction by 82.9, 75.4, 68.5,
70.9 and 75.8% in the isolated segments of antrum (p = 0.15),
duodenum (p < 0.01), jejunum (p < 0.05), ileum (p < 0.01), and
colon (p < 0.01), respectively (n = 3). In further experiments, the
potential effect of nesfatin-1 on electrical field stimulated
contractions of the gastric antrum and gut was examined.
EFS-induced contractions in a frequency-dependent manner
but nesfatin-1 (0.3–1,000 pmol) was without effect on EFS-
induced contractions (n = 3).

Effects of Centrally Administered Nesfatin-1
on Emesis
The intracerebral administration of saline was not associated with
retching or vomiting. Nesfatin-1 at 1 pmol, i.c.v., failed to induce
retching or vomiting (n = 5–7; Figure 5A –5D). However, nesfatin-
1 at 5 pmol, i.c.v., induced emesis in five out of seven animals with
18.8 ± 8.3 retches and 4.7 ± 2.1 vomits following a median latency
of 39.7 min (25th percentile =; 75th percentile = min; p < 0.05; n =
5–7; Figure 5A–5D). Nesfatin-1 at 25 and 50 pmol, i.c.v., induced
emesis in one out of seven and two out of five animals, respectively,
within 18.5–214 min (Figure 5A–5D; p > 0.05).

Effects of Centrally Administered Nesfatin-1
on Food Intake
Central administration of nesfatin-1 (1–50 pmol) had no effect on the
latency to food intake (Figure 6A). Nesfatin-1 at 5 pmol, i.c.v.
significantly reduced the 4-, five- and 6-h cumulative food intake
by 30.9, 32.9, and 29.4%, respectively, compared to saline-treated
animals (n = 5–seven; p< 0.01;Figure 6B), while at 25 pmol, nesfatin-
1 reduced the five- and 6-h cumulative food intake by 22.6 and 20.6%,
respectively (p < 0.05; Figure 6B). Higher dose of nesfatin-1 (50 pmol,
i.c.v.) only caused a significant reduction (24.3%) at the 5-h cumulative
food intake (p < 0.05; Figure 6B). Regarding hourly food intake,
nesfatin-1 at 5 pmol, i.c.v. significantly reduced food intake by 39.0%
at the first hour (p < 0.05; Figure 6C). However, the hourly reduction
in food intake was no longer different between nesfatin-1-treated and
saline-treated animals at second to sixth hour (p> 0.05;Figure 6C). At
24 h post-administration, nesfatin-1 at 25 pm,ol, i.c.v. produced a
significant 28.3% reduction in food intake (p < 0.01; Figure 6D).

Effects of Centrally Administered Nesfatin-1
on Water Intake
Central administration of nesfatin-1 (1–50 pmol) had no
effect on hourly water intake (Figure 7B). Nesfatin-1 at
1 pmol, i.c.v., significantly reduced the 5-h cumulative
water intake by 28.4% (p < 0.05; Figure 7A), however,
higher doses (5–50 pmol, i.c.v.) had no effect. In addition,

FIGURE 5 | Effects of intracerebral drug administration on emesis in Suncusmurinus. (A) Latency to emesis, (B) episodes of emesis, (C) number of retches and (D)
number of vomits after an i.c.v. administration of saline (5 μl, i.c.v.) or nesfatin-1 (1–50 pmol, i.c.v). The results represent the mean ± s.e.m. of 5–7 determinations during a
period of 6 h. The number of animals retching and/or vomiting out of the number of animals tested (RV/T) is indicated as a fraction of each treatment group. Latency data
are shown as individual responses, with lines indicating the median response time. Significant differences between the treatment groups are indicated as pp < 0.05
(one-way ANOVA followed by Bonferroni test).
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nesfatin-1 at 25 pmol, i.c.v., reduced the 24-h cumulative
water intake by 35.4% (p < 0.01; Figure 7C).

Effects of Centrally Administered Nesfatin-1
on Locomotor Activity
The locomotor activity (distance travelled and velocity) of the
animals was evaluated by the Nodus tracking software. Nesfatin-1
(1–50 pmol, i.c.v.) had no significant effects on the hourly
distance travelled, cumulative distance travelled or hourly
velocity of movement or activity (Figure 8A–8C).

DISCUSSION

The present study identified for the first time the amino acid and
cDNA sequence, tissue expression and biological activity of
NUCB2/nesfatin-1 in S. murinus. We found that the amino
acid sequence of nesfatin-1 is highly conserved among
humans, rats, mice and S. murinus. NUCB2 mRNA and
nesfatin-1 protein are abundantly expressed in the brain,
stomach and gut. The expression of NUCB2 mRNA in the
hypothalamus, hippocampus and brainstem were significantly
decreased whereas that in the striatum were increased following
food deprivation for 24 h. Nesfatin-1 has no effect on

gastrointestinal contractility. Nevertheless,
intracerebroventricular administration of nesfatin-1 induces
emesis and inhibits food and water intake for up to 24 h,
without any effect on locomotor activity.

Previous studies demonstrated that NUCB2, which encodes a
24-amino acid signal peptide and a protein structure containing
396 amino acids, is highly conserved across mammalian and non-
mammalian vertebrates (Oh et al., 2006; Mohan and Unniappan,
2013). Using in silico cloning, we confirmed that nesfatin-1 amino
acid sequence in S. murinus shared high homology with the
human, rat and mouse genome. The 30-amino acid mid-segment
of nesfatin-1, which is considered to be the bioactive core of the
protein, is highly conserved across these species (Mohan and
Unniappan, 2013). The high sequence identity suggests that this
peptide has significant phylogenetic and physiological
implications.

In the brain, nesfatin-1 protein is produced in the
hypothalamus, including the PVN and the arcuate nucleus
(Oh et al., 2006; Stengel et al., 2011; Goebel-Stengel and
Wang, 2013) whereas the stomach is the primary peripheral
source (Prinz et al., 2016). Nesfatin-1 immunoreactive neurons
co-localize with several neurotransmitters (Foo et al., 2008; Inhoff
et al., 2010; Goebel-Stengel and Wang, 2013), suggesting that
nesfatin-1 may interact with various transmitters in mechanism
controlling feeding, endocrine and autonomic functions. Our

FIGURE 6 | Effects of intracerebral drug administration on food intake in Suncus murinus. (A) Latency to food intake, (B) cumulative food intake from 0 to 6 h, (C)
hourly food intake from 0–6 h, and (D) cumulative food intake at 24 h after an i.c.v. administration of saline (5 μl, i.c.v.) or nesfatin-1 (1–50 pmol, i. c.v). The results
represent the mean ± s. e.m. of 5–7 determinations during a period of 24 h. Latency data are shown as individual responses, with lines indicating the median response
time. Significant differences between the treatment groups are indicated as pp < 0.05, ppp < 0.01 and pppp < 0.001 (one-way ANOVA or two-way ANOVA, followed
by Bonferroni test).
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results showed that NUCB2 mRNA and nesfatin-1 protein were
detected in the brain and the gastrointestinal tissues analyzed. In
the CNS, nesfatin-1 immunoreactivity was centered at the
brainstem and paraventricular hypothalamus and these data
were in line with that in rodents (Foo et al., 2008; Stengel
et al., 2009; Zhang et al., 2010). We also provided new finding
by demonstrating nesfatin-1 immunoreactivity at the AP and in
the duodenum, ileum and colon.

It has been demonstrated that fasting decreased the
hypothalamic NUCB2 mRNA (Oh et al., 2006; Kohno et al.,
2008), whereas refeeding increased the NUCB2 mRNA in the
supraoptic nucleus (SON), which was accompanied by an
activation of NUCB2/nesfatin-1-positive neurons in the PVN
and SON (Kohno et al., 2008). Our results indicated that the
mRNA levels in the hypothalamus, hippocampus and brainstem
were significantly decreased whereas that in the striatum were
increased following food deprivation for 24 h compared to
control group. The down-regulation of NUCB2 mRNA in the
hypothalamus and brainstem following 24 h food deprivation are
compatible with the proposed role of nesfatin-1 as an anorectic
peptide and that NUCB2 gene expression may be regulated by
nutritional status (Stengel et al., 2011). Hippocampus is a
complex brain region that plays a major role in learning and
memory (Squire, 1992) and is associated with the modulation of
anxiety states (Engin et al., 2016). We observed an up-regulation
of NUCB2 mRNA in the striatum. It has been speculated that
striatum may be engaged in inducing the effect of nesfatin-1 on
the reward value of food (Dore et al., 2020). Our data revealed
that nesfatin-1 might be involved in emotional change during
fasting. The role of nesfatin-1 as a link between hippocampus,
striatum, hypothalamus and brainstem requires further
investigation.

Nesfatin-1 was shown to modulate gastric emptying (Stengel
et al., 2009; Goebel-Stengel et al., 2011; Tian et al., 2014) and
antroduodenal motility (Atsuchi et al., 2010), probably act via
central pathway (Guo et al., 2015). In the present studies,
nesfatin-1 failed to either contract or relax isolated gastric
antrum and intestinal tissues even though we detected
nesfatin-1 immunoreactive cells in these tissues.

Our finding regarding the emetic potential of nesfatin-1 is of
particular interest. Nesfatin-1 at 5 pmol, i.c.v., induced emesis in
83% animals whereas nesfatin-1 at higher doses, i.e. 25 and
50 pmol appeared to have a lower efficacy in inducing emesis.
A recent study reported that central administration of nesfatin-1
decreases the reward value of sucrose but did not induce taste
aversion and/or malaise, nor reduces appetite (Dore et al., 2020).
In line with this finding, intraperitoneal injection of nesfatin-1
reduces dark-phase food intake without causing conditioned taste
aversion in mice (Shimizu et al., 2009). However, intraperitoneal
injection of cholecystokinin (CCK), which induces nauseagenic
response, causes release of vasopressin with an activation of
nesfatinergic neurons in the PVN and NTS (Noetzel et al.,
2009; Stengel et al., 2009). Furthermore, gastric electrical
stimulation, an alternative therapy to treat patients with

FIGURE 7 | Effects of intracerebral drug administration on water intake in
Suncus murinus. (A) Cumulative water intake from 0 to 6 h, (B) hourly water
intake from 0–6 h, and (C) cumulative water intake at 24 h after an i.c.v.
administration of saline (5 μl, i.c.v.) or nesfatin-1 (1–50 pmol, i.c.v). The
results represent the mean ± s. e.m. of 5–7 determinations during a period of
24 h. Significant differences between the treatment groups are indicated as
pp < 0.05 and ppp < 0.01 (one-way ANOVA or two-way ANOVA, followed by
Bonferroni test).
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intractable vomiting, reduces significantly the levels of
NUCB2/nesfatin-1 in fasted patients (Meleine et al., 2017),
suggesting that NUCB2/nesfatin-1 may be involved in

mechanism of vomiting. To the best of our knowledge,
nesfatin-1 is the most potent compound to induce emesis
in S. murinus, followed by the GLP-1 receptor agonist
exendin-4. In our previous studies, the minimum dose of
exendin-4 required to induce emesis following
intracerebroventricular administration was 100 pmol (Chan
et al., 2013), which is 20 times higher than the lowest emetic
dose of nesfatin-1.

Central administration of nesfatin-1 reduces dark-phase food
intake in rats (Oh et al., 2006; Stengel et al., 2011) via leptin-
independent melanocortin pathway (Maejima et al., 2009),
whereas blockade of endogenous nesfatin-1 with an antisense
oligonucleotide stimulates food intake (Oh et al., 2006). In the
present study, we showed that administration of nesfatin-1
(1–50 pmol) into the lateral ventricle reduced food intake in S.
murinus fasted for 12 h. Equivalent doses of nesfatin-1 have been
shown to reduce dark-phase food intake in rodents (Oh et al.,
2006; Stengel et al., 2009). In S. murinus, nesfatin-1 at 5 pmol,
i.c.v., appeared to be the most potent in inhibiting cumulative
food intake in the first 6 hours. However, a higher dose,
i.e., 25 pmol, i.c.v. was required to produce significant effect at
24 h post-administration.

In addition to inhibition of food intake,
intracerebroventricular administration of nesfatin-1 was shown
to reduce water intake and the effect appears to be independent of
its anorexigenic action (Yosten and Samson, 2009; Yosten et al.,
2012; Yoshimura et al., 2014). We didn’t observe a significant
effect of nesfatin-1 on water intake in the first 6 hour, however,
nesfatin-1 at 25 pmol, i.c.v. inhibited significantly 24 h water
intake and the effect on inhibiting water intake was more
pronounce than the anorexigenic effect, i.e., 35.4% reduction
in water intake vs 28.3% reduction in food intake. Our data
provide evidence that the effects of nesfatin-1 on water intake
may be partly independent of its anorexigenic action.

There are some limitations of the present study. Thus far, the
identity of the nesfatin-1 receptor remains unknown (Schalla and
Stengel, 2018), making it difficult to ascertain the exact site of the
action of nesfatin-1. The present studies did not investigate the
mechanism of action of nesfatin-1 in inhibiting food and water
intake and inducing emesis and it is not clear if peripheral
administration of nesfatin-1 inhibit food and water intake and
induce emesis in S. murinus. Nesfatin-1 immunoreactive neurons
co-localize with a number of neurotransmitters including
vasopressin in rodents (Goebel-Stengel and Wang, 2013). Further,
it is known that pre-treatment with a nesfatin-1 antisense
oligonucleotide reduces levels of nesfatin-1, but not vasopressin
in the hypothalamic paraventricular nucleus, resulting in an
increased drinking response following angiotensin II (Yosten
et al., 2012). However, a high-salt diet-induced elevation of
plasma vasopressin and vasopressin mRNA in the PVN are
blunted by PVN-specific NUCB2 knockdown (Nakata et al.,
2016). The inhibitory effect of nesfatin-1 on water intake may
involve the release of vasopressin, which has been implicated in
the regulation of fluid homeostasis and as a biomarker for nausea
and emesis (Cubeddu et al., 1990). Whilst nesfatin-1 failed to
modulate the contractility of the gastrointestinal segments in the
in vitro studies, however, we cannot exclude the involvement of

FIGURE 8 | Effects of intracerebral drug administration on locomotor
activity in Suncus murinus. (A) Hourly distance travelled, (B) cumulative
distance travelled, and (C) hourly velocity from 0–6 h an i.c.v. administration of
saline (5 μl, i.c.v.) or nesfatin-1 (1–50 pmol, i.c.v.). The results represent
the mean ± s. e.m. of 5–7 determinations during a period of 6 h. No significant
differences between the treatment groups are observed (one-way ANOVA or
two-way ANOVA, followed by Bonferroni test).
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reduced gastric emptying in inhibiting food and water intake. In rats,
gastric distension induced c-Fos expression in NTS NUCB2/
nesfatinergic neurons (Bonnet et al., 2013), whereas
administration of nesfatin-1 into the ventromedial hypothalamus
decreases the firing rate of gastric distension excitatory neurons and
increases the firing rate of gastric distension inhibitory neurons via
an interaction with the CRF signaling pathway (Feng et al., 2017). It
appears that a central nesfatin-1 signaling pathwaymay play a role in
the regulation of gastric motility but this could not be replicated
using gastrointestinal segments and in vitro experimentation. In the
present study, interestingly, no clear dose-response relationship was
observed.We tested doses at 5 times difference and it is not known if
a dose between 5 and 25 pmol lies on the descending limb of the
dose-response effect. The lower efficacy of the higher dose of
nesfatin-1 to inhibit food and water intake and induce emesis
could be due to receptor desensitization or by activation of other
unspecified targets that are inhibitory, but this requires further
investigation. The former explanation may be more likely, as in
streptozotocin-induced type 2 diabetic mice, a low dose of nesfatin-1
activates the AMPK-ACC pathway more effectively than a higher
dose (Dong et al., 2013). Other studies have suggested that the
nesfatin-1 singling pathway is via a Gi protein-coupled receptor
(Rupp et al., 2021) which can be desensitized following activation by
regulatory peptides, such as ghrelin (Camina et al., 2004) and
substance P (Holland et al., 1993).

CONCLUSION

In conclusion, NUCB2/nesfatin-1 is highly conserved in S.
murinus, human, rat and mice. NUCB2/nesfatin-1 might be a
potent regulator involved in emesis control, metabolic
homeostasis and appetite in S. murinus. Further studies are
required to elucidate the mechanism of actions of this peptide

as a mediator linking the brainstem NUCB2/nesfatin-1 to
forebrain system.
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