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ABSTRACT

The determination of the alternative splicing iso-
forms expressed in cancer is fundamental for the
development of tumor-specific molecular targets
for prognosis and therapy, but it is hindered by
the heterogeneity of tumors and the variability
across patients. We developed a new computational
method, robust to biological and technical variabil-
ity, which identifies significant transcript isoform
changes across multiple samples. We applied this
method to more than 4000 samples from the The
Cancer Genome Atlas project to obtain novel splic-
ing signatures that are predictive for nine differ-
ent cancer types, and find a specific signature for
basal-like breast tumors involving the tumor-driver
CTNND1. Additionally, our method identifies 244 iso-
form switches, for which the change occurs in the
most abundant transcript. Some of these switches
occur in known tumor drivers, including PPARG,
CCND3, RALGDS, MITF, PRDM1, ABI1 and MYH11,
for which the switch implies a change in the pro-
tein product. Moreover, some of the switches cannot
be described with simple splicing events. Surpris-
ingly, isoform switches are independent of somatic
mutations, except for the tumor-suppressor FBLN2
and the oncogene MYH11. Our method reveals novel
signatures of cancer in terms of transcript iso-
forms specifically expressed in tumors, providing
novel potential molecular targets for prognosis and
therapy. Data and software are available at: http:
//dx.doi.org/10.6084/m9.figshare.1061917 and https:
//bitbucket.org/regulatorygenomicsupf/iso-ktsp.

INTRODUCTION

Somatic alterations in the genome can give rise to changes in
the transcript isoforms expressed in a cell, thereby affecting
multiple functional pathways and leading to cancer (1–4).

These transcriptome changes are often reflected as alterna-
tive splicing abnormalities in the tumors, which can bear
major importance in terms of the understanding and treat-
ment of cancer (5–7). Alternative splicing alterations may
confer a selective advantage to the tumor, such as angio-
genesis (8), proliferation (9), cell invasion (10) and avoid-
ance of apoptosis (11). These alterations may be caused
by somatic mutations (12), but also by changes in expres-
sion, amplifications and deletions in splicing factors (13,14).
Most genome-wide studies on the role of alternative splic-
ing in cancer have been based on local patterns of splicing
changes, encoded as events (15–19). However, alternative
splicing takes place through a change in the relative abun-
dance of the transcript isoforms expressed by a gene, which
may involve complex patterns not easily described in terms
of simple splicing events. Accordingly, to ultimately deter-
mine the impact of splicing alterations in cancer, it is im-
portant to describe them in terms of transcript isoforms
changes, as it has been illustrated previously for TP53 and
other genes (20–22). Furthermore, transcript-based anal-
ysis has been shown to improve expression-based tumor
classification (23,24) and to be essential for proper prog-
nosis and therapy selection (6,7). The determination of the
alternative splicing isoforms expressed in tumors is there-
fore of utmost relevance to uncover novel oncogenic mech-
anisms and for the development of appropriate prognostic
and therapeutic strategies. This task is, however, hindered
by the heterogeneity of tumors and the inherent biological
variability between patient samples (25,26). There is thus a
need for new methods to identify the alternative splicing iso-
forms expressed in tumors that are robust to variability and
that can help expanding and refining the catalog of molec-
ular signatures in cancer.

We have developed a new computational method that
is robust to biological and technical variability and which
identifies significant transcript isoform changes that are
consistent across multiple samples. The method is based on
a rank algorithm that detects consistent reversals of rela-
tive isoform expression, and is capable of detecting com-
plex alternative splicing changes and isoform switches. We
used this method to analyze more than 4000 RNA sequenc-
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ing (RNA-Seq) samples from The Cancer Genome Atlas
(TCGA) project. Using the consistency of the change in rel-
ative abundance across samples, our method provides pre-
dictive models with a minimal set of isoform pairs that
can separate tumor from normal samples in each can-
cer type and classifies unseen tumor data with high ac-
curacy. The same approach finds a significant signature
for basal-like breast tumors that distinguishes them from
other breast cancer subtypes and which includes the tumor-
driver CTNND1. Additionally, we are able to detect iso-
form switches, for which the relative expression change oc-
curs in the most abundant isoform, and are therefore more
likely to have a functional impact. These switches can also
accurately separate tumor and normal samples; they affect
genes in pathways frequently altered in cancer and 10 of
them occur in known tumor drivers. Surprisingly, most of
these switches are independent of somatic mutations, ex-
cept for the tumor suppressor FBLN2 and the oncogene
MYH11, suggesting that recurrent isoform switching in
cancer is mostly independent of somatic mutations. Our
analyses show that recurrent transcript isoform changes
provide novel signatures in cancer that could potentially
lead to the development of new molecular targets for prog-
nosis and therapy.

MATERIALS AND METHODS

Data collection and processing

Available processed RNA-Seq data for tumor and nor-
mal samples were downloaded for nine cancer types (Ta-
ble 1) (1–4,27–28) together with the University of Califor-
nia, Santa Cruz (UCSC) gene annotation from June 2011
(assembly hg19) and the somatic mutation data from the
TCGA data portal (https://tcga-data.nci.nih.gov/tcga/). To
assess sample quality, the estimated read-counts per gene
were analyzed using Unveiling RNA Sample Annotation
(URSA) (29) and sample pairs that did not cluster with the
rest of the samples of the same class (tumor or normal) were
removed (Supplementary Figure S1). The list of samples
kept for further analyses can be found in Supplementary
File S1. See Supplementary Material for details.

The abundance of every transcript per sample was cal-
culated in transcripts per million (TPM) (30) from the
transcript-estimated read counts provided by TCGA and
the isoform lengths from the UCSC (June 2011) annota-
tion. No further normalization on the TPM values was per-
formed. For each transcript, the relative abundance (or Per-
cent Spliced In (PSI)) per sample was calculated by normal-
izing the TPM by the sum of TPMs for all transcripts in the
gene. Genes with one single isoform or no Human Genome
Organisation (HUGO) ID were not considered for further
analysis.

The iso-kTSP algorithm

Changes in the relative abundance of the alternative tran-
scripts from a gene reflect a variation of their relative or-
der in the ranking of transcript expression. Accordingly, the
problem of finding alternative splicing changes in cancer at
the transcript level is equivalent to measuring the consis-
tency of the reversals in the relative expression of transcript

isoforms from the same gene. For this purpose, we devel-
oped the iso-kTSP algorithm, which applies the principle
of consistency of expression reversals (31–33) to alternative
splicing isoforms. The software is implemented in Java and
is available at https://bitbucket.org/regulatorygenomicsupf/
iso-ktsp.

The iso-kTSP algorithm is based on the following calcu-
lation. Given the ranking of isoform expression from multi-
ple samples separated into two classes (Figure 1A), all pos-
sible isoform-pairs from the same gene are then sorted ac-
cording to the sum of frequencies of the two possible relative
orders occurring separately in each class, defined as score S1
(Figure 1B). That is, for every pair of isoforms Ig,i and Ig,j
in each gene g, S1 is based on the frequencies of the two
possible relative orders in classes Cm, m = 1,2:

S1(Ig,i , Ig, j ) = P(Ig,i > Ig, j |C1) + P(Ig,i < Ig, j |C2) − 1

where P(Ig,i > Ig,j |C1) and P(Ig,i < Ig,j |C2) are the frequen-
cies at which the isoform Ig,i appears later than, or before,
Ig,j in the expression ranking of classes C1 or C2, respec-
tively. Our definition of S1 differs from the one used in (32)
to account for the fact that for RNA-Seq there are many
transcripts with zero reads, hence the expression ranking is
not always strictly monotonic.

To avoid possible ties, a second score S2 is used, which
is based on the average rank difference per class Cm for
each isoform pair, as proposed previously (32) (see Supple-
mentary Methods for details). All possible isoform pairs are
then sorted by the S1 score and in the case of a tie, by the S2
score. Moreover, only pairs of isoforms from the same gene
are considered and only a single pair of isoforms per gene is
listed in the ranking of isoform-pairs. The score S1 provides
an estimate of the probability for the isoforms to change
relative order between the two classes. The top scoring iso-
form pairs are therefore the most consistent changes in iso-
form relative abundance for a gene between two classes, tu-
mor and normal, or between two tumor subtypes. Each one
of these isoform-pairs provides a possible classification rule
based on the relative expression order. The semantics for an
isoform-pair rule is such that if the first isoform has lower
expression than the second, the sample is predicted to be
C1, otherwise it is predicted to be C2. For C1 = ‘normal’
and C2 = ‘tumor’:

rule : Ig,1, Ig,2
Ig,1 < Ig,2 ⇒ normal
else ⇒ tumor

Accordingly, we will call Ig,1 the ‘tumor isoform’ and Ig,2
the ‘normal isoform’. The classification of a new sample is
performed by evaluating each isoform-pair rule against the
ranking of isoform expression of this new sample. Given
k rules, the classifier selects for each isoform-pair rule the
class for which the data fulfills the rule. The final decision
for classification is established by simple majority voting, by
selecting the most voted class from the k rules. In order to
avoid ties in this voting, predictive models are always chosen
with k odd. For instance, for k = 3:

rule 1 :⇒ tumor
rule 2 :⇒ tumor
rule 3 :⇒ normal

}
classification : tumor

https://tcga-data.nci.nih.gov/tcga/
https://bitbucket.org/regulatorygenomicsupf/iso-ktsp
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Table 1. Number of analyzed paired and unpaired tumor samples from each cancer type: breast carcinoma (BRCA), colon adenocarcinoma (COAD), head
and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear-cell carcinoma (KIRC), lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD) and thyroid carcinoma (THCA)

TCGA acronym Cancer type
Paired
samples

Unpaired
tumor samples Reference

BRCA Breast invasive carcinoma 107 929 (3)
COAD Colon adenocarcinoma 26 236 (1)
HNSC Head/neck squamous cell carcinoma 38 384 (27)
KICH Kidney chromophobe 21 41 https://tcga-data.nci.nih.gov/
KIRC Kidney renal clear cell carcinoma 71 434 (4)
LUAD Lung adenocarcinoma 57 431 (28)
LUSC Lung squamous cell carcinoma 50 433 (2)
PRAD Prostate adenocarcinoma 48 247 https://tcga-data.nci.nih.gov/
THCA Thyroid carcinoma 58 439 https://tcga-data.nci.nih.gov/

All data sets were obtained from https://tcga-data.nci.nih.gov/. For the paired samples we also used the corresponding normal samples from the same
patients. For the list of samples used see Supplementary File S1.

The optimal number k of isoform pairs in the classifier, kopt,
is calculated by performing cross-validation on the training
set (Figure 1C). The ranking of isoform-pairs is calculated
at each iteration step on a balanced set leaving out one sam-
ple from each class, which are used for testing (Figure 1C).
The prediction class for a new sample is obtained by eval-
uating the expression ranking in the new sample against
the isoform pair rules. At each iteration step in the cross-
validation, the top k-pairs (k = 1. . . kmax, with k odd) are
evaluated on the test set. For each k, the accuracy of the
model is evaluated against the test set:

accuracy = T P + TN
T P + TN + F N + F P

,

where TP, TN, FN and FP are the true positives, true neg-
atives, false negatives and false positives, respectively. This
accuracy value is symmetric with respect to the choice of
either class as reference for positive cases. Additionally,
iso-kTSP also reports the discriminating power of each
isoform-pair rule in terms of the information gain (IG). IG
provides an estimate of the predictive power of each indi-
vidual isoform pair and is calculated in terms of the samples
that are correctly and incorrectly classified according to the
isoform-pair rule (see Supplementary Methods for details).
From the global ranking (Figure 1B) we then select the
top kopt isoform-pairs as a minimal predictive model (Fig-
ure 1D), where kopt is the smallest odd number of isoform-
pairs that have the highest average performance obtained in
the cross-fold validation.

Significance

Significance of the isoform-pairs is measured by performing
1000 permutations of the sample labels (Figure 1E). At each
permutation, the cross-fold validation is run as before but
keeping only the pair with the highest score S1. An isoform-
pair is significant if its score S1 and IG are larger than
the maximum ones obtained from the permutation analysis.
The global ranking of isoform-pairs (Figure 1B) together
with the permutation analysis (Figure 1E) yields the list of
significant isoform-pairs (Figure 1F).

Isoform switches

Among the significant isoform-pairs (Figure 1F), those for
which the relative expression change occurs in the most
abundant isoform of the gene, i.e. isoform switch, have
potential functional relevance. We detect these isoform
switches from the list of significant isoform-pairs by impos-
ing an anti-correlation (Spearman R < −0.8) filter on the
relative inclusion levels or PSIs of the isoforms, and keep-
ing those pairs with score S1 > 0.5 and with average expres-
sion per isoform of >1 TPM across either tumor or normal
samples (Figure 1G).

Blind tests

To assess the accuracy of the minimal classification model,
or that of a set of isoform switches, a blind test is carried
out on the samples not used for cross-validation, for which
we measure the proportion of samples correctly labeled by
the classifier, as well as the number of correct votes for each
prediction (Figure 1H).

Comparison with other approaches

The performance of the derived isoform-pair models was
compared to the performance of the models based on the
expression reversals of genes using the kTSP algorithm
(32), which is implemented as an option in iso-kTSP. Us-
ing the same input data sets, we calculated the gene ex-
pression as the sum of the expression of all its transcripts.
Additionally, as a validation of our isoform-pairs, we com-
pared our results with those predicted with SwitchSeq (http:
//biorxiv.org/content/early/2014/06/06/005967) on the same
input data sets (Supplementary Table S1).

Mutation association analysis

For the purpose of finding associations between somatic
mutations and isoform switches, we considered those sam-
ples for which we had both RNA-Seq and mutation data
from DNA sequencing (Supplementary Table S2). Using
these samples, we compared the number of samples with a
given isoform switch with the number of samples for which
the transcripts involved in the switch overlap mutations.
Given the samples M with one or more mutations in either

https://tcga-data.nci.nih.gov/
https://tcga-data.nci.nih.gov/
https://tcga-data.nci.nih.gov/
http://biorxiv.org/content/early/2014/06/06/005967
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Figure 1. Methodology for detecting significant alternative splicing iso-
form changes in cancer. The method is illustrated with data from colon
adenocarcinoma (COAD). (A) Samples are partitioned into two classes,
here tumor (T) and normal (N). (B) The calculation of relevant isoform-
pairs is based on the global ranking of isoform-pairs according to score
S1 (Materials and Methods). (C) Predictive models are obtained by per-
forming cross-validation: iteratively training in all but one pair of tumor-
normal samples, and testing on this left-out pair. At each step of the cross-
validation, the top k = 1, 3, 5, etc. isoform-pairs of the score S1 ranking are
tested on the left-out sample pair according to a majority voting (Materials
and Methods). (D) A minimal classification model is obtained by selecting
the smallest number of pairs from the global ranking with the largest aver-
age accuracy calculated in the cross-validation. In the case of COAD, this
model consists of a single isoform-pair model in gene FBLN2. (E) Signifi-
cance of the isoform-pairs is assessed by comparing to the expected distri-
butions of score S1 and IG values obtained from 1000 permutations of the
class labels and by selecting at each permutation the highest score S1 and
the highest IG. (F) The result from the permutation analysis is a ranking
of significant isoform-pairs that change relative expression between tumor
and normal samples more than expected by chance. (G) From this ranking
of significant isoform-pairs, we detect as isoform switches those isoform-
pairs with minimum score and expression value that anti-correlate across
samples (Materials and Methods). In the example, CD44 presents a clear
switch between two isoforms in COAD even though it was not chosen in
the minimal classification model. (H) The isoform-pairs (either from the
minimal classification model or from the set of isoform switches) are tested
on a held-out data set of unpaired tumor samples.

isoform from the pair, and the samples S with the isoform
switch, a Jaccard index J for the association of these two
variables was calculated as:

J = |M ∩ S|
|M ∪ S| ,

which takes values between 0 and 1. For each isoform switch
in each cancer type, a z-score was calculated by comparing

its value J to the J values of 100 genes with similar median
isoform length. The above analysis was also repeated us-
ing only mutations that affect the protein sequence or con-
sidering the overlap with genes rather than transcript re-
gions, obtaining similar results (see Supplementary Meth-
ods). The mutual information for the association of iso-
form switches and mutations, and corresponding z-score
were also computed (see Supplementary Methods). To mea-
sure the association of mutations to isoform PSI values,
the distribution of the differences between tumor and nor-
mal isoform PSIs was compared between mutated and non-
mutated samples using a Mann–Whitney test. On the other
hand, to measure the mutual exclusion between isoform
switches and protein-affecting mutations, we used the fol-
lowing approach: given the number of samples having an
isoform switch and no mutation (n10), and those having a
mutation but no isoform switch (n01), a mutual-exclusion
score (mx), with values between 0 and 1, was defined as:

mx = 2
min(n10, n01)

N
,

where N is the total number of samples. A z-score was calcu-
lated similarly as above (see Supplementary Methods). Fur-
ther details and data are provided as Supplementary Mate-
rial.

RESULTS

Recurrent alternative splicing isoform changes can separate
tumor and normal samples

For each cancer type, the iso-kTSP algorithm was applied
to the paired samples to obtain minimal classifiers to sepa-
rate tumor and normal samples. This yielded different pre-
dictive models for the 9 cancer types (Figure 2A and Sup-
plementary Figure S2A), with PRAD, THCA and KIRC
having the lowest average accuracies, and lung squamous
cell carcinomas (LUSC), LUAD, COAD and KICH achiev-
ing 100% average accuracy in the cross-fold validation. The
blind tests on the remaining unpaired tumor samples show
overall accuracies greater than 84% (Figure 2B and Sup-
plementary Figure S2B). These models provide a minimal
set of isoform-pairs whose relative expression can separate
tumor and normal samples with high accuracy despite the
variability of the transcript expression measurement across
samples (Supplementary Figures S3–S8) (model files are
given in Supplementary File S2). All the isoform-pairs de-
rived for the models are significant according to the per-
mutation analysis (Supplementary Figures S9). This signif-
icance depends in general on the number of samples avail-
able and on the heterogeneity of the tumor samples. Permu-
tation analysis for a varying number of input samples in-
dicates that in order to obtain significant isoform changes,
more than 13 samples are needed on average (Supplemen-
tary Figure S10), which is the case for the cancer types an-
alyzed.

The genes with significant isoform-pairs detected include
FBLN2, which undergoes an isoform change related to
the skipping of a protein coding exon (Supplementary Fig-
ure S11) and moreover appears as a single gene model for
COAD and is part of the BRCA model (Figure 3A). FBLN2
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Figure 2. Predictive isoform-pair models. (A) Minimal isoform-pair clas-
sifiers for BRCA, PRAD, LUAD and LUSC (models for KICH, KIRC,
HNSC and THCA are given in Supplementary Figure S2). Each panel
shows the score S1 and IG for each isoform-pair in the model, which is in-
dicated by the gene symbol. All isoform-pairs are significant according to
the permutation analysis. Next to each cancer label the maximum expected
accuracy is given, which is calculated from the cross-validation analysis.
Plots with the expression values for each isoform pair are provided in Sup-
plementary Figures S3–S8. (B) Blind tests of the isoform-pair models on
the unpaired samples for each cancer type. The barplots indicate the pro-
portion of samples (y-axis) for each possible number of isoform-pair rules
from the model fulfilled by the tumor samples (x-axis). A sample is labeled
according to a majority vote from all isoform-pair rules. The percentage of
samples correctly labeled is also given.

has been proposed before to be a tumor suppressor (34) with
a cancer-related function that seems to be specific of the
protein produced in tumor cells (35). This isoform switch
occurs in more than 98% of the unpaired tumor samples
in BRCA and COAD (Figure 3A). In the case of LUAD,
surprisingly, we found that the most informative isoform
change does not occur in NUMB, as reported previously
using microarrays (9,17), but in the splicing factor QKI,
which shows a change that cannot be described in terms
of a simple alternative splicing event (Figure 3B). In con-
trast, the LUSC model involves a different set of genes from
LUAD model, and includes the gene ZNF385A (Figure 2),
whose protein product interacts with TP53 and promotes
growth arrest (36). The isoform change found is related to
the use of an alternative first exon (Supplementary Figure

Figure 3. Examples of predictive isoform-pairs. (A) The relative inclusion
values (PSIs) for the isoform-pair detected for FBLN2 separate tumor
from normal samples in BRCA and COAD (upper panels). The x-axis
represents the PSI for the isoform found to be more abundant in normal
samples (normal isoform) and the y-axis represents the PSI of the most
abundant isoform in tumor samples (tumor isoform). Tumor and normal
samples are shown in red and blue, respectively. The bottom panels show
the PSIs for the unpaired samples, and the percentage of correctly labeled
tumor samples by this isoform-pair is indicated. (B) Significant isoform-
pair change for QKI in LUAD. The gene locus of QKI is shown, indicat-
ing the exon-intron structures of the most abundant isoforms in tumor and
normal samples. The zoom-in highlights the 3′-end region where the splic-
ing variation takes place. The bottom left panel shows the PSI values for
the normal (x-axis) and tumor isoforms (y-axis). As before, normal and
tumor paired samples are shown in blue and red, respectively.

S12). Similarly to COAD, THCA and KIRC have single-
gene models (Supplementary Figure S2). In particular, for
THCA the model involves S100A13, a gene encoding a cal-
cium binding protein that has been proposed to be a new
marker of angiogenesis in various cancer types (37). The
isoform change involves an alternative first exon and classi-
fies correctly 84.5% of the unpaired tumor samples (Supple-
mentary Figure S13). Interestingly, S100A13 and another
member of the S100 family, S100A16, have also isoform
changes in KICH, even though they were not included in
the KICH model (Supplementary Figure S13). The KIRC
model is composed of a single-isoform change involving the
production of a transcript with a retained-intron in the gene
CPAMD8 that is annotated as non-coding (Supplementary
Figure S14). A similar case occurs in the gene NAGS, which
is part of the KICH model (Supplementary Figure S2) and
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is related to an autosomal recessive urea cycle disorder (38).
We predict that NAGS produces a protein-coding isoform
in normal samples, but in tumor samples it produces an iso-
form with a retained-intron that is annotated as non-coding
(Supplementary Figure S15). Importantly, the loss of the
protein coding isoform is predictive of 100% of the KICH
tumor samples (Supplementary Figure S15). Other isoform
changes are discussed in the Supplementary Material (Sup-
plementary Figures S16–S18). Annotation files (in GFF for-
mat) for the isoform-pairs in these models are given in Sup-
plementary File S3.

We compared the predictive accuracy of our isoform-
based models with the accuracy of gene-based models using
the reversal of gene expression, as described by the origi-
nal kTSP algorithm (32). We found that both approaches
show in general very similar accuracies (Supplementary
Figure S19). Interesting exceptions are KIRC and LUSC,
for which the isoform-based model shows better accuracy
than the gene-based model (compare Supplementary Fig-
ure S19 with Supplementary Figure S2). In contrast, KICH
shows much better accuracy for gene expression changes
than for splicing changes (compare Supplementary Fig-
ure S19 with Supplementary Figure S2). Interestingly, the
isoform- and gene-based models involve different sets of
genes in each cancer type, indicating that these alterations
occur through independent mechanisms. This comparison
shows that alternative splicing changes can provide inde-
pendent predictive signatures with similar accuracy to mod-
els based on gene expression patterns.

Changes in alternative splicing isoforms can discriminate tu-
mor subtypes

Cancers are generally classified into subtypes to facilitate
patient stratification for more precise prognosis and selec-
tion of therapeutic strategy. In particular, breast cancer clas-
sification has been recently refined based on molecular in-
formation from multiple sources (3). We thus decided to in-
vestigate whether breast cancer subtypes are associated with
consistent isoform changes when compared to each other.
We separated the BRCA tumor samples into luminal A,
luminal B, Her2+ and basal-like as labeled by TCGA (3)
(Supplementary File S1) and run the iso-kTSP algorithm
comparing each subtype against a pool from the rest. In or-
der to maintain balanced sets for the comparison and avoid
biases due to sample selection, we subsampled 100 times 45
arbitrary samples for a given subtype and a pool of 15 from
each of the other 3 subtypes together. At each iteration step,
we performed permutation analysis of the labels to deter-
mine the significance of the detected isoform changes. We
found that only basal-like tumors showed isoform changes
that were significant in more than 80% of the sampling iter-
ations (Figure 4A and Supplementary Figure S20). Among
the most significant cases we found KIF1B, which has been
implicated in apoptosis (39); ATP1A1, proposed to have tu-
mor suppressor activity (40); ITGA6, found to be required
for the growth and survival of a stem cell like subpopula-
tion of MCF7 cells (41); and CTNND1, whose alternative
splicing was previously related to cell invasion and metas-
tasis (42) (Figure 4A). We selected the top 7 isoform-pairs
in basal-like that were significant in more than 80% of the

Figure 4. Isoform-pair rules for the basal-like breast tumors. (A) The top 7
recurrent isoform changes found comparing basal-like against a balanced
pool of the other subtypes (luminal A, luminal B and Her2+). The barplot
indicates the frequency of iterations for which the isoform-pair was signif-
icant according to the permutation analysis performed on the same sub-
sampled sets. (B) Accuracy of the model for the classification of basal-like
samples against other subtypes when tested on the entire set of 1036 BRCA
tumor samples. The barplot shows the proportion of samples (y-axis) with
each possible number of correct votes (x-axis), from 0 to the number of
genes in the model, and the percentage of samples correctly classified.

iterations to build a basal-like model, which classified cor-
rectly 93.6% of all the BRCA tumor samples, with 47% of
the samples fulfilling all 7 isoform change rules (Figure 4B).
Although this cannot be considered a blind test, it provides
an estimation of the expected accuracy. For the other BRCA
subtypes we found much lower consistency of the isoform
changes and none of them were significant for more than
13% of the permutation tests (Supplementary Figure S21).

Four different subtypes have been defined based on
mRNA expression for the LUSC: basal, classical, primi-
tive and secretory; which have different clinical and biolog-
ical characteristics (43). We applied the same approach as
above to the four LUSC subtypes using the subtype labeling
from TCGA (2), comparing 24 samples from each subtype
against the pool of three sets of 8 arbitrary samples from
the other subtypes. The most relevant isoform change was
found for gene GCNT2 in association to the classical sub-
type in at least 60% of the subsampling iterations, but sig-
nificant only in 22% of them (Supplementary Figures S22
and S23). Interestingly, GCNT2 overexpression has been
linked to breast and lung cancer metastasis (44). Despite
the low recurrence of the isoform changes, tests on the en-
tire data set was able to separate correctly the classical from
the other subtypes for more than 80% of samples (Supple-
mentary Figure S22). All other found splicing changes for
the other LUSC subtypes occurred at lower frequencies and
showed significance in no more than 3% of the iterations.

Colorectal cancers have been classified into hypermu-
tated and non-hypermutated, where non-hypermutated tu-
mors have generally worse prognosis (1). Following pre-
vious classification criteria (1), we labeled COAD sam-
ples as hyper or non-hyper mutated if they had more or
fewer than 250 mutations, respectively, and compared both
subtypes by subsampling 40 samples from each one 100
times. This yielded specific isoform changes between the two
types occurring in more than 40% of the iterations (Supple-
mentary Figure S24), including a change in the long non-
coding RNA gene antisense of NUTM2A (NUTMA2A-
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AS1), which appeared in 57% of the models. We tested two
different models with the top 5 and 13 isoform-pairs, ob-
taining an accuracy of more than 80% on the total COAD
data set (Supplementary Figure S24). Models and annota-
tion files (GFF format) for all subtype models are provided
in Supplementary Files S2 and S3, respectively.

A catalog of alternative isoform switches in cancer

The models described above are optimized to obtain the
minimum number of isoform-pairs with maximum average
accuracy, which is convenient for defining biomarkers with
potential clinical applications. However, the frequency of
these isoform changes does not imply functional relevance.
On the other hand, cases where the change occurs in the
most abundant isoform, i.e. isoform switches (Figure 1G),
are more likely to have a functional impact. Accordingly,
in order to obtain all the significant isoform changes with a
possible functional relevance in cancer, we calculated all sig-
nificant isoform switches between tumor and normal sam-
ples using the following approach: Starting from the 1178
genes with significant isoform changes in at least one can-
cer type according to our permutation analysis (Figure 1D),
we kept those with score S1 > 0.5, which corresponds to se-
lecting isoform-pairs with a change in more than 75% of
the samples. Additionally, we kept those cases for which the
relative inclusion levels of the two isoforms in the signifi-
cant isoform-pair anti-correlate, as observed for FBLN2,
QKI and other genes (Figure 3 and Supplementary Figures
S12–S18). We thus selected those isoform-pairs having an
anti-correlation of PSI values of R < −0.8 (Spearman). Fi-
nally, we kept only those isoform-pairs with average expres-
sion per isoform of >1 TPMs across either tumor or normal
samples.

This gave a total of 244 isoform switches, with 59 of them
appearing in more than one cancer type (Figure 5; Sup-
plementary File S4), and the most common across cancers
being FBLN2. From the total 244 switches, 10 occur in
known cancer drivers (Figure 5), and several others have
been associated before with cancer, like CD44, which has
been observed to be relevant in colon cancer initiation (45),
and SLC39A14, whose alternative splicing is regulated by
WNT in colon cancer (46). LUAD, KIRC and LUSC are
the cancer types with most switches, with 85, 65 and 54,
respectively. LUSC and LUAD have 33 switches in com-
mon. In contrast, KIRC and KICH have only 2 switches in
common. HNSC and PRAD are the cancer types with the
fewest switches, 7 and 2, respectively. Although functional
analysis did not yield any significantly enriched Reactome
pathways (47), isoform switches appear frequently in sig-
nal transduction, immune system and metabolism related
pathways (Figure 5 and Supplementary Figure S25). On the
other hand, Gene Ontology analysis shows enrichment of
several categories, including actin activity in relation to cell
motility and migration, and in categories related to extra-
cellular organization, as well as in response to estrogen and
regulation of MAPK activity (Supplementary Figure S26).

We tested the accuracy of switches as predictive models
by performing blind tests with all of them on the set of
unpaired tumor samples and found accuracies of around
90% and higher (Supplementary Figure S27). These iso-

Figure 5. Catalog of isoform switches across various cancer types.
Heatmap of the 244 isoform switches detected for the nine cancer types,
separated according to whether the genes had an annotated Reactome
pathway (A) or not (B). The heatmaps show whether the isoform switch oc-
curs in each cancer type, with the color code indicating the IG of the switch:
from light blue for low IG (0–0.2) to dark blue/purple for high IG (0.8–
1). In red we indicate whether the gene with the switch is annotated as a
tumor driver in COSMIC (http://cancer.sanger.ac.uk/). Regarding the mu-
tations, we indicate the Jaccard index and the mutual-exclusion score with
light green (0.01–0.02), medium green (0.02–0.03) and dark green (larger
than 0.03). The presence of a significant difference (P-value < 0.05) of the
relative inclusion (delta-PSI) between tumor and normal isoforms in mu-
tated and non-mutated tumor samples before multiple-testing correction
is indicated in brown color. The Reactome Pathway annotation for those
genes for which this was available is also shown.

form switches are thus good predictors of tumor samples.
Moreover, the majority of the switches involve a change
in the encoded protein product (Figure 6): 176 (72%) of
the switches affect the protein, 10 (4%) involve a change
from coding to non-coding isoform between tumor and nor-
mal, 11 (4.5%) involve the reverse change and 43 (17.5%)
do not involve any change in the protein sequence (Fig-
ure 6). In particular, the tumor drivers PPARG, CCND3,
RALGDS, MITF, PRDM1, ABI1 and MYH11, present re-
current isoform switches in LUSC, BRCA, KIRC, KIRC,
LUSC, LUSC and COAD, respectively, which affect the en-
coded proteins and which could have implications for the
identification of possible targeted therapies. In contrast, the
switches in the tumor drivers CDKN2C and CTNNB1, the

http://cancer.sanger.ac.uk/
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Figure 6. Protein affecting isoform switches across all tumor samples of
the nine cancer types. Heatmap of the 244 isoform switches detected in the
9 cancer types, for all paired and unpaired tumor samples. The heatmap
shows for each tumor sample whether the switches defined in that cancer
type occur in that sample, and whether they affect the protein sequence:
No CDS means no coding annotation was defined in either the normal or
the tumor isoform; No normal CDS and No tumor CDS means no coding
annotation was defined for the normal or the tumor isoform, respectively;
No protein affected means that the amino-acid sequences are identical for
both isoforms in the switch and only UTR regions are differing between the
normal and tumor isoform; finally, Protein affected means the amino-acid
sequence is different between the normal and tumor isoforms. The number
in parenthesis on the legend shows the total number of isoform switches
for that type. The label text ‘K’ in fourth column refers to the cancer type
KICH.

former in LUSC and LUAD and the latter in LUSC, do
not affect the protein. Interestingly, the tumor driver NIN
changes from a protein coding to a non-coding isoform in
THCA. These results suggest that the detected alternative
splicing switches may have a functional impact in the can-
cer cells. Interestingly, the significant isoform switches de-
tected present a clearly differential pattern in each cancer
type (Figure 6). This raises the question of whether the same
switches, even though they are not found to be significant in
all cancer types, might still be present in samples from other
cancer types at low frequency, but still separate cancer types.

To investigate this question, we considered the presence or
absence of each isoform switch in each tumor sample by
testing the isoform rule corresponding to the switch, re-
gardless of whether the switch was predicted initially in that
cancer type. We found that isoform switches indeed group
tumor samples together (paired and unpaired) according
to cancer type (Supplementary Figure S28). Unsupervised
clustering of the occurrence pattern of the switches shows
that KIRC, KICH, THCA, PRAD and LUAD tumors are
clearly separated from the rest, and that most of the BRCA
samples cluster together and next to the COAD samples.
In contrast, some LUSC samples are grouped together with
LUAD samples, but the majority of them are clustered with
HNSC samples (Supplementary Figure S28). These results
indicate that isoform switches are not only related to po-
tential tumorigenic processes, but they are also characteris-
tic of specific cancer types. All details for the identified iso-
form switches and corresponding annotation are provided
in Supplementary Files S4 and S5.

To further validate our results, we compared them with
the results obtained applying SwitchSeq to the same start-
ing data sets. When we compared our significant isoform-
pairs (Figure 1F) with SwitchSeq isoform-pairs, we found
that between 25% and 75% of our isoform-pairs are also
predicted by SwitchSeq, whereas only 1–26% of the Switch-
Seq isoform-pairs are predicted by both methods (Supple-
mentary Table S1A). Moreover, using our score S1 and
the score provided by SwitchSeq, we find overall a low
correlation between the common isoform-pairs (Spearman
R ∼0.17–0.87) (Supplementary Table S1A). Importantly,
none of the isoform-pairs predicted by SwitchSeq that are
not present in our set are significant according to our per-
mutation test. That is, permuting the tumor and normal la-
bels there is a non-zero probability that the same Switch-
Seq isoform-pair will appear by chance. On the other hand,
when we compared our isoform switches (Figure 5) with the
SwitchSeq results we found that between 90% and 100% of
our switches are also predicted by SwitchSeq, and that the
correlation between scores for the common isoform-pairs
is much higher than before, ranging between 0.75 and 1
(Spearman R) (Supplementary Table S1B and Supplemen-
tary Figure S29). We conclude that our isoform switches can
be independently validated and that they describe changes
that are significant as can be distinguished from the variabil-
ity originating from the heterogeneity of the samples and
inter-individual variability.

Isoform switches in cancer are not frequently associated with
somatic mutations

As splicing changes may be triggered by genetic mutations
(12), we thus investigated whether any of the detected iso-
form switches may be caused by somatic mutations in the
same genomic locus. To this end, we tested whether there
was any association between the presence of the isoform
switch in tumor samples and somatic mutations in the re-
gion of the transcript isoforms undergoing the switch in the
same samples. Since in addition to intronic mutations, syn-
onymous as well as non-synonymous mutations could alter
the splicing of a gene (48), we considered all mutation types
available in TCGA: coding-related (non-sense, missense,
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Figure 7. Association between somatic mutations and isoform switches.
(A) Plot of the Jaccard index (x-axis) for the association of mutations with
switches in tumor samples and the frequency of samples with mutations in
the transcripts undergoing the switch (y-axis). (B) Example of the tumor
suppressor FBLN2. Mutations present in each cancer type are represented
in red if the switch is present in the same sample, and in blue if that sample
does not have the switch. Each mutation is labeled with the identifier of the
sample and the type of mutation. (C) Example of the oncogene MYH11.
The relative inclusion values (PSI) of the two isoforms in the switch (left
panels) separate tumor and normal in COAD and can classify correctly
91.5% of the unpaired tumor samples. Mutations present in each cancer
type (right panel) are represented in red if the switch is present in the same
sample, and in blue if that sample does not have the switch. Each mutation
is labeled with the identifier of the sample and the type of mutation.

frameshift and indel) and non-coding-related (synonymous,
splice-site and RNA) mutations. For each isoform-switch
and for each cancer type, we calculated the Jaccard index
across all samples for the association between the presence
of the switch and the presence of somatic mutations (Fig-
ure 7A) (Materials and Methods). The Jaccard index agrees
with the mutual information measure and do not corre-
late with the average mRNA length of the switches (Sup-
plementary Figure S30). This analysis shows that FBLN2,
MYH11, FLNA and TNC have the strongest association
between mutations and switches (Figure 7A and Supple-
mentary Figure S30). These four genes are also the ones
with switches with the highest frequency of mutated sam-
ples (Figure 7A). For FBLN2, we found several mutations
in BRCA and COAD samples on the alternative exon and
the flanking constitutive exons (Figure 7B). However, the
number of somatic mutations would not be enough to ex-
plain all the switches observed. We also found frequent mu-
tations in the alternatively spliced region of the oncogene
MYH11. In particular, we found recurrent deletions and in-

sertions on the alternative exon in COAD and BRCA tumor
samples that coincide with the presence of the switch (Fig-
ure 7C), which fall on a region of low conservation that is
next to a putative binding site for the splicing factor SRSF1
(Supplementary Figure S31). For FLNA and TNC we did
not see a pattern of recurrence of somatic mutations in the
region where the splicing variability occurs. In any case, the
number of found mutations cannot explain in general the
frequency of the switches observed.

Somatic mutations could also affect the magnitude of the
splicing change in specific samples. We therefore tested, for
each isoform-switch, whether the presence of mutations in
a tumor sample is associated with a larger difference of PSI
between the pair of isoforms involved in the switch (Mate-
rials and Methods). Among the most significant cases, we
found TGM1 and SLK, both in LUSC (Supplementary Fig-
ure S32). These two cases show differences in the distribu-
tion of PSI differences in samples with and without muta-
tions (Supplementary Figure S32), suggesting that somatic
mutations may be partly responsible for the differences in
the relative abundance of the two transcripts involved in the
switch in these genes. However, the proportion of mutated
samples is very small to make a reliable comparison and af-
ter multiple-testing correction, none of the found cases re-
mained significant. This suggests that, except for a limited
number of cases, mutations may not be the main cause of
the recurrent splicing switches found in tumors.

We thus hypothesized that mutations and isoform
switches may occur independently as two alternative mech-
anisms of functional transformation in cancer. To test this
possibility, we measured how frequently mutations that af-
fect the protein-coding region occur in tumor samples with-
out the isoform switch in the same gene by defining a
mutual-exclusion score based on the number of samples
with no switch but with protein-affecting mutations (Ma-
terials and Methods). We found that in general the mu-
tual exclusion score correlates with the overall proportion
of mutated samples (Supplementary Figure S33). However,
the number of samples with both switch and mutation is
generally comparable or higher than the number of sam-
ples with mutation and no switch, except for the genes TNC
and HECW2 in LUSC, for which we find more samples
with a protein-affecting mutation and no switch than with
switch and protein-affecting mutation (Supplementary Fig-
ure S33). This suggests that both types of alterations, mu-
tations and alternative splicing changes, could potentially
contribute to cancer. We conclude that, although there are
currently not a sufficient number of mutations that can
provide clear patterns in relation to the described recur-
rent isoform switches, there are nonetheless a few cases for
which this association may exist, as described for the genes
FBLN2 and MYH11, and there is some evidence of mutual
exclusion between protein-affecting mutations and alterna-
tive splicing, like for the genes TNC and HECW2.

DISCUSSION

We have described a novel computational method to study
consistent alternative splicing changes across multiple sam-
ples from two conditions to find predictive signatures with
a potential functional impact in cancer. Classification rules
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are based on the relative expression of a single pair of iso-
forms per gene, which corresponds to an alternative splic-
ing change between two conditions. Our method provides
robust predictive models despite of the variability of tran-
script isoform expression across multiple samples, as the
models are not dependent on parametrizations or on any
normalization that would maintain the order in the ranking
of isoform expression. This is especially useful for the analy-
sis of RNA-Seq data from multiple samples, since between-
sample normalization methods are not yet fully established.
Moreover, our method can be used with data from heteroge-
neous platforms, as long as they provide a meaningful rank-
ing of expression, which is convenient for the re-analysis of
public data sets.

The application of our method to RNA-Seq data from
the TCGA project has yielded classifiers that can distin-
guish tumor from normal samples, and between specific tu-
mor subtypes, based on isoform changes. When tested on
held-out data sets, the predictive models show overall high
accuracies, which are comparable to the ones obtained us-
ing models based on gene expression patterns and involve
different sets of genes; indicating that alternative splicing
alterations describe independent cancer signatures, possibly
due to cancer-specific splicing regulatory programs. More-
over, although individual isoform-pair rules do not show in
general a strong predictive power, in combination they accu-
rately classify tumor samples in the blind test. This suggests
that splicing alterations are heterogeneous across samples,
but in combination they provide characteristic signatures,
similarly to the patterns of somatic mutations (5). This het-
erogeneity is further highlighted by the fact that different
cancer types only share a small fraction of the found iso-
form changes. Although some of these changes may be ex-
plained by the differences in the cell composition of tumors
(10,49), we observed a homogenous pattern of predicted tis-
sue types in tumor and normal samples for most of the can-
cer types analyzed, indicating that the splicing changes are
not a consequence of differences in cell type composition.
Comparative analysis between cancer subtypes only yielded
a significant model for basal-like breast tumors, which in-
cludes genes with known functional relation to cancer, indi-
cating that most of the subtypes considered may share sim-
ilar alternative splicing patterns.

Our analysis shows that isoform changes hold sufficient
information to separate tumor and normal samples, and
specific tumor subtypes, which suggests that they can serve
as effective molecular markers, as they would only require
measuring the expression of two isoforms per gene for a
small number of genes. On the other hand, among all sig-
nificant isoform changes, we found 244 isoform switches,
for which the change occurs in the most abundant iso-
form, and are therefore more likely to have a functional
impact. The predicted switches are validated using an in-
dependent computational method and are found to occur
in genes from pathways frequently altered in tumors. Addi-
tionally, we find that the majority of the switches involve a
change of the encoded protein or a change between a pro-
tein coding and a non-coding isoform, which suggests that
they may have a functional impact. In particular, we pre-
dict isoform switches that affect the encoded protein for the
cancer drivers CCND3, MYH11, MITF, RALGD5, ABI1,

PRDM1 and PPARG, which may have implications for
targeted therapy development. Interestingly, the predicted
switches not only separate accurately tumor and normal
samples, but they also group tumor samples according to
cancer type. Thus, although multiple alternative splicing al-
terations occur in all cancer types, there seems to be distinc-
tive regulatory programs that contribute to cancer-specific
phenotypes. The isoform switches provide thus an opportu-
nity to develop experimental strategies based on the detec-
tion of tumor-specific protein isoforms. For instance, QKI
has a splicing switch in lung adenocarcinoma that cannot
be described in terms of simple events and which has better
predictive power than well-known splicing changes in other
genes, like NUMB. Similarly, we found switches in genes in-
volved in cell communication pathways, including DST and
FLNA, which could be used for developing tumor-specific
molecular targets with reduced cross-reactivity to other pro-
teins.

Our analyses indicate that somatic mutations occurring
on exons and splice-sites cannot explain in general the iso-
form switching patterns. In particular, 99% of the tran-
scripts analyzed appear mutated in less than 5% of the tu-
mor samples, whereas the switches occur in at least 50%
of the samples. Despite the lack of somatic mutations, we
found a significant association for two cases: the tumor sup-
pressor FBLN2 and the cancer driver MYH11. Although
it has been suggested that synonymous mutations in known
cancer drivers may contribute to the oncogenic process (50),
these occur at low frequency and a direct link between
the observed mutations and specific splicing changes in the
same tumor samples was not provided. The observed varia-
tion could still be due to intronic mutations not represented
in the currently available exome sequencing data. Alterna-
tively, the switches could be explained by alterations in splic-
ing factors. Although point mutations and indels on splic-
ing factors also occur at low frequency (14), splicing fac-
tors show frequent amplifications, deletions and expression
changes in tumors (13). Another possibility is that alter-
ations in chromatin modifications and DNA methylation
are responsible for the observed changes. These alterations
are frequent in cancers (51,52) and they may induce changes
in splicing (53,54). Interestingly, FBLN2, which presents
a switch in various cancers, has been observed frequently
methylated in breast and other epithelial tumors (55). Fur-
ther analysis of the frequency of mutations and switches
shows that the gene TNC, linked to cell invasion in tumors
(56), has a pattern of mutual exclusion between the iso-
form switch and the somatic mutations affecting the cod-
ing regions, suggesting that, albeit to a limited extent, splic-
ing switches may provide an alternative mechanism toward
functional transformation in cancer.

In conclusion, we have derived accurate predictive mod-
els based on transcript isoform changes from multiple pa-
tient samples and recurrent isoform switches with potential
application in molecular prognosis and for the exploration
of novel therapeutic strategies. Our analysis of nine cancer
types indicate that recurrent changes in splicing may con-
tribute together with mutations and other alterations to ex-
plain tumor formation, thereby providing novel signatures
for cancer.
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