
RESEARCH ARTICLE Open Access

Integrated analysis of mutations, miRNA and
mRNA expression in glioblastoma
Hua Dong1,2, Li Luo2, Shengjun Hong1, Hoicheong Siu1, Yanghua Xiao3, Li Jin1, Rui Chen4, Momiao Xiong1,2*

Abstract

Background: Glioblastoma arises from complex interactions between a variety of genetic alterations and
environmental perturbations. Little attention has been paid to understanding how genetic variations, altered gene
expression and microRNA (miRNA) expression are integrated into networks which act together to alter regulation
and finally lead to the emergence of complex phenotypes and glioblastoma.

Results: We identified association of somatic mutations in 14 genes with glioblastoma, of which 8 genes are newly
identified, and association of loss of heterozygosity (LOH) is identified in 11 genes with glioblastoma, of which 9
genes are newly discovered. By gene coexpression network analysis, we indentified 15 genes essential to the
function of the network, most of which are cancer related genes. We also constructed miRNA coexpression
networks and found 19 important miRNAs of which 3 were significantly related to glioblastoma patients’ survival.
We identified 3,953 predicted miRNA-mRNA pairs, of which 14 were previously verified by experiments in other
groups. Using pathway enrichment analysis we also found that the genes in the target network of the top 19
important miRNAs were mainly involved in cancer related signaling pathways, synaptic transmission and nervous
systems processes. Finally, we developed new methods to decipher the pathway connecting mutations, expression
information and glioblastoma. We indentified 4 cis-expression quantitative trait locus (eQTL): TP53, EGFR, NF1 and
PIK3C2G; 262 trans eQTL and 26 trans miRNA eQTL for somatic mutation; 2 cis-eQTL: NRAP and EGFR; 409 trans-
eQTL and 27 trans- miRNA eQTL for lost of heterozygosity (LOH) mutation.

Conclusions: Our results demonstrate that integrated analysis of multi-dimensional data has the potential to
unravel the mechanism of tumor initiation and progression.

Background
Glioblastoma (glioblastoma multiforme or GBM) is the
most common and aggressive type of primary brain
tumor in humans, involving glial cells and accounting
for 52% of all parenchymal brain tumor cases and 20%
of all intracranial tumors [1]. Glioblastoma is located
preferentially in the cerebral hemispheres. In the past
two decades, the molecular mechanisms, genetics and
pathways to treat GBM have extensively been studied
[2]. However, the precise mechanism of GBM is
unknown and its median survival rate is very low [3].
The Cancer Genome Atlas (TCGA) generated large-
scale multi-dimensional datasets to catalogue cancer

alterations [4]. GBM is the first cancer studied by
TCGA. In the GBM pilot project, a total of 601 genes
were sequenced for detection of somatic mutations in
179 tumor and matched normal tissues pairs; expres-
sions of 12,042 genes were measured in 243 tumor tis-
sue samples and 10 normal tissue samples and 1 cell
line; and expressions of 534 microRNAs (miRNAs) were
profiled in 240 tumor tissue samples and 10 normal tis-
sue samples. The generated multi-dimensional genetic
and molecular data will provide rich information which
allows us to uncover mechanisms of GBM.
In the past, although enormous efforts toward gener-

ating high-throughput genetic and molecular data have
been made, knowing how to integrate genetic and mole-
cular data and unravel underlying mechanisms of cancer
remains unresolved. To gain significant insights into the
mechanisms of cancer, it is indispensable to reconstruct
and dissect various pathways, and genetic and molecular
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networks that define the molecular states of systems
involved in tumorigenesis. To meet this challenge, we
will reconstruct genetic and molecular networks
involved in tumorigenesis and study how these networks
respond to the perturbation of somatic mutations and
environments. Genes with DNA variation, mRNA and
miRNA form the complex genetic and molecular net-
works that determine the cell’s function and response to
the perturbation of external stimuli. These networks
consist of three levels. The subnetwork in the first level
consists of (1) significantly associated somatic mutations
and (2) LOH which were identified by a group associa-
tion test statistic. The subnetworks in the third level are
mRNA and miRNA coexpression networks. The subnet-
works in the second level are to connect the subnet-
works in the first level and subnetworks in the third
level. The network pipeline analysis approach is shown
in Figure 1.
It is increasingly recognized that miRNAs have

emerged as an important component in the regulation
of gene expression, with imperfect base pairing, to target
sites in the 3’ UTR of the messenger RNAs [5]. Three
types of methods, sequence analysis, miRNA-mRNA
regression analysis, and machine learning, have been
used to identify potential target genes [6,7]. To improve
the accuracy of target prediction, we will combine
sequence analysis with regression analysis for target pre-
diction, which finally leads to the formation of miRNA
target networks. miRNA target networks connect gene
coexpression and miRNA coexpression networks.
Expression quantitative trait loci (eQTLs) are genomic
loci that regulate gene transcription. eQTLs may act in
cis (locally) or trans (at a distance) to a gene or a pre-
cursor miRNA [8]. We applied a group regression
method which regresses the expression of a mRNA or a
miRNA on the number of all mutated alleles across the

region of interest to identify eQTL. The identified
eQTLs connected the subnetworks in the first and third
levels.
Biological functions and mechanisms are encoded in

network properties. An important strategy for unravel-
ing the mechanisms of initiation and progression of can-
cer is to conduct analysis of complex genetic and
molecular networks and study their behaviors under
genetic and environment perturbations. Robustness of a
biological network, ability to retain much of its func-
tionality in the face of perturbation [9], has emerged as
a fundamental concept in the study of network topologi-
cal properties [10]. The locations of the DNA variants,
mRNA and miRNA in the genetic and molecular net-
works are likely to affect the phenotypes. We use net-
work structural analysis as a tool to identify a set of key
cancer causing genome alternations and core modules
of biological networks that play an essential role in the
development of cancer.
The purpose of this report is to use systems biology

and network approaches to develop novel analytical
strategies to unravel the mechanism of GBM by system-
atically integrating the multi-dimensional datasets from
the TCGA project.

Results
Test Association of Somatic Mutations and LOH
Mutations with Glioblastoma
Traditional statistical methods for genetic studies of
complex diseases are mainly based on the common dis-
ease/common variant hypothesis. However, it has been
reported that common variants account for only a small
proportion of the genetic contribution to complex dis-
eases. Recent deep-resequencing reveals that in the gen-
ome there are a large number of rare variants (0.05 ×
MAF) which also play an important role in causing var-
ious complex diseases including cancer [11]. Multiple
rare mutations, each with a minor marginal genetic
effect, but collectively may make large contributions in
the population. Most statistics for testing the association
of common alleles with common diseases have mainly
focused on the investigation of variants individually.
However, due to their rarity, the frequencies of rare
alleles may be comparable with genotyping errors. As a
consequence, individual tests of association of rare var-
iants with disease, as is often done by the traditional
association tests, have limited power and may not be
robust [12]. An alternative approach to the current var-
iant-by-variant tests is group association tests in which a
group of rare genetic variants are jointly tested [12-14].
It has been shown that the number of rare alleles in
large samples is approximately distributed as a Poisson
process with its intensity depending on the total muta-
tion rate [15]. The intensity of the Poisson process

Figure 1 The pipeline of the GBM network analysis approach.
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within a segment of the genome can be interpreted as
the mutation rate. Similar to the standard c2 test for
association of SNPs which compares the difference in
allele frequencies between cases and controls, we pro-
pose a new group test statistic Ta that is to compare dif-
ferences in the mutation rates between tumor and
normal samples (for details, see Methods). The statistic
Ta was applied to GBM in the TCGA dataset. The
tumor tissues of 179 GBM patients and 179 matched
normal tissues were sequenced. A somatic mutation was
recorded when the mutation was detected only in the
tumor tissue. There are 306 genes in which at least one
somatic mutation was detected. A LOH mutation was
recorded when the genotype in blood or normal tissue
is heterozygous, and in the tumor tissue, the reference
allele loses normal function and the genotype becomes
homozygous. There are 124 genes in which at least one
LOH mutation was detected. We identified association
of somatic mutations in 14 genes by the statistics Ta

(Table 1), and association of LOH in 11 genes by the
statistic TG with GBM with a false discovery rate (FDR)
of less than 0.05 (Table 2). Genes TP53, PTEN, EGFR,
NF1, RB1 and ERBB2 were reported to be associated
with GBM in the previous TCGA data analysis [4]. The
remaining 8 somatic mutated genes and 10 LOH
mutated genes were newly identified by the statistics TG

or Ta. NCBI Entrez gene database [16] reported that:
CHEK2 is a cell cycle checkpoint regulator and putative
tumor suppressor, and associated with GBM; GSTM5
was reported to be involved in cancer, BCL11A is a
proto-oncogene, and FN1 is involved in tumor metasta-
sis and angiogenesis. Gene PRAME was reported to be
associated with melanoma and acute leukemias. Associa-
tion of the other 9 genes such as NRAP, MK167,

C10orf54 and C9orf66 with GBM was first reported
here.

Network Analysis of Gene Expressions
Comparative studies of gene expression between normal
and tumor tissues is one of the most widely used strate-
gies for unraveling the molecular circuitry underlying
cancer [17]. To uncover the mechanisms of glioblastoma,
expressions of 12,042 genes were measured in 243 tumor
tissue samples and 10 normal tissue samples and 1 cell
line using the Affymetrix HT Human Genome U133
Array Plate Set. A total of 1,697 genes were differentially
expressed between tumor and normal tissues by the Wil-
coxon rank-sum test (P-value for declaring significance
after Bonferroni correction is 4.15 × 10-6). Of the 1,697
genes, 97 genes were cancer genes or cancer candidate
genes (Additional files 1); 11 of them were oncogene
including CDK4 and RAF4; and 21 of them were tumor
suppressor genes including TP53 and RB1. Twenty-five
of which were GBM related genes including TCF12,
TP53, COL4A1, COL3A1 and COL5A2. We also observed
that of the 1,697 genes, 242 genes were in signal trans-
duction pathways, 908 genes were down regulated and
789 genes were up regulated (Additional files 2).
To investigate the functions of the genes at the sys-

tem-level and uncover the mechanism of GBM, we used
Lasso algorithms for a Gaussian graphical model to infer
gene coexpression networks (see Methods). The largest
connected coexpression network with the average short-
est path 20.4 and diameter 74 had 2,115 genes and
2,276 edges (Figure 2). Coexpression networks are
usually organized into modules that perform specific
biological processes and tasks. A dynamic tree cut pro-
cedure was used to identify modules and a Fisher’s
exact test was used to discover pathways that were over-
represented in the module (see Methods). A total of 13
modules were significantly enriched for at least one
pathway (Figure 3 and Table 3), indicating that a coex-
pression network was organized into functional units.

Table 1 P-values for testing association of somatic
mutations with the GBM

Gene p-value FDR Mutation frequency

TP53 3.46E-11 5.90E-10 0.1453

PTEN 2.25E-07 1.92E-06 0.0698

EGFR 1.22E-06 6.92E-06 0.0587

FKBP9 1.38E-04 5.89E-04 0.0363

CHEK2 1.39E-03 4.73E-03 0.0475

GSTM5 2.41E-03 6.86E-03 0.0251

DST 4.28E-03 8.12E-03 0.0223

RB1 3.54E-03 8.62E-03 0.0251

NF1 4.17E-03 8.89E-03 0.0363

BCL11A 1.36E-02 2.33E-02 0.0168

ERBB2 1.57E-02 2.43E-02 0.0307

PIK3C2G 2.45E-02 3.49E-02 0.0140

FN1 3.30E-02 4.33E-02 0.0168

COL3A1 4.46E-02 4.75E-02 0.0112

Table 2 P-values for testing association of LOH

Gene P-value FDR Mutation frequency

NRAP 5.71E-07 6.24E-06 0.1173

MKI67 8.19E-07 4.47E-06 0.1229

C10orf54 1.02E-04 3.70E-04 0.0391

C9orf66 1.63E-04 4.46E-04 0.0419

MYO3A 6.40E-04 1.40E-03 0.0307

PRAME 2.14E-03 3.90E-03 0.0251

EGFR 3.20E-03 4.99E-03 0.0279

IL1RL1 7.11E-03 9.71E-03 0.0196

HLA-DOA 1.30E-02 1.57E-02 0.0168

ABCA13 2.37E-02 2.59E-02 0.0140

CYP1B1 2.37E-02 2.59E-02 0.0140
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Enriched pathways in the modules were involved in neu-
rodegenerative diseases, development processes, cancer
related signaling pathways and metabolism. A Parkin-
son’s disease pathway was enriched in module 11 with
olive green color. Genes UQCRC1, ATP5 H, COX7C,
NDUFA1, COX5R and COX4I1 in module 11 are
involved in mitochondria dysfunction http://www.genome.
jp/kegg/pathway/hsa/hsa05012.html. A cell cycle pathway
was enriched in module 7 with yellow color. We can see
that coexpressed genes CHEK2, CCNB2, CCNA2, CCNE2,
MAD2L1 and BUB1 in module 7 are directly or indirectly
connected in the cell cycle pathway http://www.genome.
jp/dbget-bin/show_pathway?hsa04110.
The architecture of a coexpression network is impor-

tant for uncovering the genes which are involved in
cancer. To identify the most important genes in the
coexpression network, we used the damage value of a
node as a measure to rank the importance of a node.
The damage value of a node which is defined as the
difference in the number of nodes of the largest

connected network before and after removal of that
particular node can be used to measure the effect of
the removal of the node, i.e. the ability of a network
to avoid malfunctioning when a gene is removed
(damaged) [18]. We ranked all differentially expressed
genes in the largest coexpression subnetwork accord-
ing to their damage values. The top 5% of the genes in
the ranked list with damage values greater than 15
were summarized in Additional files 3. These genes
were essential to the function of coexpression net-
works. We suspect that these genes may be involved in
the development of GBM.
There were three differentially expressed genes (TP53,

COL3A1, and RAP1GDS1) whose damage values ranked
among the top in cancer and cancer candidate genes
(Additional files 1). Their removal from the network
may disconnect some components in the network and
hence compromise the functions of the genes in coex-
pression networks. TP53 and COL3A1 are GBM related
genes and RAP1GDS1 is a cancer candidate gene. The

Figure 2 The largest connected gene coexpression network. The network had 2,115 genes and 2,276 edges. Genes related to GBM were
highlighted in red.
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p53 pathway is central to oncogenesis [19]. TP53 was up
regulated in GBM tissue samples and was highly over
expressed in the CEREBRUM tissue samples. Interest-
ingly it was observed that TP53 had a damage value of
23, but was only connected with two up regulated genes
(TGIF2 and EIF4A1). TGIF2 was differentially expressed
(P-value < 1.43 × 10-7) and had a damage value of 24.
TGIF2 plays an oncogenic role through inhibition of
TGFB [20]. EIF4A1 was over expressed in tumor tissue
(P-value < 5.09 × 10-6) and had a damage value of 22.
Using Programmed Cell Death 4 (PDCD4) EIF4A1 inhi-
bits translation initiation and acts as a tumor suppressor
by forming a complex [21]. COL3A1 was over expressed
in GBM tissue samples (P-value < 1.6 × 10-6 ) and had
damage value 21. It was also reported to be over
expressed in ovarian cancer and breast cancer [22,23].
COL3A1 encodes a fibrillar collagen which is a major
component of the extracellular matrix protein surround-
ing cancer cells. The presence of ECM protein prevents
apoptosis of cancer cells. COL3A1 plays an important
role in apoptosis, proliferation regulation and anticancer

drug resistance [24]. RAP1GDS1 was under expressed in
GBM tissue samples (P-value < 4.4 × 10-7) and had a
damage value of 18 in the coexpression network.
RAP1GDS1 is a transcription factor [25]. It was reported
that translocation fusion of the NUP98 and RAP1GDS1
genes was recurrent in T-cell acute lymphocytic leuke-
mia [26].
Other genes at the top of the list including T1A1,

KIAA1279 and CACYBP also have remarkable biological
implications. T1A1t had the largest damage value (38),
was over expressed in the GBM tissue samples, and
played a role in apoptosis [27]. KIAA1279 was reported
to be associated with the nervous system [28] and
CACYBP was reported to participate in p53-induced
beta-catenin degradation. CACYBP can suppress prolif-
eration and tumorigenesis of renal cancer cells [29].
CACYBP is also reported to be under expressed in gas-
tric cancer [30] and renal cancer [29].
Using DAVID Bioinformatics Resources online [31],

we performed the gene set enrichment analysis and
found the most enriched Gene Ontology (GO) and

Figure 3 13 functional modules in the largest connected gene coexpression network. The modules were indexed by the number and also
represented by color. Enriched pathways in the modules were listed in Table 3.
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pathway groups. GO:0045202~synapse (a cellular com-
ponent term), GO:0007268~synaptic transmission (a
biological process term) and GO:0005509~calcium ion
binding (a molecular function term) were among the
most significant GO terms, with P-values 6.98 × 10-14,
1.43 × 10-9 and 5.06 × 10-6, respectively. Epithelial cell
signaling in Helicobacter pylori infection (an infectious
diseases pathway), long-term potentiation (a nervous
system pathway) and calcium signaling pathway (a signal
transduction pathway), were the most significantly
enriched pathways with P-values 2.57 × 10-6, 4.42 × 10-5

and 4.45 × 10-5, respectively. The results suggested that
the differentially expressed genes were most involved in
the signal and nervous system related pathways.

Network Analysis of miRNA Expressions
miRNAs are short endogenous non-coding RNAs of 22
nucleotides in length that negatively regulate gene
expression through base pairing with target mRNAs
[32]. Deregulation of miRNA and miRNA-related
genetic alternations are involved in causing cancers [33].
To unravel the pattern of differential regulation of
miRNA, expressions of 534 miRNAs including 470
human miRNAs were profiled in 240 tumor tissue

samples and 10 normal tissue samples by Agilent 8 × 15
K Human miRNA-specific microarrays. A total of 149
miRNA were differentially expressed between the GBM
tissue and normal tissues samples which were identified
by Wilcoxon rank-sum test (P-value for declaring signif-
icance after Bonferroni correction is 9.36 × 10-5). Of the
149 differentially expressed miRNA, 73 miRNAs were
up regulated and 76 down regulated (Additional files 4).
Among them, 21, 81 and 15 miRNAs were reported to
be associated with the GBM, other cancers and other
diseases, respectively, in the literatures [34].
Similar to genes, miRNA are not isolated, instead they

act together to perform biological functions [35,36]. To
understand how miRNA regulate biological processes at
a system level, we used Lasso algorithms for a Gaussian
graphical model to map the simultaneous expression of
miRNA into a coexpression network in which nodes
represent miRNA and edges represent conditional
dependence between two connected miRNAs, given all
other miRNA expressions in the network (see Methods).
The largest connected miRNA coexpression network
with the average shortest path (10.75) and diameter (49)
had 385 miRNAs and 451 edges (Figure 4). One main
feature of this miRNA coexpression network is that

Table 3 13 Modules in gene coexpression network in Figure 2 with their enriched pathways

Module Module color Pathway category Name P-value

1 Purple Cell signaling Ion channel and phorbal esters signaling 8.60E-03

2 Wind
stawberry

Apoptosis Apoptotic DNA fragmentation and tissue homeostasis 3.52E-02

Cell cycle regulation Activation of Src by protein-tyrosine phosphatase alpha 4.23E-02

Cell cycle regulation AKAP95 role in mitosis and chromosome dynamics 4.98E-02

Cell cycle regulation Sonic Hedgehog (SHH) Receptor Ptc1 regulates cell cycle 4.23E-02

3 Forest green Translation Ribosome 3.32E-09

4 Teal blue Metabolism of cofactors and vitamins One carbon pool by folate 4.72E-02

5 Black Cell signaling Ca++/Calmodulin-dependent protein kinase Activation 3.59E-03

6 Green
yellow

Immunology Cells and molecules involved in local acute inflammatory response 4.68E-02

7 Yellow Cell growth and death Cell cycle 2.62E-02

8 Orange Immunology Classical complement 2.85E-02

9 Lavender Cell signaling IFN alpha signaling 1.03E-02

10 Blue Cell activation Th1/Th2 differentiation 3.79E-02

11 Olive green Metabolism Electron transport reaction in mitochondria 1.31E-02

Energy metabolism Oxidative phosphorylation 9.00E-03

Neuro-degenerative diseases Parkinson’s disease 8.67E-03

12 Maroon Translation Ribosome 1.13E-03

13 Red Metabolism/Neuroscience Vitamin C in the brain 9.11E-03

Cell activation Angiotensin-converting enzyme 2 regulates heart function 1.27E-02

Metabolism Intrinsic prothrombin activation 3.83E-02

Metabolism Platelet amyloid precursor protein 1.47E-02

Hematopoiesis Regulators of bone mineralization 2.58E-03
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mir-770-5p and mir-329 divided the whole network into
three subnetworks, the left, middle, and right subnet-
work. The middle subnetwork was densely connected.
Similar to the gene coexpression network, we use the

damage value of a node as a robustness measure to rank
the importance of a miRNA in the miRNA coexpression
network. We ranked all differentially expressed miRNA
in the largest connected miRNA coexpression network
according to their damage values. The top 19 differen-
tially expressed miRNAs with the largest damage values
(> 20) which are referred to as fragile miRNAs) were
listed in Additional files 5. Of the 19 fragile miRNAs, 16
miRNAs (14 miRNAs were over expressed in the GBM
tissues) were in the left coexpression subnetwork and 3
under expressed miRNAs were in the right subnetwork.
The middle subnetwork contains no fragile miRNAs.
Figure 4 shows that miRNAs in the middle subnetwork
were densely connected. The middle network with large
numbers of redundant miRNAs was highly robust in
response to perturbation of external forces. Mir-487a,

mir-487b, mir-502 and mir-532 were the most impor-
tant components in the miRNA coexpression network.
Removal of one of them would cause disconnection
between the left part and right part of the miRNA coex-
pression network and hence lead to dysfunction of the
whole miRNA coexpression network. We observed that
mir-487a and mi-487b were down regulated, and mir-
502 and mir-532 were up regulated in the GBM tissues.
SNPs within the miR-502 seed binding region in the 3’-
UTR of the SET8 gene which methylates TP53 is
reported to be associated with early age of onset of
breast cancer [37]. Their major functions are to regulate
cell cycle, DNA replication, cytokine-cytokine receptor
interaction, hematopoietic cell lineage and signal trans-
duction (see details in the next section). It is interesting
to note that three of the 19 fragile miRNAs were signifi-
cantly related to GBM survival time (univariant cox
regression [38]). The three fragil miRNAs include hsa-
mir-487b with P-value: 0.0063 and hazard ratio: 1.349;
hsa-mir-17-5p with P-value: 0.0035 and hazard ratio:

Figure 4 MiRNA coexpression network. The largest connected miRNA coexpression network with the average shorted path 10.75 and
diameter 49 had 385 miRNAs and 451 edges. MiRNAs with damage values larger than 20 were highlighted in red and yellow, where red nodes
denoted significantly differentially expressed miRNAs (P-value < 9.36 × 10-5) and yellow nodes denoted they were not significant.
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0.743; and hsa-mir-106a with P-value: 0.0155, hazard
ratio: 0.791. Therefore, we predict that these miRNAs
are cancer related and play an important role in tumori-
genesis and survival.

miRNA Target Networks
miRNAs down regulate gene expressions by base-pairing
with the 3’-noncoding region of the target mRNAs. It is
estimated that up to 30% of the genes might be regu-
lated by miRNAs [39]. It is hypothesized that miRNAs
and their targets form complex networks to perform
various biological functions. To reveal mechanisms of
the GBM, we identified target genes of the miRNAs and
constructed miRNA target networks. Procedures for dis-
covering the target genes consisted of two steps. The
first step was to conduct sequence analysis that used
sequence complementarities of miRNA and its target
site to predict potential miRNA target genes. Since miR-
NAs repress the expression of its target gene, the second
step is to test the inverse relationship between the
expression profile of the miRNA and that of its potential
target gene.
To achieve this, we regressed the expression of target

mRNA on the expression of miRNAs and selected
mRNA with significant negative regression coefficients
as miRNA targets. The P-value for declaring significant
evidence of the miRNA target was 1.00 × 10-4. We also
searched the predicted potential miRNA targets in the
miRGen [40], which integrated animal miRNA targets
according to combinations of four widely used target
prediction programs (miRanda, PicTar, TargetScan, and
DIANA-microT), and experimentally supported targets
from TarBase [41] and miR2Disease [34].
The above methods were applied to miRNA and

mRNA expression dataset in 237 tumor tissue samples
and 10 normal tissue samples with 1,697 differentially
expressed mRNAs and 149 differentially expressed miR-
NAs. This resulted in extremely complex miRNA target
networks. We found 3,953 matched miRNA-mRNA
pairs for 127 differentially expressed miRNAs and 1,089
differentially expressed genes. Of the 3,953 target pairs,
65 down regulated miRNA targets 468 over expressed
genes while 62 up regulated miRNAs target 621 under
expressed genes (Additional files 6).
Among them, a total of 14 previously verified targets of

8 miRNAs by experiments elsewhere were listed in Table
4. Of 8 miRNAs, 4 under expressed miRNAs (mir-124a,
mir-29b, mir-29c and mir-33) function as a tumor-sup-
pressor and 4 over expressed miRNAs (mir-155, mir-16,
mir-21 and mir-210) function as an oncogene (Table 4).
CTDSP1 has been reported to be a validated target gene
of mir-124a [42], RTN4 and SLC25A22 were validated
targets of mir-16 [43]. mir-21 was found to be over
expressed in multiple cancers down regulated tumor

suppressor genes (TPM1, PTEN, PDCD4 BASP1 and
RTN4) in invasion and metastasis of cancer [44]. BASP1
is a transcriptional co-suppressor for the Wilms tumor
suppressor protein WT1, thus it can regulate WT1 tran-
scriptional activity [45]. Nogo-A, one protein isoforms
encoded by RTN4, turned out to be a neuronal protein
involved in diverse processes that goes from axonal fasci-
culation to apoptosis [46]. Mir-155 targeted a regulator
of the apoptosis gene LDOC1 [47]. Up-regulation of
miR-210 directly targeted gene EFNA3, which is crucial
for endothelial cell response to hypoxia, affecting cell sur-
vival, migration, and differentiation [48]. Mir-29c was
reported to be under expressed in nasopharyngeal carci-
nomas and up regulated genes COL4A1, COL4A2 and
TDG [49]. COL4A1 and COL4A2 were genes encoding
extracellular matrix proteins, as previously discussed;
they play an important role in apoptosis, proliferation
regulation and anticancer drug resistance [24]. COL4A2
was validated to be also targets of mir-29b in another
research group [50]. TDG was involved in DNA repair, a
process frequently dysregulated in many cancers [49]. In
mouse and human cells, miR-33 inhibits the expression
of ABCA1, thereby attenuating cholesterol efflux to apo-
lipoprotein A1 [51]. It was also reported that the role of
miR-33 controlling the hematopoietic stem cells self-
renewal through p53 may lead to the prevention and
treatment of hematopoietic disorders [52].
The resulting miRNA target networks have several

remarkable features. First, many important genes in
the mRNA coexpression networks were targets of dif-
ferentially expressed miRNAs. Through our prediction,
we found that the top 17 genes with damage values
greater than 19 in the gene coexpression network were
negatively regulated by 34 differentially expressed miR-
NAs (Additional files 7). All 17 genes and many miR-
NAs were crucial components in the gene and miRNA
coexpression networks. Their altered expressions
played an important role in tumorigenesis. Among
them, over expressed RBBP4 (P-value < 1.8 × 10-8)
with the largest damage value (37) in the table was
negatively regulated by under expressed mir-29b (P-
value < 2.07 × 10-7) and mir-29c (P-value < 3.66 × 10-
7). Under expressed TRIM8 (P-value <3.77 × 10-6) with
a damage value of 29 was negatively regulated by over
expressed mir-629 (P-value < 2.02 × 10-7). Over
expressed TP53 (P-value <1.40 × 10-7) with a damage
value of 23 was negatively regulated by underexpressed
mir-485-5p. RBBP4 has been implicated in chromatin
remodeling and regulation of cell proliferation. It has
been reported that RBBP4 is overexpressed in different
human tumors, such as lung, liver and thyroid cancer,
acute myelocytic leukemia, and acute lymphoblastic
leukemia [53]. TRIM8 is thought to be a new tumor
suppressor gene [54].
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Second, many genes targeted by critical components
in the miRNA coexpression network, played important
roles in the regulation of neural process and tumor gen-
esis. To study the function of the top 19 differentially
expressed miRNAs with the largest damage values
(Additional files 5), we constructed mRNA target net-
works of these 19 miRNAs with 476 nodes and 1,128
arcs and 174 edges as shown in Figure 5(A), where 5
under expressed miRNAs negatively regulated 85 over-
expressed genes and 14 overexpressed miRNA nega-
tively regulated 372 underexpressed genes, 1,128 arcs
were miRNA-mRNA pairs, 15 edges connected coex-
pressed miRNAs, and the remaining 159 edges linked
coexpressed genes (Additional files 8). The genes with
large damage value or related to cancer in the gene
coexpression network (Additional files 3) were high-
lighted and marked in Figure 5(A). We extracted two
subnetworks from Figure 5(A). The first subnetwork
consisted of 8 genes (KIAA1279, CNNM2, CAMKV,
TGIF2, SLC6A15, SLC17A7, NRIP3, and UROS) with
damage values greater than 15 which were regulated by
11 miRNAs (mir-25, mir-106b, mir-93, mir-15a, mir-16,
mir-15b, mir-329, mir-218, mir-17-5p, mir-106a, and
mir-320) with damage values greater than 20. The
second subnetwork consisted of 14 under expressed
cancer genes (FBXW7, GABRA1, MYT1L, NEFL, NEFM,

SNAP25, SYT1, VSNL1, RTN1, SH3GL2, SV2B, SYN2,
KIAA0774 and RIMS2) which were regulated by 10 over
expressed miRNAs (mir-15b, mir-25, mir-16, mir-92,
mir-15a, mir-320, mir-106b, mir-93, mir-106a, and mir-
17-5p) in the mRNA coexpression network. Two sub-
networks are shown in Figure 5(B). Two subnetworks
are involved in the synaptic transmission process. Neu-
ron communication occurs at the synapse via neuro-
transmitters. FBXW7 serves as a negative regulator of
oncoprotein and is a general tumor suppressor. It has
been reported that FBXW7 is implied in various cancers
including glioblastoma [55]. GABRA1 encodes a gamma-
aminobutyric acid (GABA) receptor and GABA is the
major inhibitory neurotransmitter in the mammalian
brain. MYT1L (myelin transcription factor 1-like) regu-
lates nervous system development. Both NEFLand
NEFM are neurofilaments. They play a role in intracel-
lular transport to axons and dendrites. SNAP25 is a pre-
synaptic plasma membrane protein and regulates
neurotransmitter release. SNAP25 was reported to be
implicated in neuritogenesis in human neuroblastoma
[56]. Both SYT1 and VSNL1 serve as Ca(2+) sensors in
synaptic transmission [16]. SYN2 is a member of the
synapsin gene family, SV2B is a synaptic vesicle glyco-
protein and RIMS2 regulates synaptic membrane
exocytosis [16].

Table 4 Experimentally verified targets

miRNA P-value for
differential
expression
of miRNA

Up or
down

regulated
miRNA

Gene P-value for
differential
expression
of gene

Up or
down

regulated
gene

Regression
coefficient

P-value for
testing

association of
miRNA with
target mRNA

Coefficient of
determination

Function
of gene

References

mir-
124a

8.62E-08 Down CTDSP1 8.4E-07 Up -17.7 2.22E-16 0.244 [42]

mir-
155

1.31E-07 Up LDOC1 1.67E-07 Down -197 4.00E-15 0.223 tumor
suppressor

[47]

mir-
155

1.31E-07 Up SCAMP1 3.27E-06 Down -30.9 6.06E-10 0.145 [43]

mir-16 0.0000178 Up RTN4 9.44E-08 Down -766 2.66E-08 0.119 tumor
suppressor

[43]

mir-16 0.0000178 Up SLC25A22 3.36E-08 Down -37.8 1.97E-11 0.168 [43]

mir-16 0.0000178 Up VTI1B 7.15E-08 Down -122 1.03E-05 0.0765 [43]

mir-21 9.98E-08 Up BASP1 2.98E-08 Down -743 0.00E+00 0.349 [44]

mir-21 9.98E-08 Up RTN4 9.44E-08 Down -246 1.16E-05 0.0756 [44]

mir-
210

1.48E-06 Up EFNA3 4.67E-07 Down -10.4 4.61E-05 0.0657 [48]

mir-
29b

2.07E-07 Down COL4A2 1.83E-07 Up -164 8.92E-05 0.0609 [50]

mir-
29c

3.66E-07 Down COL4A2 1.83E-07 Up -260 1.99E-07 0.105 [49]

mir-
29c

3.66E-07 Down COL4A1 4.91E-08 Up -389 1.35E-08 0.124 [49]

mir-
29c

3.66E-07 Down TDG 5.21E-07 Up -95.5 3.22E-14 0.21 [49]

mir-33 9.6317E-06 Down ABCA1 1.0396E-06 Up -114.5 5.941E-12 0.176 [51]
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Figure 5 MiRNA target (sub)network. (A) To study the function of the top 19 differentially expressed miRNAs with the largest damage values,
we constructed mRNA target networks of these 19 miRNAs with 476 nodes and 1,128 arcs and 174 edges, where 5 underexpressed miRNAs
negatively regulated 85 overexpressed genes and 14 overexpressed miRNA negatively regulated 372 underexpressed genes. 1128 arcs were
miRNA-mRNA pairs, 15 edges connected coexpressed miRNAs, and remaining 159 edges linked coexpressed genes. The genes with large
damage value or related to cancer in the co expression network genes were highlighted and those gene names were marked in the figure. (B)
MiRNA target subnetwork. 7 genes with the damage values greater than 15 and 14 cancer related genes were regulated by 11 miRNAs with the
damage values greater than 20 (Additional files 12). Those nodes and edges were extracted from Figure 5A mRNA target network.
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Table 5 summarizes the major functions of target
genes of the miRNAs in Figure 5(A) where one-sided
Fisher’s exact test was used to test for significantly
enriched GO categories or pathways. Table 5 shows that
the target genes of these miRNAs were mainly involved
in cancer related signaling pathways and nervous system
processes including synapse, synaptic transmission, neu-
rotransmitter transport, nervous system development
and neurological system processes. It is interesting to
note that coexpressed mir-15a, mir-15b, mir-16, mir-25
and mir-92 were major miRNAs that targeted genes in
both cancer related signaling pathways and nervous

system processes, and mir-16a was significantly asso-
ciated with the GBM survival time.
Third, the contribution of miRNAs to the expression

variation of some genes is very high. The proportion of
expression variation of target genes explained by the lin-
ear influence of miRNA variation can be measured by
the coefficient of determination (R2). In Additional files
9, there were a total of 78 under expressed genes with
the coefficient of determination greater than 20% which
was negatively regulated by 7 over expressed miRNAs
(mir-15a, mir-15b, mir-16, mir-25, mir-93, mir-106a and
mir-106b). Surprisingly, up to 33% of the expression

Table 5 Function of target genes of 9 miRNAs

Gene Ontology (GO) category or pathway Enrichment P-values

mir-15b mir-15a mir-16 mir-25 mir-106a mir-93 mir-106b mir-92 mir-323

Glioma 1.9E-02

Regulation of neurotransmitter levels 1.3E-02 1.1E-02

Neurotransmitter transport 6.8E-03 1.5E-02 3.3E-02 3.9E-02

Long-term potentiation 4.2E-03 3.7E-05 2.4E-03 3.1E-02 1.4E-02 5.3E-03

Synaptic transmission 2.4E-04 4.0E-04 5.3E-04 3.0E-06 4.4E-02 1.6E-03

Neurotransmitter secretion 1.7E-02 1.0E-02 2.9E-02

Nervous system development 3.2E-02 1.3E-02 5.5E-03 2.7E-02

Central nervous system development 2.5E-02

Transmission of nerve impulse 2.3E-04 9.6E-04 4.8E-04 1.8E-06 6.0E-04

Regulation of synaptic plasticity 4.6E-02

Synaptic vesicle transport 2.8E-02 3.1E-02

Regulation of synapse structure and activity 4.6E-02

Neurological system process 7.1E-03 4.3E-03 5.1E-03 1.5E-04 3.1E-03

Learning and/or memory 3.7E-02

Learning 4.0E-02

Neurofilament 2.1E-02

Synaptic vesicle 1.1E-02 8.0E-03 2.7E-02

Synaptosome 1.4E-02

Synaptic vesicle membrane 3.4E-02

Neuron projection 4.5E-02

Synapse part 4.7E-05 1.5E-02 2.5E-03 1.6E-02 1.2E-02

Synapse 4.9E-03 1.5E-02 2.1E-02 1.1E-07 6.2E-03 8.4E-04 5.3E-03 2.3E-04

Axon guidance 2.1E-02

Antigen processing and presentation 4.0E-02

Ras protein signal transduction 1.9E-02 2.3E-02

Calcium ion transport 1.8E-03 3.6E-04 7.8E-03 4.2E-02

Calcium signaling pathway 2.7E-04 7.5E-06 1.7E-03 1.7E-02 2.0E-04 2.2E-05

Cell communication 1.9E-02 2.2E-02 5.6E-03 2.3E-03 1.8E-02 2.6E-02 2.5E-02

Cell-cell signaling 1.4E-03 8.1E-04 9.5E-04 4.2E-06 7.0E-03

Wnt signaling pathway 4.0E-02 2.9E-03 7.6E-03

MAPK signaling pathway 1.5E-02 8.4E-03 3.8E-02 2.6E-02

GnRH signaling pathway 1.0E-02 8.7E-05 6.6E-03

ErbB signaling pathway 2.2E-02 3.0E-02

B cell receptor signaling pathway 6.3E-03

VEGF signaling pathway 8.4E-03

T cell receptor signaling pathway 2.1E-02

Apoptosis 2.1E-02
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variations of the under expressed gene GCC2 were
explained by a single over expressed mir-25. Functional
roles of GCC2 in cancer are unknown. The gene with
the second largest coefficient of determination was
CAMK2N1. Over expressed mir-106b explained 28% of
the expression variations. CAMK2N1 is reported to be a
candidate tumor suppressor [57]. The function of
CAMK2N1 is to inhibit MEK/ERK activity and induce
p27 accumulation which negatively regulates cell-cycle
progression. Reducing expression of CAMK2N1 will
accelerate tumor growth. 26% of the expression varia-
tion of CPEB1 that regulates synaptic plasticity and is
implied in cancer development [58] and GRM1 that is
involved in neurotransmitter in the central nervous sys-
tem and implicated in melanoma [59] was explained by
overexpressed mir-25 and mir-15b, respectively. Expres-
sions of genes SYT1, SNAP25, GABRA1, VSNL1,
MYT1L, SV2B, SYN2 and SLC12A5 which were involved
in synaptic transmission, were also largely regulated by
miRNAs.

Decipher the Path Connecting Mutations, Expression and
the GBM
Unveiling the path from mutations to tumor formation
will help us to uncover the mechanisms of the cancer.
Mutations often cause the formation of the tumor
through their contributions to the variation of gene
expressions or miRNAs in the regulatory or signal trans-
duction networks which in turn influence the develop-
ment of the tumor [4,60]. Interestingly, some genes
harboring somatic mutations that were associated with
GBM were also differentially expressed. Genes TP53 (P-
value <1.40 × 10-7), RB1 (P-value < 1.24 × 10-7), and
COL3A1(P-value < 1.55 × 10-6) were significantly differ-
entially expressed. MKI67 (P-value < 7.73 × 10-5),
CHEK2 (P-value < 4.30 × 10-5), GSTM5 (P-value < 1.30
× 10-5), BCL11A (P-value < 1.12 × 10-5) and FN1(P-
value < 8.19 × 10-6) were mildly differentially expressed.
TP53 with a damage value of 23 and COL3A1 with a
damage value of 21 played a crucial role in the gene
coexpression networks.
To study the function of somatic mutations and LOH

and connect them with disease through gene expres-
sions and miRNAs, we studied their cis or trans regula-
tory effects on gene or miRNA expression traits. Since
the popular methods for eQTL analysis have mainly
focused on testing cis or trans regulatory effects indivi-
dually, their applications to testing cis or trans regula-
tory effects of rare somatic mutations and LOH are
inappropriate. We applied the group regression method
to expression profiles of 12,043 genes produced by Affy-
metrix HT Human Genome U133 Array Plate Set at
MIT [3] and expression profiles of 470 human micro-
RNAs produced by Agilent 8 × 15KHuman miRNA-

specificmicroarray at the University of North Carolina in
169 tumor tissue samples from glioblastoma patients [3],
which were shared among the gene expression, miRNA
expression and mutation datasets.
We first studied the cis regulatory effects of somatic

mutations and LOH on mRNA or miRNA expression
traits. For somatic mutation, we found four cis-eQTL
(TP53, EGFR, NF1 and PIK3C2G). P-values for testing
association of somatic mutations in TP53, EGFR, NF1
and PIK3C2G with their expressions were 0.033, 0.019,
0.028 and 0.006, respectively. Fold change (defined as
the ratio of their average expressions of the samples
with somatic mutations over the average expressions of
the samples without somatic mutations) for the 4 genes
were 1.10, 1.73, 0.86 and 1.23, respectively. Although
regression analysis did not show significant association
of somatic mutations in BCL11A, FN1 and COL3A1
with their expressions due to very low frequencies of
mutations, the fold change were 1.45, 0.60 and 0.20,
respectively. We still observed some regulatory effects
of somatic mutations on these two genes. For LOH
mutation, two cis-eQTL (NRAP and EGFR) were
detected with P-values 0.030 and 0.034 and fold changes
0.90 and 2.32, respectively. Regression analysis did not
show significant association of LOH mutations in the
gene CYP1B1 with their expressions, but the fold
change was 0.48.
Next we identify the trans-regulatory effects of

somatic mutations and LOH on mRNA or miRNA
expression traits. The thresholds for declaring significant
association of the set of somatic mutation and LOH in
the gene with mRNA and miRNA expression after Bon-
ferroni correction for multiple tests were 1.63 × 10-4

and 4.03 × 10-4, respectively. A network that connects
14 genes with somatic mutations associated with GBM,
and their regulated mRNAs and miRNA expressions is
shown in Figure 6(A). Somatic mutations in these 14
genes were strongly correlated with expressions of 177
significantly differentially expressed genes, 45 of which
were under expressed and 132 were over expressed in
tumor tissue samples, a total of 262 trans gene eQTL
were found (Additional files 10). These mutations also
significantly affected expressions of 23 miRNAs, 11 of
which were underexpressed and 12 were overexpressed
and a total of 26 trans miRNA eQTL were found (Addi-
tional files 11). Remarkably, we found 5 paths (Table 6):
(1) RB1 with association of somatic mutations with
GBM regulated expressions of both gene LAMP2 and
mir-340, and mir-340 in turn targeted gene LAMP2; (2)
DST with association of somatic mutations regulated
expressions of both gene OTUB1 and mir-15b, and mir-
15b in turn targeted gene OTUB1; (3) FN1 with associa-
tion of somatic mutations regulated expressions of both
SSR2 and mir-125a, and mir-125a in turn targeted gene
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SSR2; (4) FN1 with association of somatic mutations
regulated expressions of both gene TDG and mir-125a,
and mir-125a in turn targeted gene TDG; and (5) TP53
with association of somatic mutations regulated expres-
sions of both gene TP53 and mir-504, and mir-504 in
turn targeted TP53. Similarly, Figure 6(B) shows a

network that connected 11 genes with LOH associated
with GMB, their regulated mRNAs and miRNA expres-
sions. These 11 genes with LOH as trans-eQTLs
affected 323 differentially expressed or interacted genes,
190 of which were under expressed and 133 were over
expressed, a total of 409 trans gene-eQTL were found

Figure 6 Somatic and LOH mutation eQTL network. (A) Somatic mutation eQTL network. A network that connects 14 genes with somatic
mutations associated with GBM, their regulated mRNAs and miRNA expressions was shown. (B) LOH mutation eQTL network. A network that
connects 11 genes with LOH associated with GMB, their regulated mRNAs and miRNA expressions.
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(Additional files 12). The LOH also affected expressions
of 19 miRNAs, 9 of which were underexpressed and 10
were overexpressed, and a total of 27 trans miRNA-
eQTL were found (Additional files 13).
Similar to the differentially expressed gene set enrich-
ment analysis, we searched the enriched GO and path-
way groups for the eQTL gene list of every somatic/
LOH mutations by DAVID Bioinformatics Resources
[31]. The most enriched GO terms included the mole-
cular function term GO:0015075~ion transmembrane
transporter activity (for LOH mutated gene CYP1B1
eQTL), biological process term GO:0050877~neurologi-
cal system process (for LOH mutated gene ABCA13
eQTL) and cellular component term GO:0005643~nuc-
lear pore (for somatic mutated gene TP53 eQTL) with
P-values 6.73 × 10-7, 4.31 × 10-5, and 0.02, respectively.
The enriched pathways included the Wnt signaling
pathway (for somatic mutated gene DST eQTL), color-
ectal cancer (for somatic mutated gene FN1 eQTL) and
Gap junction (for LOH mutated gene ABCA13 eQTL)
with P-values 0.018, 0.012 and 0.013, respectively. Sev-
eral examples are provided here, for the detailed results,
see Additional files 14.

Discussion
Genetic and molecular alternations that are likely to
cause tumor formation are often organized into complex
biological networks. The purpose of this report is (1) to
explore the possibility of integrating altered DNA

variations, mRNA and miRNA expression variations
into multi-level complex genetic networks that contri-
bute to tumorigenesis; (2) to decipher paths from
somatic mutations and LOH to tumor formation
through genetic and molecular networks; and (3) to
identify key genetic alternations causing tumor forma-
tion using network approaches. In the first step, we
reconstruct single type molecular networks whose com-
ponents are of the same type of molecules, either
mRNAs or miRNAs. We reconstructed mRNA coex-
pression networks and miRNA coexpression networks
for glioblastoma. The coexpression networks attempt to
uncover the regulatory relationships among mRNAs or
miRNAs. The second step is to reconstruct miRNA tar-
get networks that connect mRNA and miRNA coexpres-
sion networks and indentify the eQTL network that
connects mutations and mRNA, miRNA expression
profiles.
We have addressed several issues for deciphering the

paths from somatic mutations and LOH to tumor for-
mation. The first issue is how to test association of
somatic mutations or LOH with glioblastoma. We devel-
oped a group association test that is based on popula-
tion genetics for assessing association of somatic
mutations and LOH with cancer. We identified 14 genes
harboring somatic mutations associated with GBM and
11 genes harboring LOH associated with glioblastoma.
The second issue is how to uncover the components of
mRNA or miRNA coexpression networks which respond

Table 6 Genes with somatic mutations regulate both mRNA and miRNA expressions, and formed triangle regulation
cycles

Mutation Gene expression miRNA expression

Gene Gene Damage value P-value for
gene
expression

Up or down
regulated

miRNA Damage
value

P-value for
miRNA
expression

Up or down
regulated

RB1 LAMP2 0 8.22E-07 Up hsa-mir-340 0 1.16E-06 Down

DST OTUB1 0 5.33E-07 Down hsa-mir-15b 45 1.30E-06 Up

FN1 SSR2 0 3.67E-07 Up hsa-mir-125a 2 4.83E-05 Down

FN1 TDG 3 5.21E-07 Up hsa-mir-125a 2 4.83E-05 Down

TP53 TP53 23 1.40E-07 Up hsa-mir-504 1 1.42E-06 Down

Mutation-gene regression miRNA-gene regression Mutation-miRNA regression

Regression
coefficient

P-
value

Coefficient of
determination

Regression
coefficient

P-value Coefficient of
determination

Regression
coefficient

P-value Coefficient of
determination

1.03E+00 7.04E-
04

6.47E-02 -2.77E+02 3.17E-06 8.50E-02 1.81E+00 4.10E-09 1.85E-01

1.23E+00 5.91E-
04

6.65E-02 -2.28E+01 9.77E-07 9.34E-02 1.27E+00 3.80E-04 7.18E-02

1.54E+00 1.02E-
05

1.07E-01 -2.33E+02 4.92E-05 6.52E-02 -1.18E+00 8.72E-04 6.33E-02

1.39E+00 7.60E-
05

8.72E-02 -6.91E+01 4.77E-05 6.54E-02 -1.18E+00 8.72E-04 6.33E-02

2.81E-01 3.30E-
02

2.62E-02 -4.14E+01 2.72E-06 8.61E-02 3.43E-01 9.10E-03 3.93E-02
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to somatic mutations and LOH associated with glioblas-
toma. Traditionally, when alleles are common, these
components are identified by mapping cis-eQTL or
trans-eQTL. However, when alleles are rare, these com-
ponents are hard to find by individually mapping cis-
eQTL or trans-eQTL. The approach developed here is
to extend group tests for a qualitative trait to a quantita-
tive trait. The components that respond to perturbation
of rare somatic genetic variants were identified by
regressing the expression of an mRNA or a miRNA on
the number of all mutated alleles across the gene. We
discovered large comprehensive genetic and molecular
networks that connect genes harboring associated muta-
tions or LOH, mRNAs and miRNAs. Interestingly, we
found five triangle cycles in the networks which indi-
cated that significantly associated somatic mutations or
LOH regulated both differentially expressed mRNA and
miRNA and the miRNA in turn also affected expression
levels of the mRNA. The approach presented here has
two remarkable features. First, it offered a powerful tool
for differentiating driver mutations from passenger
mutations. Second, it provides functional information on
how somatic mutations or LOH lead to tumorigenesis
through complex genetic and molecular networks.
Our studies support the hypothesis that cancer may be

the emergent properties of many genetic variants that
are highly interconnected. Genetic and environmental
stimuli can be viewed as random attacks to genetic and
molecular networks. Topological properties of the
genetic and molecular networks are closely related to
the function of cells. Cancer arises from the failure of
networks to respond to attacks. In other words, the
attacked networks are unable to return to their normal
states and remain functional in the face of random per-
turbations. We suspect that key components of a net-
work contributing to the robustness of the network also
play an important role in the function of the cells. We
modeled over or under expression of mRNAs and miR-
NAs, and genetic alternations as deletions of a node in
the network which will cause dynamical changes in the
network and used a damage value of the node to mea-
sure its contribution to the robustness of the network.
We found that several cancers related genes such as
TP53 have large damage values in the genetic and mole-
cular networks. These key components in the network
may serve as therapeutic intervention points.
Our results are preliminary. Although network analy-

sis may have the potential to unravel the mechanism of
tumor initiation and progression, the presented network
structures and their properties in this report may
depend on sampled tissues. Whether the structures of
our reconstructed network can be replicated in other
tissues or not is the key to the success of network analy-
sis in cancer studies.

Conclusion
In this paper, we use system biology and network
approaches to develop novel analytical strategies for (1)
systematically integrating altered DNA variations,
mRNA and miRNA expression variations into multi-
level complex genetic networks that contribute to
tumorigenesis, (2) deciphering paths from somatic and
LOH mutations to tumor formation through genetic
networks and (3) identifying key genetic alternations
causing tumor formation by network analysis.

Methods
Test Association of Somatic Mutations and LOH with
Glioblastoma
Cancers arise from mutations that confer growth advan-
tage on cells [61]. The somatic mutations in cancers can
be classified either as “drivers” or “passengers” [62]. In
other words, mutations often have no effect on the
development of a tumor. As the number of tumor tis-
sues and normal tissues increases we can observe
somatic mutations in both tumor and normal tissues.
The current popular method for identifying driver muta-
tions is to compare the difference in the mutation rates
[4,63]. However, there is debate about how to assess a
significant excess of mutations in tumors [64]. We need
to develop formal tests to detect differences in mutation
rates between tumor and normal tissues. Most tradi-
tional statistical methods that often test the association
of genetic variants individually were designed for testing
association of common alleles with common diseases
and are inappropriate for testing the association of rare
somatic mutations. A feasible approach is to record rare
sequence variants at different genome positions and to
collectively test the association of a set of rare variants.
It has been shown that the number of rare alleles in
large samples is approximately distributed as a Poisson
process with its intensity depending on the total muta-
tion rate [15]. The intensity of the Poisson process
within a segment of the genome can be interpreted as
the mutation rate. Similar to the standard c2 test for
association of SNPs which compare the differences in
allele frequencies between cases and controls, the pro-
posed statistics are to compare difference in the muta-
tion rates between tumor and normal samples.

Specifically, let U and V be the average number of

rare mutations in a gene which is the intensity of the
Poisson process underlying the rare variants, in the
tumor and normal samples in one specific gene, respec-
tively. Let Suv be the pooled sample variance of the rare

variants. Define the test statistic: T
U V

n n
S

G

A G
uv

= −
+

( )

( )

2

1 1 ,

where nA and nG are the number of sampled tumor
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tissues and normal tissues, respectively. Under the null
hypothesis of no association of the set of rare variants
with the disease, the average number of rare alleles in
cases and controls should be equal and the statistic TG

is asymptotically distributed as a central ( )1
2 distribu-

tion. In some cases, we may have a homozygous geno-
type of rare mutations. To improve the power, in this
case, we can count it twice. Instead of defining statistics
in terms of genotype, we can similarly define the test
statistics in terms of the rare alleles, which is denoted as
Ta. The statistic Ta counts the number of mutated
alleles at the locus. Thus, it will count homozygote of
rare variants twice.
To examine the validity of the test statistics, we per-

formed a series of simulation studies. We used infinitely
many allele models and software (GENOME) to gener-
ate rare variants. Suppose that the mutation rate per
generation per base pair is 1.00 × 10-8, the recombina-
tion rate between consecutive fragments is 0.0001, and
the migration rate per generation per individual is
0.00025. We simulated 100 fragments of which each
fragment length equals 10k base pair. A total of 100,000
individuals who were equally divided into cases and con-
trols were generated in the general population, 500-
2,000 individuals were randomly sampled from each of
the cases and controls and 10,000 simulations were
repeated. Table 7 summarizes the type I error rates of
two statistics. Table 7 shows that the estimated type I
error rates of the statistics for testing association of a
set of rare variants with the disease were not appreciably
different from the nominal levels a = 0.05, a = 0.01 and
a = 0.001.
A LOH mutation was recorded when the genotype in

blood or normal tissue is heterozygous, and in the
tumor tissue, the reference allele loses normal function
and the genotype becomes homozygous. The statistic

TG can also be used to test association of LOH with
glioblastoma.

Survival Analysis Links Gene and microRNA Signatures
with GBM Survival Time
Patients (n = 358) with complete clinical information
were obtained from the TCGA data portal. Survival ana-
lysis is used to deal with these time-to-event censored
data. Censoring refers to the patients who may drop out
or are still alive at the end of the study. In fact, leaving
censored patients out would introduce bias to the
remaining uncensored samples, and it is difficult to
make adjustments for such bias. The approach we use,
Cox proportional hazard regression, is a standard
method in biostatistics for dealing with survival data
[38]. For microRNA signature, we use the univariate
Cox proportional hazard regression model to regress the
survival time on every microRNA [65]. Hazard ratios
from the Cox regression analysis were used to identify
which microRNA signatures were associated with death
from the recurrence of cancer or any cause. Protective
signatures were defined as those with a hazard ratio for
death < 1. High-risk signatures were defined as those
with a hazard ratio for death > 1. All analyses were
done with the SAS version 9.1 software (SAS Institute
Inc). Two-tailed tests and P-values < 0.05 for signifi-
cance were used.

Lasso for Coexpression Networks
A co-mRNA expression or co-miRNA expression net-
work can be constructed by joint sparse regression for
estimating the concentration matrix in which off-diago-
nal elements represents the covariance between the cor-
responding variables conditional on all other variables in
the network [66]. Sparse regression for reconstruction of
coexpression network is briefly introduced here. (For
details, see [66]). Denote the mRNA or miRNA expres-
sion levels as variables y1,...yq. A variable is represented
by a node. An edge connecting two nodes indicates that
the connected two variables are conditionally dependent,
given all other variables. Assume that the vector of q
variables Y = [y1,...yq]

T follow a normal distribution N
(0,Σ). Denote the partial correlations as rij = Corr(yi, yj|
y-(i,j)) for 1 ≤ i <j ≤ q and -(i, j) ≡ {k:1 ≤ k ≠ i, j ≤ q}. If
we assume the normality of the variables, then two vari-
ables yi and yj are conditionally dependent, given all
other variables if and only rij ≠ 0. Let Σ-1 = (sij) be the

concentration matrix. Then,  
 

ij ij

ii jj
= − . When

sample size is much larger than the number of variables,
the concentration matrix can be directly estimated from
the inverse of the sampling covariance matrix. However,
when the number of variables in the network is larger

Table 7 Type 1 error rates of the statistics TG, Ta
Sample sizes TG Ta

2,000 a = 0.001 0.0012 0.001

a = 0.01 0.0093 0.0096

a = 0.05 0.0489 0.0494

1,500 a = 0.001 0.0015 0.001

a = 0.01 0.0106 0.0092

a = 0.05 0.0521 0.0500

1,000 a = 0.001 0.0012 0.0007

a = 0.01 0.0106 0.0097

a = 0.05 0.0522 0.0459

500 a = 0.001 0.0009 0.0008

a = 0.01 0.0102 0.0117

a = 0.05 0.0504 0.0548
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than the sample size, the inverse of the sampling covar-
iance matrix may not exist. We need to develop meth-
ods for network modeling via estimating a sparse
concentration matrix. One such techniques is sparse
regression.
It is well known that the relationship between the par-

tial correlation and regression exists. In other words, if

yi is expressed as y yi ij j i
j i

= +
≠

∑   and εi is indepen-

dent of y-i then   
ij

ij jj

ii= . Therefore the search for

nonzero partial correlations can be formulated as a vari-
able selection problem in regression in which the l1 pen-
alty on a loss function is imposed. Specifically, the
sparse regression for estimating a concentration matrix
is formulated as

L Y Yi ij j

j ii

q

ij

i j q

( , ) || || | |),    = −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+
≠= ≤ < ≤

∑∑ ∑1
2

2

1 1

where Yi = [yi1,...,yin]
T is the sample of the ith variable

and l is a penalty parameter which controls the size of
the penalty. A larger value of l leads to a sparse regres-
sion that fits the data less well and a smaller l leads to
regression that fits the data well but is less sparse. Let θ

= [b12,... ,b(q-1)q]T = [θ1,...,θq(q-1)/2]
T, Y Y YT

q
T T= [ ,... ]1 ,

X Y Yi j j
T

i
T T

( , ) [ ,..., , , , ..., , , , ..., ]= 0 0 0 0 0 0 and X = [X

(1,2),..., X(q-1,q)]. Then, L(b, l) can be rewritten as

L Y X Y XT
j

j

( , ) |( ) ( ) | |.     = − − + ∑1
2

Coordinate descent algorithms can be used to mini-
mize L(θ, l) with respect to θ. Let p = q(q-1)/2 Briefly,
coordinate descent algorithms are given as follows:

1. Initial step: let (x)+ = xI(x > 0), for j = 1,..., p




j
T

j

T
j T

j
T

j

sign Y X
Y X

X X
( ) ( )

(| | )
.0 =

−

2. Step 2: for j = 1,..., p, update θ(new)⇐ θ(old):
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

where e(new) = Y - Xθ(old).

3. We repeat step 2 until converge.

Functional Module Identification and Gene Set
Enrichment Analysis
Coexpression networks are usually organized into func-
tional modules that perform specific biological tasks.
Genes within coexpression modules often share con-
served biological functions. A dynamic tree cut proce-
dure was used to identify modules [67]. A coexpression
network was clustered using hierarchical clustering.
Modules are defined as braches of the dendrogram. A
one-sided Fisher exact test that calculates the probability
of seeing the observed number of genes within a path-
way or a GO category in the module by chance was
used to test for overrepresentation of a pathway or a
GO category in the module. We assembled 465 path-
ways from KEGG [68] and Biocarta http://www.biocarta.
com. To test both the enriched Gene Ontology and
pathways for the gene set, for example, the differentially
expressed gene list and the eQTL genes of mutations,
we used an online tool DAVID (The Database for
Annotation, Visualization and Integrated Discovery),
which provides a comprehensive set of functional anno-
tation tools for investigators to understand the biological
meaning behind large lists of genes [31], http://david.
abcc.ncifcrf.gov/.

Ranking of the Nodes in the Network
Biological functions and mechanisms are encoded in net-
work properties. An important strategy for unraveling
the mechanisms of initiation and progression of cancer is
to conduct analysis of complex biological networks and
study their behaviors under genetic and epigenetic per-
turbations. Robustness of a biological network, ability to
retain much of its functionality in the face of perturba-
tion [9], has emerged as a fundamental concept in the
study of network topological properties [10]. Widely used
measures of network robustness include ranking the
importance of the nodes in the network. One of the most
efficient measures of importance in robustness analysis of
the network is the damage value of a node which quanti-
fies the effect of the removal of that particular node from
the network. Formally, we define the damage value of a
node as follows. Let G = (V, E) be the connected compo-

nent that contains nodes h ϶ V, and let   G V E= ( , ) be the

largest connected component of G , after the removal of

node h. Then, the value D h V V( ) | | | |= −  is the damage

value of node h.
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miRNA Target Networks
miRNAs down regulate gene expressions by base-pairing
with the 3’-noncoding region of the target mRNAs. Pro-
cedures for discovering the target genes consist of two
steps. The first step was to conduct sequence analysis
that used sequence complementarities of the miRNA
and its target sites to predict potential miRNA target
genes. We searched the predicted potential miRNA tar-
gets in miRGen [40], which integrated animal miRNA
targets according to combinations of four widely used
target prediction programs (miRanda, PicTar, TargetS-
can, and DIANA-microT) and experimentally supported
targets from TarBase [41] and miR2Disease [34].
Since miRNAs repress the expression of its target

gene, the second step is to test the inverse relationship
between the expression profile of the miRNA and that
of its potential targets. To achieve this, we regressed the
expression of the target mRNA on the expression of
miRNAs and select the mRNA with significant negative
regression coefficients as miRNA targets.

Identify the Genetic Variants that Have cis or trans
Regulatory Effects on miRNA or mRNA Expression
Loci that are significantly associated with expression are
called expression quantitative trait loci (eQTL). Somatic
mutations may directly or indirectly regulate the expres-
sion of mRNAs or miRNAs. The traditional statistical
methods to regress the expression levels on the indivi-
dual genetic variant for identifying the eQTL are inap-
propriate for studying the regulatory effect of somatic
mutations due to their low allele frequencies. An alter-
native approach to the current variant-by-variant regres-
sion method is groupwise regression methods in which
a group of rare genetic variants are jointly analyzed. It is
well known that eQTL includes cis-eQTL in which an
association exists between the expression of a specific
gene (mRNA) and the genetic variants at that gene’s
locus, or between the expression of miRNA and the
genetic variants at its precursor miRNA, and trans-
eQTL in which there is an association between the
expression of a gene or a miRNA and the genetic var-
iants at a non-local genomic locus. Regression methods
that regress the expression of an mRNA or an miRNA
on the number of all mutated alleles across the region
of interest were used to identify cis- or trans-eQTL.

Additional material

Additional file 1: A list of 97 genes was differentially expressed
which were previously reported to be involved in cancer.

Additional file 2: The list of 1697 differentially expressed genes.

Additional file 3: 40 differentially expressed genes with damage
values greater than 15.

Additional file 4: A total of 149 differentially expressed miRNA.

Additional file 5: Top 19 differentially expressed miRNAs with the
largest damage values (> 20) in the miRNA coexpression network.

Additional file 6: 3,953 matched miRNA-mRNA pairs.

Additional file 7: A total of 34 differentially expressed miRNA
negatively regulates 17 genes with damage values greater than 19.

Additional file 8: Target genes of top 19 miRNAs selected according
to damage values of miRNA.

Additional file 9: A total of 78 target genes with coefficient of
determination greater than 20%.

Additional file 10: 177 significantly differentially expressed genes
regulated by somatic mutation in 14 genes.

Additional file 11: A total of 23 miRNAs were regulated by somatic
mutations.

Additional file 12: A total of 323 differentially expressed genes
were regulated by LOH in the 11 genes associated with GBM.

Additional file 13: A total of 19 miRNAs were regulated by LOH
mutations.

Additional file 14: Enriched GO and pathways targeted by Somatic
and LOH mutation eQTL.
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