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Abstract

Diazotrophic heterocyst formation in the filamentous cyanobacterium, Anabaena sp. PCC 7120, is one of the simplest
pattern formations known to occur in cell differentiation. Most previous studies on heterocyst patterning were based on
statistical analysis using cells collected or observed at different times from a liquid culture, which would mask stochastic
fluctuations affecting the process of pattern formation dynamics in a single bacterial filament. In order to analyze the
spatiotemporal dynamics of heterocyst formation at the single filament level, here we developed a culture system to
monitor simultaneously bacterial development, gene expression, and phycobilisome fluorescence. We also developed
micro-liquid chamber arrays to analyze multiple Anabaena filaments at the same time. Cell lineage analyses demonstrated
that the initial distributions of hetR::gfp and phycobilisome fluorescence signals at nitrogen step-down were not correlated
with the resulting distribution of developed heterocysts. Time-lapse observations also revealed a dynamic hetR expression
profile at the single-filament level, including transient upregulation accompanying cell division, which did not always lead to
heterocyst development. In addition, some cells differentiated into heterocysts without cell division after nitrogen step-
down, suggesting that cell division in the mother cells is not an essential requirement for heterocyst differentiation.
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Introduction

The multicellular (filamentous) cyanobacterium, Anabaena sp.

PCC 7120, differentiates into cells named heterocysts, which are

specialized for nitrogen fixation every ,10 cells along the filament

under nitrogen-deprived conditions [reviewed by 1–4]. Genetic

dissection has identified several genes important for heterocyst

patterning. Expression of the hetR gene encoding a protein

harboring both DNA-binding [5] and serine protease activities

[6] is essential for heterocyst development [7,8]. The hetR gene is

induced by nitrogen deprivation [7] and becomes localized to

heterocysts [9]. On the other hand, the patS gene encodes a small

peptide to inhibit heterocyst formation and is also induced by

nitrogen fixation and localized to heterocysts [10,11]. Interesting-

ly, it has been proposed that the HetR protein activates its own

transcription and patS gene expression, while the PatS peptide

inhibits HetR’s function by direct association [2,5,9]. The hetN

gene product is also a known inhibitor of hetR expression [12,13].

Although HetN is not essential for de novo heterocyst pattern

formation, it appears to be important for the maintenance of the

pattern at a later stage [12]. This type of combination of the

negative and positive feedback loops with a possible diffusible

inhibitor is reminiscent of Turing instability dynamics for regular

pattern generation [14], although this and other possibilities have

not yet been well validated experimentally.

Most studies on heterocyst patterning were based on statistical

analysis using cells collected at different times from a liquid

culture. However, for better understanding of the spatiotemporal

dynamics underlying the heterocyst pattern formation, detailed

quantitative time-lapse observation of heterocyst development in

whole identical bacterial filaments grown under the microscope is

necessary. For example, the position of de novo proheterocysts is

considered to be stochastically selected and is thereafter estab-

lished through interactions between cells, including lateral

inhibition [1]. However, it is not known whether stochastic

(and/or cell-cycle-dependent) fluctuations in some intracellular

activities, such as basal hetR expression, at the nitrogen step-down

have some impact on the selection of the proheterocyst positions.

Considering the autoregulatory property of hetR expression [9], an

initial fluctuation in hetR expression could be enhanced through a

subsequent positive feedback process and may affect the selection

of proheterocyst positions by lateral inhibition. In this case, the
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proheterocyst positions would somehow be predetermined or

dependent on stochastic fluctuations in the initial conditions. To

address these questions, we developed a combined monitoring and

culture system that enabled us to observe morphological changes,

hetR expression profile, and phycobilisome fluorescence from

individual filaments during the course of heterocyst development.

Moreover, we developed a microelectromechanical system

(MEMS)-aided micro-liquid chamber array to analyze simulta-

neously developmental dynamics from multiple Anabaena filaments.

Our cell lineage analyses demonstrated that the initial

distributions of hetR::gfp and phycobilisome fluorescence signals

at nitrogen step-down were not correlated with the resulting

distribution of developed heterocysts. We also observed a transient

activation of hetR expression that did not lead to differentiation.

These observations are more consistent with a stochastic rather

than a predetermined selection of leading (primary) heterocyst

positions via dynamic interactions between cells. We also observed

cells that differentiated into heterocysts without cell division after

nitrogen step-down, suggesting that cell division among mother

cells is not an essential requirement for heterocyst differentiation.

Results and Discussion

Simultaneous microscopic monitoring of hetR gene
expression, phycobilisome fluorescence, morphology,
and cell lineage analysis

To investigate quantitative spatiotemporal dynamics during the

course of heterocyst development, we analyzed simultaneously

morphological changes, hetR gene expression profile, and phyco-

bilisome fluorescence patterns in a single Anabaena filament under

the microscope. For such prolonged observation and culture, we

needed avoidance of any three-dimensional bacterial growth that

would occur using microchamber arrays. Therefore, we developed

a microchamber array made of combined nitrogen-deficient (BG-

110) agar containing multiple microwells (200620068 mm each)

with a silicon mold fabricated by MEMS technology (Figure S1A,

B). Anabaena cells harboring a PhetR::gfp reporter gene were grown

in BG-11 liquid medium containing nitrate with aeration with air

(normal CO2), followed by four washes with BG-110 media lacking

combined nitrogen. A small aliquot (,10 ml) of diluted cell

suspension was placed on the bottom of a 35 mm dish, and then

covered with the microchamber well so that cells started cell

differentiation within a microenvironment (Figure 1, Supporting

Movies S1 and S2). Under this condition, cells were able to move

and grow within the 2006200 mm space without cell distortion,

and the distance to the objective lens was kept constant to avoid

changing focus. Furthermore, using automated programming, we

were able to monitor simultaneously cell differentiation processes

from at least six individual Anabaena filaments.

The observed information was integrated into ‘‘Anabaena cell

lineages’’ representing timing and positions of cell division and

heterocyst differentiation (Figures 2A–C; S2A, B; S3A, B). Because

an increase in the PhetR::gfp signal was not always followed by

heterocyst induction (see below), the timing of cell differentiation

was determined by any of the following factors: (i) reduction in

phycobilisome fluorescence, (ii) brighter PhetR::gfp signals or (iii)

beginning of cell expansion. Under the microchamber conditions,

heterocyst differentiation became visible at 60 h after nitrogen

reduction, which was much slower than that in liquid media

(Figure S4, under 1% CO2) and most previous reports [e.g., 15].

This was possibly caused by poor gas exchange in the solid agar

plate lacking aeration and/or the relatively lower CO2 concen-

tration. Alternatively, repetitive irradiation of excitation light onto

multi-point chambers might be harmful to cell growth. When cells

Figure 1. Heterocyst differentiation in microelectromechanical
system-assisted liquid microchambers. Spatiotemporal dynamics
in morphological changes (BF, bright field), hetR promoter (PhetR)
activity monitored with a transcriptional gfp fusion reporter (hetR), and
phycobilisome fluorescence (Pbs) in an individual Anabaena filament at
the indicated times after nitrogen step-down. The dashed square at the
top indicates the space of a microchamber. The bottom panel (taken at
70 h) shows a magnification of part of the filament.
doi:10.1371/journal.pone.0007371.g001

Anabaena Cell Lineage Analysis
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Figure 2. Cell lineage of an individual Anabaena filament. (A) The cell lineage analysis representing spatiotemporal profiles of cell division
(branches) and heterocyst differentiation (red) in the bacterial filament shown in Figure 1. For a magnified view, see Figure S2A. The horizontal axis
shows time (h) after nitrogen step-down. (B, C) Magnification of a part of the Anabaena cell lineage shown in the blue square in panel A (B) and the
same lineage superimposed with the spatiotemporal dynamics of PhetR::gfp signals (C). For a full scale image, see Figure S3A. Arrowheads indicate
some cells showing different hetR expression dynamics (see text). (D) Micrographs of PhetR::gfp expression patterns from the corresponding part of
the bacterial filament. (E) Cells that differentiated into heterocysts without cell divisions (numbers 12 and 39). These are parts of the complete cell
lineage shown in Figure S2D.
doi:10.1371/journal.pone.0007371.g002

Anabaena Cell Lineage Analysis
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were placed beneath the solid media on the bottom of the plastic

dish without microchambers, we were hardly able to observe

complete cell lineages in individual filaments, as cells elongated out

of the microscopic field. More seriously, the cells were often

distorted to be fragmented and even bleached after abnormal

expansion of cells, possibly due to some stresses with limited free-

moving space. Nevertheless, we could observe only a few filaments

with lesser irradiation of excitation lights and without multi-point

analysis (single-filament observation per experiment) during the

pilot experiments. They developed heterocyst more rapidly after

nitrogen step-down, as shown in Movies S3 and S4 (for cell lineage

analysis, Figures 2E; S2C, D). The filament shown in Movie S3

was grown without observation of phycobilisome fluorescence and

differentiated heterocysts from hour 29 after nitrogen step-down

(for cell lineage analysis, see Figure S2C and S3B), while cells

shown in Movie S4 differentiated from hour 22 without

fluorescence observations. However, these cells were exceptional

and much more filaments show abnormal growth as described

above. In contrast, when cells were grown under microchamber

conditions with observation of both GFP and phycobilisome

fluorescence signals for 6 distinct filaments at the same time

(Movies S1 and S2), 6-times more irradiation of excitation light for

the miscroscopic stage was required compared with a single

filament analysis. Note that despite differences in growth

conditions (liquid with aeration in the presence of 1% CO2 with

lesser repetitive irradiation of strong excitation light for Figure S4;

microchambers with much irradiations under normal CO2

condition for Figure S2A and S2B; solid agar with lesser

irradiation under normal CO2 condition for Movies S2C and

S2D) and growth rate (Figure S5C), the resulting heterocyst

patterns were essentially the same to each other as those reported

previously (Figure 1, Figure S4, Movies S1 to S4).

Division of mother cells is not essential for heterocyst
formation

The administration of cell division inhibitors and the overpro-

duction of the cell-division-related proteins, SulA and MinC, have

been shown to suppress heterocyst development [16,17]. Thus,

heterocyst formation is considered to be tightly coupled to the

control of the cell-division cycle. Consistent with this, initial

heterocyst differentiation started around 30 h and 10 h after

starting logarithmic growth in microchambers (Figure S5A, C) or

solid agar (Figure S5B, C) conditions, respectively. Nevertheless, in

an Anabaena filament grown beneath solid media without

microchambers, we found that two vegetative cells differentiated

into heterocysts without division during synchronous development

(Movie S4, cells numbered 12 and 39 at hour 0 after nitrogen step-

down shown in Figures 2E and S2D). Thus, cell division of mother

cells is not an essential requirement to differentiate into heterocyst

after nitrogen step-down. Note that this does not mean that cell

division is not required for heterocyst differentiation. Instead, cell

division might be important in causing fluctuations in some

intracellular activities in dividing and even nondividing cells,

which would affect the differentiation processes (see below).

Presumable determination of leading heterocysts
through dynamic cell–cell interactions before
commitment

It is not known whether initial fluctuations in some intracellular

activities at the nitrogen step-down affect the selection of

proheterocyst positions. Therefore, we examined whether the

position of a ‘leading’ heterocyst, defined as a heterocyst appearing

first in the cell lineage or during early differentiation, was dependent

on the initial conditions at nitrogen step-down under microchamber

conditions. We examined two physiological parameters, PhetR::gfp

signals and phycobilisome fluorescence. Upregulation of hetR is

essential for heterocyst differentiation, and phycobilisome fluores-

cence is downregulated during heterocyst maturation. Considering

the autoregulation of hetR gene expression [9], initial fluctuations in

basal hetR expression could be enhanced through a subsequent

positive feedback process and may affect the selection of

proheterocyst positions by lateral inhibition. Cell lineage analysis

based on time-lapse observation enabled us to validate this

possibility. Because we observed cells every hour under the

microscope, the numbers of ‘leading (first) heterocysts’ ranged from

one to four under our experimental conditions (Figure S2A, B).

We analyzed five relatively short filaments, starting from 16–24

cells at the time of nitrogen step-down. Although a tendency for

heterocyst formation at the termini was observed for these five, the

positions of the initial heterocysts were not always distributed

regularly (Figure 3A). Terminal heterocysts are already known to

appear frequently in short filaments [18]. Moreover, the results

Figure 3. Initial condition-independent selection of leading
heterocyst positions and dynamic hetR expression profiles. (A)
The distributions of cells at the beginning of nitrogen step-down, which
generated progenies differentiating into leading heterocysts, are
indicated by open circles. The other cells are shown by filled circles.
(B) Scatter plot of PhetR::gfp and phycobilisome fluorescence signals for
cells whose daughter cells differentiated into leading or very early
heterocysts (open circle) and the other cells (filled circle) at the
beginning of nitrogen step-down. No statistically significant difference
was found between the two cell groups for both fluorescence signals
using two-sided Student’s t-test (five filaments with 92 cells). (C, D)
Transition PhetR::gfp (C) and phycobilisome (D) fluorescence signals in
an individual Anabaena filament during the course of heterocyst
formation from 42–72 h after nitrogen step-down. Cells were catego-
rized into four groups whose progenies (or themselves) differentiated
into heterocyst(s): (1) at 62 h after nitrogen step-down (the leading
heterocyst, red); (2) at 63–65 h (during the transition state, magenta);
(3) at 66–72 h (after establishment of regular patterns, orange) and (4)
the remaining vegetative cells at 72 h (green). For data shown in panel
C and D, fluorescence intensity was normalized globally so that the
mean value per cell was 1.0.
doi:10.1371/journal.pone.0007371.g003

Anabaena Cell Lineage Analysis
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represented in Figure 3B showed that, at hour 0 after nitrogen

step-down, there was no statistical significance in the magnitude of

phycobilisome and PhetR::gfp fluorescence signals between cells

that were progenitors of the leading heterocysts and cells that were

not (Student’s t-test, P.0.1 for both fluorescence signals). This

result makes it unlikely that the leading heterocyst positions were

already determined at the time of nitrogen step-down).

To confirm this proposition in more detail at the single-filament

level, we examined the dynamic profiles of PhetR::gfp and

phycobilisome fluorescence signals in an individual Anabaena

filament (Figures 3C, 3D, and S6) from the progenitor cells that

generated the leading heterocysts (red), the succeeding heterocysts

that differentiated before (magenta) or after (orange) typical

regular heterocyst patterning was established, or cells that still

remained vegetative at 74 h after nitrogen step-down (green). A

statistically significant difference in PhetR::gfp signals between those

cells becoming heterocysts and other cells emerged around 60 h

after nitrogen step-down for the first time (Figure S6), whereas

downregulation of phycobilisome fluorescence started from 66 h

(Figure S6). As shown in Figures 2C and 2D, the cell marked with

a green arrowhead exhibited enhanced PhetR activity from 56 h

after nitrogen deprivation, and differentiated into a heterocyst.

However, such an increase in the level of PhetR activity did not

always give rise to heterocyst differentiation. For example, the cell

marked with a red arrowhead in Figures 2C and 2D showed a

transient increase in hetR promoter activity from 57–63 h after

nitrogen step-down, followed by a decrease in the PhetR::gfp signal

accompanied by cell division around hour 67. We found at least

thirteen cells that showed such transient hetR upregulation without

heterocyst formation in the same cell filament shown in Figure

S2A. Because transient hetR induction and downregulation were

often accompanied by cell division in most of them, hetR

expression and differentiation are likely to be suppressed at a

certain phase of the cell cycle. Although cell division is

asynchronous in our experimental conditions (Figure S2), two

sibling cells would be relatively more synchronous in their cell

cycles. Interestingly, there was a tendency that transiently hetR-

expressing cell took somehow longer time to divide by ,1 h at

average than its sibling cell from division of their mother cell

(Figure S7A). Therefore, even without leading to heterocyst

differentiation, such a transient increase in hetR transcription may

slightly delay the cell division, as is much more evident for

heterocyst forming cells that do not divide anymore.

Next, we extracted total 29 sets of sibling cells from which one

termed h-cell differentiated to heterocyst without further cell

division, while the other termed v-cell remained to be vegetative to

undergo cell division from the lineage shown in Figure S2A (24

sets termed group A, microchambers) and S2C (5 sets termed

group B, solid media). As shown in Figure S7B and C, after

division of each mother cell, the v-cell underwent cell division at

9.861.9 h (group A) or 12.060.7 h (group B), while the h-cell

differentiated into heterocyst at 10.862.4 h (group A) or

12.562.3 h (group B). Figure S7D shows normalized data so that

time 0 and 1 are defined as the timing of cell division in each

mother cell and each v-cell, respectively. These results indicate

that the timing of cell differentiation peaked around the cell

division of the sibling cell with Gaussian variation ranging from

the mid phase of the corresponding sibling cell to that of the

daughter cell (cell cycle index of 1.1260.29 for groupA and

1.0560.18 for groupB), regardless of differential growth conditions

(Figure S5C). Note that transient upregulation of hetR expression

in both h- and v-cells was hardly observed before the mid phase of

the v-cell (data not shown), further supporting the mutual coupling

of cell division cycle and developmental processes [16,17].

These observations further indicate, at the single-filament level,

that the impact of initial fluctuations in the magnitude of basal hetR

expression and the photosynthetic activity represented by

phycobilisome fluorescence on the determination of de novo

(leading) proheterocyst positions is negligible. They also support

the notion that the positions are selected at a later stage through

dynamic interactions between cells [1,18]. It is not surprising that

dynamic cell–cell interactions are important in establishing the

proheterocyst positions (developmental commitment [19]), be-

cause some competitive selection or lateral inhibition between cells

is required [20,21]. Meeks and Elhai [1] proposed a two-stage

model of pattern formation in which four contiguous (synchro-

nous) cells at similar favorable stages in their cell cycles start to

differentiate after nitrogen step-down and then undergo compet-

itive resolution to select a single heterocyst. In previous reports

without time-lapse single-filament observations, contiguous cells

expressing hetR (personal communication cited in Ref. 1) have

been observed before the timing of expression confined to

heterocysts, suggesting that single heterocysts are selected from

such contiguous cells. We also observed two or more contiguous

cells exhibiting bright hetR::gfp signals under liquid culture (Fig.

S4), microchamber (Movies S1 and S2) and solid (Movies S3 and

S4) conditions. It should be noted, as described above, that in most

cases judged from cell lineage analysis, some of such contiguous

cells with hetR::gfp upregulation are also possible to be the result of

the division of the bright mother cells, and the fluorescence levels

are often simultaneously reduced so that no single heterocyst

develops from the contiguous cells. Interestingly, following the

division of the cells displaying transient hetR upregulation, we often

observed an enhanced PhetR signal in one of the neighboring cells

leading to differentiation in our time-lapse analysis (e.g., the cell

marked with a blue arrowhead in Figures 2C and 2D; see also

Movies S1 to S4). Thus, in addition to the two-stage model, an

additional competitive process is likely to be involved for

proheterocyst positioning through cell-cell interactions.

Genetic approaches have revealed some inhibitors that are

important in heterocyst patterning, such as the HetR-binding

small peptide, PatS, which acts in de novo patterning [5,10,11], and

HetN, which acts in the later stage to maintain the proper

heterocyst intervals [12,13]. The inactivation of both patS and hetN

genes leads to the differentiation of nearly all the cells of a filament

in the absence of compound nitrogen [13]. Moreover, small

nitrogen compounds produced by committed heterocysts have also

been suggested to act as diffusible inhibitors [1,18,22]. Impor-

tantly, the upregulation of the patS promoter activity in broader

contiguous cells before the establishment of de novo heterocyst

positions has been observed [11]. Cell lineage analysis with time-

lapse single-filament observations of patS gene expression will be

useful in validating whether a single heterocyst is selected from the

contiguous cells, from neighboring cell(s), or from both. Moreover,

time-lapse monitoring of hetR expression profiles in some strains

with mutant inhibitor genes, leading to multicontiguous hetero-

cysts [10,12] at the single-filament level, should also provide

insights into the dynamics of heterocyst development.

Materials and Methods

Bacterial strains and culture
Anabaena (Nostoc) sp. PCC 7120 and its derivative, SRhetR-1Gn,

which harbors a transcriptional fusion of a promoterless gfp gene

fused to the promoter of hetR (see below) were grown in 100 ml of

BG-11 or BG-110 (lacking sodium nitrate) medium in 200 ml

flasks at 30uC under illumination with white fluorescent lamps at

45 mM photons m–2 s–1. The culture was bubbled with air (normal

Anabaena Cell Lineage Analysis
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CO2). For synchronous heterocyst induction on plates, liquid

cultures with an optical density at 730 nm (OD730) of about 0.2

were washed four times with BG110, diluted to an OD730 of

,0.01, and underlain beneath a fresh BG-110 plate with or

without fabricated micro-wells. For observation of heterocyst

development in a liquid culture (Figure S4), SRhetR-1Gn was

grown in BG-11 medium at 30uC under continuous illumination

with a fluorescent lamp at 30 mM photons m22 s21. Liquid

cultures were bubbled with air containing 1% (v/v) CO2.

Filaments of SRhetR-1Gn grown in the presence of nitrate until

they reached an OD750 of 0.4–0.5 were subjected to nitrogen

deprivation. The transcriptional reporter hetR-gfp plasmid used for

the SRhetR-1Gn strain was constructed as follows. A DNA

fragment containing the hetR gene was amplified by polymerase

chain reaction (PCR) using the primer pair hetR-uF (59–

TGCCAATGCAGAAGGTTAAA–39) and hetR-RK (59–TAGG-

TACCTCACTCTGGGTGCTTAATCTTC–39) and cloned into

the EcoRV site of pPCR-Script Amp SK(+) (Stratagene, La Jolla,

CA, USA) to construct pPhetR. A BglII–HindIII fragment from

pRL161 containing a neomycin-resistance cassette [23] was

blunted and cloned into the blunt-ended HindIII site of the

plasmid pKEN2-GFPmut2 [24]. The gfp gene and the neomycin-

resistance cassette were excised together as an XbaI fragment from

the resultant plasmid and inserted into the unique XbaI site located

at 162 bases downstream of the 59 end of hetR in pPhetR. A hetR-

gfp transcriptional fusion gene was excised as an XhoI–SacI

fragment and was cloned between the XhoI and SacI sites of

pRL271 to construct pRhetRG. pRhetRG was transferred by

conjugation into Anabaena PCC 7120 and a single recombinant,

SRhetRG, was selected on a BG-11 plate containing neomycin

and erythromycin.

Microchamber arrays
To fabricate the microchamber array, a silicon mold was

fabricated using MEMS technology. After dicing a 500 mm-thick

silicon wafer (100, Waka Tech, Tokyo, Japan) into

20 mm620 mm pieces, the substrate was spin-coated using a

positive photoresist (TSMR-V90, Tokyo Ohka Kogyo, Japan) and

patterned into an array of 2006200 mm microchambers by

photolithography. The pattern is etched 8 mm in depth by deep

reactive ion etching (Surface Technology Systems, Newport,

Gwent, UK) (Figure S1A). Then, BG-110 medium containing

1.5% agar solution was poured onto a silicon mold that was placed

on a sterile plate to produce patterned solid medium with

microwells on the bottom (Figure S1B). After the unnecessary agar

was removed (indicated with dashed lines in Figure S1B), the

patterned agar was placed onto an aliquot (,50 mL) of prewashed

Anabaena cell suspension placed on the bottom of the plate so that

each single filament was stochastically enclosed in a microcage

between the agar well and the surface of the plate (Figure S1B). To

avoid desiccation, the patterned agar block was surrounded by

fresh agar blocks on the plate (pale blue portions on both sides of

the patterned block indicated in Figure S1B, bottom panel).

Time-lapse monitoring system
BG-110 plates were placed in a thermostat chamber (Micro-

scope Incubation System, Tokai Hit, Shizuoka, Japan) kept at

30uC on an Olympus IX-71 inverted microscope (206 objective

LUCPlanFLN lens, NA 0.45, Olympus, Tokyo, Japan) modified so

that at least a 10-point analysis was possible with an automated X–

Y stage controlled by a MAC 5000 automation controller system

(Ludl Electronic Products Ltd., Hawthorne, NY, USA). Exchange

of lamps, mirror-units, and sample-positions were programmed

with Slidebook 4.1 (Intelligent Imaging Innovations, Denver, CO,

USA) or Metamorph (Olympus) software. For bright field and

fluorescence microscopy, we used a chilled charge-coupled device

(CCD) camera (PIXIS1024, Princeton Instruments, Trenton, NJ,

USA; or iXonEM+, Andor Technology PLC, Belfast, Northern

Ireland) controlled using the software as above. Cells were grown

under the microscope using white fluorescence lamps (FL30SW-B,

50 mEm–2 s–1; Hitachi Co., Tokyo, Japan) at 30 uC. Green

fluorescent protein (GFP) and phycobilisome fluorescence during

synchronous heterocyst development were monitored using filter

sets U-MNIBA3 (Olympus) and U-MWIG3 (Olympus), respec-

tively. The fluorescence excitation light intensity was attenuated

with neutral density filters to avoid GFP fluorescence bleaching as

described by Aldea et al. [15]. However, there was a tendency that

the more repetitively irradiation of excitation lamps was given,

especially to multipoint analysis which required, the more cell

propagation and cell differentiation was likely to be delayed as

discussed in the text. As a reference, we also monitored cells grown

beneath solid agar plate without microchamber wells with lesser

irradiation to observe PhetR::gfp signals without phycobilisome

fluorescence (Movie S2C) and only morphological changes only

(Movie S2D). Filaments grown under these conditions were often

distorted to be fragmented or bleached, and the filaments shown in

Movies S2C and S2D were exceptional samples that completed

differentiation, while some cell size expansion and filament

distortion were observed. For quantitative analysis, initially we

used fluorescence beads (GE Healthcare, Little Chalfont, Buck-

inghamshire, UK) as external standards. However, they sometimes

show decayed fluorescence profiles. Thus, for data shown in this

manuscript, fluorescence intensity was normalized to the back-

ground signal for each image. For data shown in Figures 3C and

3D, fluorescence intensity was normalized globally such that the

mean value per cell was 1.0.

Supporting Information

Figure S1 (A) Schematic representation of the preparation of a

silicon mold and a scanning electron microscopy (SEM) image

used for preparing liquid microchambers from agar. (B) Schematic

representation of agar wells made with a silicon mold as template

and of the microscopic observation of Anabaena filaments enclosed

in the microliquid spaces between the patterned agar and the

culture plate. For more details, see the text. (C) Microchambers on

the microscope. The dashed square at the top indicates the space

of a microchamber. Some short Anabaena filaments are located in

the first, third, and forth chambers. Bar, 100 mm.

Found at: doi:10.1371/journal.pone.0007371.s001 (1.97 MB TIF)

Figure S2 (A, B) Cell lineages representing heterocyst differen-

tiation in two individual Anabaena filaments grown in the

microchambers. Magnification of the same cell lineage shown in

Figure 2A (A) and that from a different filament (B). (C, D) Cell

lineages from two individual filaments grown beneath flat solid

medium. Note that in panel D, the two cells numbered 12 and 39

indicated at the right differentiated into heterocysts without cell

division. Number 12 cell differentiated into one of the leading

heterocysts (,22 h after nitrogen deprivation).

Found at: doi:10.1371/journal.pone.0007371.s002 (0.18 MB

PDF)

Figure S3 Spatiotemporal dynamics of hetR expression profile

monitored by the gfp reporter superimposed into the same cell

lineages shown in Figures S2A (A) and S2C (B). Red bars at the

right indicate cells that differentiated into heterocysts.

Found at: doi:10.1371/journal.pone.0007371.s003 (0.50 MB

PDF)
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Figure S4 Morphological changes and PhetR::gfp fluorescence

profiles from Anabaena cultures grown in liquid media after

nitrogen step-down for 0, 3, 5, 8, 12 and 24 h.

Found at: doi:10.1371/journal.pone.0007371.s004 (2.22 MB TIF)

Figure S5 (A, B) Intervals (numbers of vegetative cells in the

filament) between heterocysts were not always regular at the initial

stage of heterocyst differentiation, whereas they became more

regular at the later stage so that heterocysts were found at about

every 10 cells (filled circles). The cell lineage analysis also enabled

us to plot intervals between mature heterocysts and a differenti-

ating, plausible proheterocyst (white circle). The abscissa and

ordinate indicate heterocyst intervals and time (h) after nitrogen

step-down, respectively. Data for panels A and B were prepared

from individual filaments whose cell lineages are shown in Figures

S2A and S2C, respectively; ‘x’ indicates the distance between the

leading heterocyst to both termini of the filaments. (C,) Profiles of

cell propagation in the two filaments shown in Figures S2A (blue)

and S2C (red). Arrows indicate timing of appearance of the

leading heterocysts at the end of logarithmic growth (solid lines).

Found at: doi:10.1371/journal.pone.0007371.s005 (0.13 MB TIF)

Figure S6 Transitional PhetR::gfp and phycobilisome fluorescence

signals in cells from an individual Anabaena filament during the

course of heterocyst formation at 42–72 h after nitrogen step-down.

Cells were categorized into four groups, whose progenies (or

themselves) differentiated into heterocyst(s): (1) at 62 h after

nitrogen step-down (the leading heterocyst, open red circles); (2) at

63–65 h (during the transition state; filled red circles); (3) at 66–72 h

(after establishment of regular patterns; filled orange circles), and (4)

remaining vegetative cells at 72 h (filled green circles). It took ,6 h

between upregulation of the PhetR::gfp signal and reduction of

phycobilisome fluorescence in each (pro)heterocyst. Importantly,

upregulation of hetR gene expression was observed not only in

heterocyst-forming cells but also transiently in vegetative cells.

Found at: doi:10.1371/journal.pone.0007371.s006 (0.16 MB TIF)

Figure S7 Correlation of cell division and differentiation. (A) Total

13 transiently hetR-upregulating cells without leading to differentia-

tion were compared with their sibling cells in time to divide from cell

division of each mother cell (h). (B–D) Total 29 sets of sibling cells, one

of which developed into heterocyst, were extracted from the lineages

shown in Figure S2A (24 sets termed group A, microchambers) and

S2C (5 sets termed group B, solid media). In each histogram, open

and filled bars indicate cells in groups A and B, respectively. Timing

(h) of cell division of the sibling v-cells (see text) after the

corresponding mother cell division was scored (B). Timing (h) of

cell differentiation of the h-cells (see text) after division of the mother

cell was scored (C). Timing of cell differentiation in each h-cell was

scored against the phase of normalized cell cycle of the sibling cell (cell

cycle index; time 0 and 1 were defined as the timing of cell division in

each mother cell and each v-cell, respectively) (D).

Found at: doi:10.1371/journal.pone.0007371.s007 (0.18 MB TIF)

Movie S1 Time-lapse observations of morphological changes

(bright-field, left), PhetR::gfp signals (middle), and phycobilisome

fluorescence (right) in the filament grown under the microchamber

condition shown in Figure S2A. Numbers indicate time (h) after

nitrogen step-down. Bar, 45 mm

Found at: doi:10.1371/journal.pone.0007371.s008 (9.34 MB

MOV)

Movie S2 Time-lapse observations of morphological changes

(bright-field, left), PhetR::gfp signals (middle), and phycobilisome

fluorescence (right) in the filament grown under the microchamber

condition shown in Figure S2B. Numbers indicate time (h) after

nitrogen step-down. Bar, 45 mm

Found at: doi:10.1371/journal.pone.0007371.s009 (7.59 MB

MOV)

Movie S3 Time-lapse observations of morphological changes

(bright-field, left), and PhetR::gfp signals (right) in the filament

grown beneath a flat solid agar plate shown in Figure S2C.

Numbers indicate time (h) after nitrogen step-down. Bar, 45 mm

Found at: doi:10.1371/journal.pone.0007371.s010 (1.85 MB

MOV)

Movie S4 Time-lapse observations of morphological changes

(bright-field, left) in the filament grown beneath a flat solid agar

plate shown in Figure S2D. Numbers indicate time (h) after

nitrogen step-down. Bar, 50 mm

Found at: doi:10.1371/journal.pone.0007371.s011 (0.40 MB

MOV)
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