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Background: Altered motor control is common in cerebral palsy (CP). Understanding
how altered motor control affects movement and treatment outcomes is important but
challenging due to complex interactions with other neuromuscular impairments. While
regression can be used to examine associations between impairments and movement,
causal modeling provides a mathematical framework to specify assumed causal
relationships, identify covariates that may introduce bias, and test model plausibility.
The goal of this research was to quantify the causal effects of altered motor control and
other impairments on gait, before and after single-event multi-level orthopedic surgery
(SEMLS).

Methods: We evaluated the impact of SEMLS on change in Gait Deviation Index
(1GDI) between gait analyses. We constructed our causal model with a Directed
Acyclic Graph that included the assumed causal relationships between SEMLS, 1GDI,
baseline GDI (GDIpre), baseline neurologic and orthopedic impairments (Imppre), age,
and surgical history. We identified the adjustment set to evaluate the causal effect of
SEMLS on 1GDI and the impact of Imppre on 1GDI and GDIpre. We used Bayesian
Additive Regression Trees (BART) and accumulated local effects to assess relative
effects.

Results: We prospectively recruited a cohort of children with bilateral CP undergoing
SEMLS (N = 55, 35 males, age: 10.5 ± 3.1 years) and identified a control cohort with
bilateral CP who did not undergo SEMLS (N = 55, 30 males, age: 10.0 ± 3.4 years).
There was a small positive causal effect of SEMLS on 1GDI (1.70 GDI points). Altered
motor control (i.e., dynamic and static motor control) and strength had strong effects
on GDIpre, but minimal effects on 1GDI. Spasticity and orthopedic impairments had
minimal effects on GDIpre or 1GDI.

Conclusion: Altered motor control did have a strong effect on GDIpre, indicating that
these impairments do have a causal effect on a child’s gait pattern, but minimal effect on
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expected changes in GDI after SEMLS. Heterogeneity in outcomes suggests there are
other factors contributing to changes in gait. Identifying these factors and employing
causal methods to examine the complex relationships between impairments and
movement will be required to advance our understanding and care of children with CP.

Keywords: cerebral palsy, machine learning, motor control, electromyography (EMG), gait, orthopedic surgery,
weakness, spasticity

INTRODUCTION

Children diagnosed with cerebral palsy (CP) exhibit altered
motor control due to an injury to the brain at or near the time
of birth (Desloovere, 2005; Handsfield et al., 2016; O’Brien et al.,
2021). Altered motor control can be observed in CP in many
ways, such as increased co-contraction, decreased capacity to
selectively move individual joints, spasticity, dystonia, and altered
movement patterns. Prior research has suggested that quantifying
motor control is important to understand function and inform
treatment planning (Fowler et al., 2010; Cahill-Rowley and Rose,
2014; Schwartz et al., 2016; Shuman et al., 2018; Bekius et al.,
2020). However, altered motor control occurs and interacts with
many other impairments in CP, which makes quantifying and
isolating the effects of altered motor control challenging. In
addition to altered motor control, orthopedic impairments can
also develop, including muscle contractures and altered bone
morphology (Crane, 1959; Fabry et al., 1973; O’Dwyer et al.,
1989; Lee et al., 2009; Mathewson and Lieber, 2015). Together,
these neurologic and orthopedic impairments are associated with
limitations in movement and impact the capacity of children
with CP to participate in daily activities (Rose et al., 1989;
Johnston et al., 2004; Bjornson et al., 2014; Kamp et al., 2014;
Gross et al., 2018).

The complexity of CP makes it challenging to objectively
determine the causal effects of specific impairments on gait. As
a result, many children with CP undergo clinical gait analysis
(CGA) (Gage et al., 2009), which provides quantitative measures
of a child’s gait pattern that can be tracked over time and used
to inform treatment decisions (Miller et al., 1996; Steinwender
et al., 2000; Gough and Shortland, 2008). In particular, CGA was
historically developed to support decision making for orthopedic
surgery (Gage et al., 1984; Lee et al., 1992; Sullivan et al.,
1995; Gage and Novacheck, 2001). Many children’s hospitals
now have CGA laboratories used for pre-operative and post-
operative assessments.

While CGA has been used for treatment planning for over
30 years, deciphering causal effects of impairments on gait
has remained elusive. Data from CGA is traditionally used
to evaluate associations between a specific impairment and
an outcome measure, typically using bivariate or multivariate
regression analyses applied to retrospective data (Kramer and
Ann MacPhail, 1994; Damiano et al., 2000; Ross and Engsberg,
2007; Shin et al., 2015; MacWilliams et al., 2020). In cases where
multivariate regression has been used, the choice of variables for
inclusion has often not had a clear causal basis. Our prior work
to evaluate the impact of motor control on gait and treatment
outcomes have relied on these methods (Steele et al., 2015;

Schwartz et al., 2016; Shuman et al., 2018). Using multivariate
regression with retrospective data from multiple hospitals, we
have repeatedly demonstrated that Dynamic Motor Control
(DMC) during walking is associated with outcomes (i.e., Gross
Motor Functional Classification System Levels, Gait Deviation
Index, Walking Speed, Pediatric Outcomes Data Collection
Instrument) after orthopedic surgery, rhizotomy, or botulinum
toxin injections (Steele et al., 2015; Schwartz et al., 2016). Similar
analyses have demonstrated that other impairments—such as
strength, hamstring length, or torsional deformities—are also
correlated with treatment outcomes (Chambers et al., 1998; Hicks
et al., 2011; Shore et al., 2012; Galarraga et al., 2017; Rajagopal
et al., 2018).

Understanding whether altered motor control and other
impairments cause altered gait or treatment outcomes is
nearly impossible with non-causal regression alone. Given the
complexity and heterogeneity of CP, this “implied cause by
association” approach, without regard to possible confounding,
is likely to lead to confusing and even erroneous conclusions.
For example, researchers may observe that strength is associated
with walking speed. However, strength is also affected by other
primary neurologic deficits, like poor motor control, which may
have an independent causal impact on speed. Understanding
causal effects is impossible without considering these causal
pathways and adjusting for relevant factors.

In recent years, there has been remarkable growth in the
development and successful applications of causal inference
methods (Pearl, 2009; Imbens and Rubin, 2015). From a
conceptual perspective, causal methods allow researchers to
explicitly share assumed causal relationships and mathematically
define covariates necessary for estimating causal effects (Pearl,
1995). From a computational perspective, numerous algorithms
have been developed for modeling causal outcomes. Among
the most successful of these are Bayesian Additive Regression
Trees (BART), which have been shown to produce estimates
of causal effects with low levels of bias and variance and
realistic confidence intervals (Chipman et al., 2010; Hill, 2011;
Dorie et al., 2019; Hahn et al., 2020). Williams et al. (2018)
have highlighted the potential of causal inference for pediatrics.
However, these methods have had limited application in CP or
biomechanics research.

The goal of this research was to quantify the causal effects
of motor control and other impairments on gait, before and
after orthopedic surgery. Specifically, we prospectively recruited
children with CP who were undergoing single-event multilevel
orthopedic surgery (SEMLS). We also identified a cohort of
controls from the same time period who were not undergoing
SEMLS between gait analyses. We developed a causal model

Frontiers in Human Neuroscience | www.frontiersin.org 2 June 2022 | Volume 16 | Article 846205

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-846205 June 2, 2022 Time: 8:49 # 3

Steele and Schwartz Causal Effects of Motor Control

and used BART to quantify the effects of motor control and
other impairments on changes in gait kinematics after SEMLS.
These methods provide a foundation for understanding the
complex and interactive effects of impairments on gait for
children with CP.

MATERIALS AND METHODS

Participants
We recruited children with bilateral CP who were between 6
and 18 years old at the time of baseline gait analyses and
scheduled for SEMLS. The goal of our prospective recruitment
was to follow a representative cohort of patients at Gillette
Children’s Specialty Healthcare from their baseline gait analysis
through two follow-up assessments at six-months and one-
year after SEMLS. The one-year analysis was our primary
outcome; however, for nine participants we used the six-
month follow-up visit due to pandemic and other scheduling
related disruptions. We included patients whose baseline gait
analysis was no more than six months before their scheduled
surgery date. We defined SEMLS as surgery consisting of two
or more major orthopedic procedures on a single side. One
participant was scheduled for SEMLS, but only received a
single procedure, bilateral femoral derotation osteotomy. We
included this participant in the analysis. We also identified a
cohort of controls with CP who did not undergo SEMLS. We
identified children with bilateral CP who underwent multiple
gait analyses with kinematic and electromyographic (EMG)
recordings, with a maximum time of 2.5 years between visits
during the same time period. We excluded participants who
underwent prior or current rectus femoris transfer, since we were

evaluating motor control from EMG recordings. This research
was conducted with approval from the University of Minnesota
Institutional Review Board.

Causal Model
For this analysis we focused on evaluating the impact of
SEMLS on gait kinematics. We a priori specified our outcome
measure as the Gait Deviation Index (GDI, ClinicalTrials.gov
NCT02699554) as a common summary measure of walking
kinematics that has been used extensively in prior studies to
evaluate and predict treatment outcomes.

We constructed our causal model with a Directed Acyclic
Graph (DAG) (Verma and Pearl, 1991; Shrier and Platt, 2008;
Brewer et al., 2017). The logic behind our DAG is as follows
(Figure 1):

(1) Our objective was to determine the impact of SEMLS on
change in GDI (1GDI). Thus, SEMLS is our exposure
and 1GDI is our outcome. SEMLS induces a change in
impairment (1Imp) that causes the observed 1GDI.

(2) The covariates we identified as common causes of
both SEMLS (i.e., variables that impact the choice to
undergo SEMLS) and 1GDI included: Age and baseline
impairment (Imppre). Baseline impairments represent a set
of variables collected during CGA to evaluate neurologic
and orthopedic impairments (Table 1).

(3) Baseline GDI (GDIpre) and 1GDI are related by
measurement methods (i.e., noise, errors, regression
to the mean) and other, unmeasured factors.

(4) Surgical treatment history (Hx) is a common cause
of baseline impairment (Imppre) and whether or not
SEMLS is recommended.

FIGURE 1 | DAG describing the assumed causal relationships between SEMLS (exposure) and 1GDI (outcome). The causal relationship between SEMLS and 1GDI
is mediated by changes in impairments (1Imp). Baseline GDI (GDIpre) and 1GDI are related by measurement methods and other, unmeasured factors. Baseline
impairment (Imppre), surgical history (Hx), and Age are also included as causal factors. The DAG also includes unmeasured factors related to general CP severity,
which impact baseline impairment and surgical history. The step-by-step process and rationale for this DAG are available in the Supplementary Material and an
interactive version is available on dagitty (http://dagitty.net/mUCSPWo).
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TABLE 1 | Variable definitions.

Variable Description

GDI Overall measure of the deviation in an individual’s kinematics compared to non-disabled peers scaled such that mean(SD) over the non-disabled
population is 100(10) (Schwartz and Rozumalski, 2008). Kinematics were evaluated using marker-based motion analysis and a modified plug-in-gait
marker set

SEMLS Binary variable indicating whether or not child had single-event multi-level orthopedic surgery, defined as a surgery with two or more orthopedic
surgeries on at least one leg

Hx Binary list of prior surgical treatments

Age Years from birth defined as days/365.25

Impairments Spasticity: Mean modified Ashworth score across plantarflexors, hamstrings, hip adductors, and rectus femoris

Strength: Mean manual muscle strength score across hip flexors/extensors, knee flexors/extensors, and ankle dorsiflexors/plantarflexors where 1
is defined as a ‘visible or palpable contraction’ and 5 is defined as ‘full range of motion against gravity’

Static Motor Control (SMC): Mean static motor control score across hip abduction, hip flexion, hip extension, knee extension, and ankle
plantarflexion where 0 is very little or no control of single joint movement, 1 is impaired voluntary movement at a single joint, and 2 is good voluntary
movement at a joint

Dynamic Motor Control (DMC): Measure of the complexity of muscle activity during gait evaluated from synergy analysis of EMG data.
Complexity is evaluated as the total variance accounted for by one synergy of EMG data during CGA and compared to non-disabled peers scaled
such that mean(sd) over the non-disabled population is 100(10) (Shuman et al., 2017, 2018)

Torsional Deformity: Femoral anteversion and tibial torsion (bimalleolar axis angle) measured during physical exam

Contracture: Measures of joint range of motion from physical exam including maximum ankle dorsiflexion with the knee extended, maximum knee
extension, unilateral popliteal angle, and maximum hip extension measured during the Thomas Test

(5) We included a general severity (Sev) measure as an
unmeasured factor that impacts baseline impairment
(Imppre) and surgical treatment history (Hx).

Note that similar DAGs could be constructed for other
outcome measures such as walking speed or energy cost.
Similarly, other factors could be added to the DAG, if there
were rational arguments that they were common causes of
one of the variables in the DAG and 1GDI. The step-by-step
process we used to construct our DAG is illustrated in the
Supplementary Material.

From the DAG we determined the variables that needed to be
included in any model (e.g., regression, BART) to evaluate the
total causal effect of SEMLS on 1GDI. These variables are called
the adjustment set, representing the confounding covariates that
could produce bias if not included in an analysis. For this DAG,
the minimal sufficient adjustment set to estimate the total causal
effect of SEMLS on 1GDI was: Age, GDIpre, and Imppre. We
also determined the adjustment set to evaluate the total causal
effect of baseline impairment (Imppre) on 1GDI and GDIpre. The
minimal sufficient adjustments sets were Age and Hx for 1GDI
and Age for GDIpre. The plausibility of a DAG can be evaluated
by identifying conditional independencies, variables that should
be independent given the causal relationships defined in the
DAG. We identified the adjustment sets and independencies with
dagitty (Textor et al., 2016) and all analyses were conducted in R
(version 4.1.0) (R Core Team, 2021).

Bayesian Additive Regression Trees
To assess the total causal effects of SEMLS and baseline
impairment (Imppre) on change in GDI (1GDI) we used
Bayesian Additive Regression Trees (BART), a machine learning
method that uses a boosted ensemble of regression trees for non-
parametric function estimation relying on a Bayesian probability

model (Chipman et al., 2010). Like other tree-based regression
methods, an advantage of BART is that it can handle non-linear
effects and interactions (Tan and Roy, 2019). For causal modeling,
recent work has demonstrated that BART-based models achieve
accurate and precise causal predictions (Hill, 2011; Dorie et al.,
2019).

For this analysis, we used BART models to estimate 1GDI
using the adjustment sets identified by the DAG. Thus, to identify
the impact of SEMLS on 1GDI, we included the covariates Age,
GDIpre, and Imppre. Baseline impairments were not available
for all participants. Missing data in Imppre were imputed
using multivariate imputation by chained equations (MICE)
(van Buuren and Groothuis-Oudshoorn, 2011). We used the
bartMachine package to implement the analysis (Kapelner and
Bleich, 2016). We optimized the hyperparameters for each BART
model using 10-fold cross-validation. We report the pseudo-R2

(1 – SSE/SST) for each BART model and used k-fold cross-
validation (k = 10) to determine the out-of-sample root mean
square error (RMSE).

To assess the relative effects of individual variables from
BART, we used accumulated local effect (ALE) analysis (Molnar
et al., 2018). The ALE analysis is similar to a partial dependence
plot, but the averaging is done locally to avoid including
observations that are unlikely to ever be realized (e.g., someone
walking three standard deviations slower than average but with
a normal cadence). The ALE plots illustrate the impact of each
variable over the range of values for that variable, conditioned
on the other covariates in the model. Thus, ALE plots can
be useful for examining non-linear effects identified by BART.
For example, the ALE plot can highlight non-linear effects
such as when a variable impacts GDI with a deviation from
average (i.e., a U-shaped plot) or when a variable only impacts
GDI above or below a certain cut-off (i.e., a step function
or discontinuity).
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RESULTS

Participants
We prospectively recruited 55 children with bilateral CP who
underwent SEMLS (Table 2). During this same time period,
we identified 55 children with bilateral CP who visited the
gait laboratory for repeat visits and no intervening surgical
procedures. The participants who underwent SEMLS were older
and had more femoral anteversion, more tibial torsion, and lower
GDI scores at the initial gait analysis than the participants who
did not undergo SEMLS. The SEMLS participants received, on
average, five procedures (Figure 2).

TABLE 2 | Baseline participant characteristics, average (SD).

No SEMLS SEMLS

N 55 55

Males N 30 35

Age (years) 10.0 (3.4) 10.5 (3.1)

GDI 69.4 (10.0) 68.8 (12.0)

GDI Post 69.2 (11.9) 71.5 (11.7)

SMC 1.24 (0.42) 1.11 (0.40)

DMC 81.1 (9.0) 80.5 (9.5)

Strength 3.37 (0.59) 3.52 (0.63)

Spasticity 1.16 (0.42) 1.29 (0.46)

Anteversion (◦) 36.3 (10.4) 39.8 (11.3)

Bimalleolar (◦) 12.8 (10.6) 13.4 (11.3)

Dorsiflexion (◦) 0.32 (8.52) –0.96 (7.63)

Knee extension (◦) 0.52 (6.60) 0.12 (7.47)

Thomas Test (◦) 0.61 (6.23) 2.21 (6.11)

Popliteal angle (◦) 51.5 (15.4) 55.7 (12.8)

Effects of SEMLS
There was a small positive causal effect of SEMLS on 1GDI. The
estimated total causal effect of SEMLS on 1GDI was 1.70 GDI
points, representing the difference between the SEMLS (+0.85
GDI points) and control (–0.85 GDI points) cohorts. While the
average change in GDI between visits was 2.74 ± 8.08 for the
SEMLS cohort and –0.26 ± 7.44 for the control cohort, the
total causal effects represents the estimated effect of SEMLS after
adjusting for differences in Age, GDIpre, and Imppre. The BART
model explained 18% of the variance in 1GDI, with an out-of-
sample root mean square error of 7.77. The implied conditional
independencies of the DAG were also evaluated and all partial
correlations were less than 0.3, supporting model plausibility
(Supplementary Material).

Effects of Impairments
Baseline values of neurologic and orthopedic impairments
(Imppre) had minimal effects on 1GDI (Figure 3). SMC, DMC,
and strength had moderate effects on GDIpre, but not 1GDI.
Greater SMC or DMC resulted in higher GDIpre scores, while
muscle weakness had a negative impact on GDIpre scores.
Orthopedic impairments had smaller effects on GDIpre. Knee
extension range of motion and tibial torsion (i.e., bimalleolar
angle) had the largest effect among orthopedic impairments on
GDI. Participants who had excessive knee range of motion (i.e.,
hyperextension) had worse baseline GDI scores. Contracture of
the plantarflexors, hamstrings, or iliopsoas, as well as femoral
anteversion had minimal impact on GDIpre or 1GDI. The BART
models evaluating the effects of impairments explained 63% of
the variance in GDIpre and 9% of the variance in 1GDI. The out-
of-sample performance of the BART models were RMSE = 8.57
for GDIpre and RMSE = 8.04 for 1GDI.

FIGURE 2 | Prior and current surgeries of participants in both cohorts. Note that we excluded potential participants who underwent rectus femors transfer. TDO,
tibial derotation osteotomy; RFX, rectus femoris transfer; PTA, patellar tendon advancement; Psoas, psoas lengthening or release; Hams, hamstring lengthening;
GAS, plantarflexor lengthening; FDODFEO, distal femoral derotation and extension osteotomy; FDO, femoral derotation osteotomy; FAsoft, foot/ankle soft tissue
procedure; FABone, foot/ankle boney procedure; DFEO, distal femoral extension osteotomy; ADD, adductor lengthening or release.
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FIGURE 3 | Accumulated local effects (ALE) of baseline neurologic and orthopedic impairments on GDIpre and 1GDI.

DISCUSSION

This study showed that SEMLS has a small positive causal
effect on change in GDI for children with bilateral CP.
A 10-point change in GDI is generally considered a clinically
significant improvement in walking function (Massaad et al.,
2014). The observed change in GDI and total causal effect
were far below this threshold. However, the cohorts who did
not undergo SEMLS experienced a reduction in GDI between
visits, resulting in a net effect of SEMLS around 1.70 GDI
points. While average changes in GDI were modest, there was
significant variation in outcome between participants, which
could not be predicted by the model that included baseline age,
impairment level, or surgical history. We found that SEMLS
produced an increase in GDI larger than five points for 35%
of participants, but also a decrease of more than five points in
20% of the participants. Such heterogeneous responses to SEMLS
have motivated our team’s investigations into patient-specific
factors that can improve outcomes for children with CP. We
ultimately want to be able to determine why an individual walks
the way they do and anticipate their responses to treatment.
We had previously hypothesized that motor control could be
one such factor.

Our prior retrospective regression analyses demonstrated that
DMC was associated with GDI after treatment across analyses
at multiple clinical centers (Schwartz et al., 2016; Shuman et al.,
2018). In this study, we used a causal model to control for and
evaluate the relative effects of various impairments on change
in GDI. Importantly, DMC and other impairments did have a
strong effect on baseline GDI, indicating that these impairments

do have a causal effect on a child’s gait pattern. However, these
impairments had minimal effect on 1GDI. In other words, a
child who had greater DMC at baseline was likely to have a higher
GDI than a child with lower DMC, but better motor control
had minimal effect on expected changes in GDI. An important
point in these analyses is that the overall causal effect of SEMLS
was small, which contributes to the small observed effects of
impairments on 1GDI. Despite these small treatment effects, the
wide heterogeneity in outcomes suggests that there are still causal
factors contributing to treatment outcomes that we are missing.
These may include post-operative rehabilitation, surgeon skill, or
other measures of neurologic impairment. Identifying patient-
specific factors that can help us understand the causal pathways
that impact gait and treatment outcomes continues to be an
important area for future research.

Causal modeling provides a framework to evaluate the
complex relationships between impairments and outcomes in
CP. We created a DAG to identify the assumed relationships
between SEMLS and GDI. The DAG used in this research
could be expanded to include more detail about the assumed
causal relationships between specific neurologic and orthopedic
impairments or to evaluate other outcome measures. Similarly,
our goal in this research was not to make outcome predictions
for individual patients. Rather, we wanted to understand
the impact of SEMLS and impairments on GDI. This led
us toward more coarse modeling choices. As an example,
we ignored details of surgical procedures and did not
attempt to define the causal relationships between various
neurologic and orthopedic impairments, although this is an area
for future study.
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The DAG we created for this research gave rise to the
adjustment sets necessary to evaluate the impact of SEMLS and
impairments on GDI. The DAG indicates which variables should
not be included in the adjustment set. For example, changes in
impairments (1Imp) are mediators in the DAG; including these
variables in the adjustment set would introduce bias. SEMLS did
lead to changes in femoral anteversion and ankle contracture
(see Supplementary Material). These adjustment sets can be
used with any modeling method, including linear regression or
other machine learning methods. We selected BART rather than
linear regression or other models because we do not expect the
impact of many impairments on gait to be linear. For example, we
expect impairments like tibial torsion to reduce GDI scores with
excessive internal or external rotation, producing a “U-shaped”
response. Similarly, for some impairments like spasticity, there
may be a threshold above or below which the impairment has
an effect on gait. BART also provides a Bayesian framework that
gives posterior distributions for each parameter.

A limitation in this research was that we did not recruit
a prospective control group. Rather, we identified participants
who were evaluated at multiple CGAs without any intervening
surgical procedures. This cohort may also be subject to
sample bias, but randomization is not feasible for this
population. Since we were interested in evaluating DMC
measured from EMG recordings, we also excluded children
who underwent rectus femoris transfer, since the impact of
moving the insertion of this muscle on recruitment and
synergies remains unclear. Thus, this sample may not capture
the impact of impairments that influence stiff-knee gait in
children with CP.

CONCLUSION

The overall causal effect of SEMLS on change in GDI is modest.
While motor control and strength do influence an individual’s
gait pattern, their effect on expected changes in GDI after
SEMLS were small. It is important to consider causal frameworks
when analyzing observational data to avoid bias arising from
confounding. Critically evaluating current CGA practices and
integrating measures such as postoperative care, surgical details,
or neuroimaging into treatment planning may enhance our
ability to perform casual analyses aimed at understanding and
improving movement for children with CP.
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