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Abstract

Normal pancreatic epithelium progresses through various stages of pancreatic intraepithelial 

neoplasms (PanINs) in the development of pancreatic ductal adenocarcinoma (PDAC). 

Transcriptional regulation of this progression is poorly understood. In mouse, the Hnf6 

transcription factor is expressed in ductal cells and at lower levels in acinar cells of the adult 

pancreas, but not in mature endocrine cells. Hnf6 is critical for terminal differentiation of the 

ductal epithelium during embryonic development and for pancreatic endocrine cell specification. 

We previously showed that, in mice, loss of Hnf6 from the pancreatic epithelium during 

organogenesis results in increased duct proliferation and altered duct architecture, increased 

periductal fibrosis and acinar-to-ductal metaplasia. Here we show that decreased expression of 

HNF6 is strongly correlated with increased severity of PanIN lesions in samples of human 

pancreata and is absent from >90% of PDAC. Mouse models in which cancer progression can be 

analyzed from the earliest stages that are seldom accessible in humans support a role for Hnf6 loss 

in progression from early to late stage PanIN and PDAC. In addition, gene expression analyses of 
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human pancreatic cancer reveal decreased expression of HNF6 and its direct and indirect target 

genes compared to normal tissue and up-regulation of genes that act in opposition to HNF6 and its 

targets. The negative correlation between HNF6 expression and pancreatic cancer progression 

suggests that HNF6 maintains pancreatic epithelial homeostasis in humans, and that its loss 

contributes to the progression from PanIN to ductal adenocarcinoma. Insight on the role of HNF6 

in pancreatic cancer development could lead to its use as a biomarker for early detection and 

prognosis.
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Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer mortality in 

the U.S. [1]. Despite improvements in survival rates of other types of cancer, the five-year 

survival rate for PDAC is only 6% and the vast majority of patients die within a year of 

diagnosis. Ninety-five percent of all pancreatic cancers are adenocarcinomas arising from 

the exocrine tissue. Diagnosis, analysis and treatment of human pancreatic cancer is 

impeded by the advanced stage at which most patients present with the disease, the 

inaccessibility of the organ to biopsy, and the fact that the disease is refractory to 

chemotherapy [2]. The progression of lesions found in PDAC have been codified into stages 

of pancreatic intraepithelial neoplasia (PanIN) based on architectural and cytological criteria 

[3].

The exocrine pancreas, which produces and transports digestive enzymes to the rostral 

duodenum, is composed of two cell types (acinar and ductal) and accounts for about 98% of 

adult pancreatic mass. During vertebrate embryogenesis, a coordinated network of 

transcription factors and signaling molecules tightly controls the differentiation and 

morphogenesis of the pancreas [4, 5]. Gene inactivation studies in mice have identified 

transcription factors that affect the differentiation of all or a subset of pancreatic cell types. 

The Hepatic nuclear factor 6 (Hnf6; also known as ONECUT-1 or OC-1) transcription factor 

was first identified in the liver, although it is also expressed in other endodermally-derived 

tissues, including the pancreas [6–8]. Hnf6 is expressed early in embryonic development in 

multi-potent pancreatic progenitor cells [9], but becomes down-regulated in the islet 

endocrine lineage once hormones are expressed [7, 9]. Its expression is maintained in mature 

ducts and at lower levels in acini postnatally. Global inactivation of Hnf6 (Hnf6−/−) in mice 

results in early postnatal lethality in 75% of animals due to liver defects [10]. Hnf6−/− 

animals are also severely diabetic due to a dramatic decrease in endocrine cell 

differentiation. In the pancreas, Hnf6 acts upstream of the critical pancreatic/βcell 

transcription factor, pancreatic and duodenal homeobox 1 (Pdx1) [11] and activates 

expression of the pro-endocrine transcription factor neurogenin 3 (Ngn3) [10].

The continued expression of Hnf6 in ductal epithelial cells suggests that it plays a role in 

mature exocrine tissue. Acinar tissue appears morphologically normal in Hnf6 null mutant 

mice, possibly due to compensation by a closely related homolog, OC-2 [10, 12]. However, 

embryonic duct morphology is perturbed in the absence of Hnf6, most likely due to the loss 
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of primary cilia [9, 13]. Hnf6 tissue-specific deletion in the pancreas caused ductal cysts, 

acinar- to-ductal metaplasia, increased duct proliferation, and loss of duct markers such as 

Prox1. Molecular markers of human PDAC, including MMP7 and CTGF, were elevated in 

Hnf6 mutant pancreata [9].

In mouse models, transgenic over-expression of activated Kras in exocrine pancreas has 

produced disparate results in PanIN and PDAC development [14–17]. Cre-mediated 

expression of activated Kras from the endogenous Kras locus within either duct cells or 

acinar cells resulted in PanIN lesions but these lesions formed much more efficiently when 

the mutation arose in acinar cells [18, 19] Thus, acinar-to-ductal metaplasia may be a 

precursor to PDAC and markers for metaplasia may help predict the course of disease.

Hnf6 regulates a set of genes involved in primary cilia formation including HNF1β, 

polycystin, and cystin [13, 20]. Studies from the Hebrok lab showed that mutations in 

structural components of primary cilia in the mouse result in pancreatic ductal hyperplasia 

[21] and we have shown loss of primary cilia in mouse pancreas in the absence of Hnf6 [9]. 

Studies in human patients revealed that PanIN lesions and PDAC cells lack primary cilia, 

possibly due to repression of ciliogenesis by activated Kras; inhibition of Kras restored cilia 

formation in a mouse pancreatic cancer cell line [22]. The absence of expression of the 

Prox1 transcription factor in Hnf6 mutant pancreatic ducts is also of interest given the fact 

that loss of Prox1 is also observed in human pancreatic cancer [23, 24].

Loss of HNF6 expression and that of some of its known direct and indirect target genes has 

been shown to occur in human PDAC [25], however, the timing of this loss in the course of 

tumor progression is not known. We hypothesize that HNF6 is required to maintain exocrine 

homeostasis, and that it acts as a tumor suppressor. Thus, we predicted that loss of HNF6 in 

exocrine cells would be observed early in the course of pancreatic cancer progression and 

would correlate with development of PanINs and PDAC in humans. To this end, we 

examined expression of HNF6 mRNA and protein expression in samples of normal human 

pancreas and of pancreatic cancer. HNF6 protein expression was analyzed at different stages 

throughout human pancreatic cancer progression. In agreement with what we observe in 

normal mouse pancreas, HNF6 expression was consistently detected in normal human ductal 

epithelium and at lower levels in acinar cells. While HNF6 expression is maintained in 

acinar-to-ductal metaplasia (ADM), diminished HNF6 expression strongly correlated with 

increasing severity of PanIN lesions and HNF6 was not detected in the tumor samples. In 

addition, gene expression analyses of human pancreatic cancer compared to normal 

pancreatic tissue samples revealed decreased expression of known HNF6 target genes 

consistent with a loss of HNF6 transcriptional activity.

Because of its biological and clinical relevance to human cancer, we examined the timing 

and pattern of HNF6 loss in pancreatic cancer progression to gain crucial scientific insight 

on the malignant progression of the disease. We also show here that two mouse models of 

PDAC mirror the progressive loss of Hnf6 expression in developing lesions, supporting 

these models as reflective of what goes on in the in vivo human situation. Thus, use of these 

models in correlation with human data could potentially aid in the development of clinical 
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diagnostic tests for early detection and improved survival outcomes in patients with 

pancreatic cancer.

Materials and Methods

Meta-analyses of gene expression in human pancreatic cancer

Using T-test followed by Step-up False Discovery Rate procedure [26], differential 

expression of ten genes known to be co-regulated with HNF6 was examined in published 

DNA microarray datasets. Pei, et al. performed gene expression analyses of 36 pancreatic 

tumors and 16 normal tissue samples (GSE 16515) [27]. Badea, et al. performed gene 

expression analyses of 36 pancreatic tumors and matching 36 normal tissue samples (GSE 

15471) [28]. Data from Arumugam, et al. includes expression of HNF6 and its associated 

genes in nine human pancreatic cancer cell lines with known sensitivity to the 

chemotherapeutic agent gemcitabine compared to an immortalized “normal” human 

pancreatic epithelial line (HPDE; GSE 15550) [29, 30].

Gene expression analysis of normal and diseased human tissue

Five pancreatic ductal adenocarcinomas were selected from the Vanderbilt University 

Pathology Archives. Five 5 µm unstained slides from each sample were prepared from 

formalin-fixed paraffin embedded tissue. Microdissection was performed to achieve a 

neoplastic cellularity of at least 50% with minimal residual benign pancreatic tissue. Twenty 

five-µM corresponding normal pancreatic tissue was also prepared from each case. Total 

RNA was extracted from these samples. cDNA was made using the Invitrogen SuperScript 

III kit and quantitative reverse-transcriptase qRT-PCR was performed using the Bio-Rad IQ 

SYBERGreen Supermix on a Bio-Rad CFX Real time PCR instrument for HNF6, direct and 

indirect targets of HNF6, and genes known to be inversely correlated with HNF6 expression 

(see Table 1 for PCR primer sequences). All reactions were performed in triplicate and the 

mean was compared to GapDH expression (see Table 2 for PCR protocol). Values for each 

individual were then plotted for each gene where normal pancreas could be compared with 

PDAC tumor. Significance was determined by a T-test with Welch’s correction.

Tissue microarrays

Samples from surgically resected pancreatic adenocarcinomas from human patients were 

used to construct a tissue microarray containing lesions of all histological grades of the 

pancreatic adenocarcinoma progression model [31–33]. These samples have all been de- 

identified and include normal ductal epithelium, PanINs, true adenocarcinomas, and 

metastatic tumors. The individual determining whether HNF6 protein expression was 

positive or negative was unaware of the disease status of the samples. Once HNF6 

immunolabeling was completed, we determined the correlation between HNF6 expression 

and stage of the disease. A pathologist (C.S.) specializing in human pancreatic cancer 

determined stage of disease.

Mice

All experiments were done with the approval of the Vanderbilt Institutional Care and Use 

Committee. Pdx1-sHBEGF mice [34], Ptf1aCre mice [35] and LSL-KrasG12D (Krastm4Tmj) 
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mice [36] were described previously. All alleles were bred for at least 10 generations onto 

the C57BL6/J background.

Tissue processing and immunolabeling

Tissue sections were deparaffinized in xylene and rehydrated to deionized water. Sections 

were exposed to antigen retrieval using 10 mM sodium citrate buffer in a pressure cooker for 

15 minutes and then left to cool to room temperature for 2 hours, followed by washing in 

PBS. Endogenous peroxidase activity was quenched by exposing slides to 3% hydrogen 

peroxide for 20 minutes. Slides were blocked for 1 hour at room temperature in 5% normal 

donkey serum (NDS) and 1% BSA in PBS. Rabbit anti-HNF6 primary antibody (Santa Cruz 

Biotechnology, Inc.) was added at 1:300 (human tissue) or 1:500 (mouse tissue) in 1% BSA 

in PBS overnight at 4°C. Sections were washed in PBS and incubated with secondary 

antibody (biotinylated goat anti-rabbit; Abcam Inc. or Vector Labs, Burlingame, CA) at 

1:500 in 1% BSA in PBS for 1 hour at room temperature. Protein localization was visualized 

using the Vectastain ABC and DAB Peroxidase Substrate kits (Vector Laboratories) 

according to the manufacturer’s instructions. Tissues were counterstained with eosin or 

hematoxylin for contrast and mounted with Permount (Fisher). Double immunofluorescence 

was performed using TSA-Plus kits (Perkin Elmer LAS, Boston, MA) with 1:500 rabbit 

anti-Mist1 (a kind gift of Dr. Steven Konieczny, Pudue University) and rabbit anti-HNF6, 

and counterstained with Toto3 (Molecular Probes, Eugene, OR). Because primary antibodies 

were the same species, slides were boiled after the first antibody’s TSA reaction, then 

labeling was repeated with the second primary antibody. Controls always included slides 

that lacked either the first or second primary antibody to validate that boiling removed all of 

the first antibody.

Microscope imaging

Human tissue samples were viewed under bright-field illumination at both 10× and 20× 

magnifications using an Olympus BX41 microscope and digital camera with the Magnafire 

program (Optronics, Inc.). Mouse tissues were visualized with an Axioskop 40 microscope 

and Axio Vision camera and software (Carl Zeiss Microimaging, Thornwood, NY).

Results

Examination of HNF6 gene expression in human pancreatic tumors and immortalized cell 
lines

We previously showed that loss of Hnf6 in the embryonic pancreatic epithelium resulted in 

acinar-to-ductal metaplasia and fibrosis in mice [9]. To determine whether loss of HNF6 

gene expression also correlates with pancreatic neoplasia in humans, we first performed a 

meta-analysis of two published DNA microarray datasets for differential expression of ten 

selected genes, the expression of which are known to positively or negatively correlate with 

HNF6 in liver and/or pancreas. Some of these genes, including PDX1, forkhead box (Fox) 

A2, and HNF4α, have been identified as direct transcriptional targets of HNF6 in pancreas 

[11, 37, 38], while others, are positively (PKHD1) or negatively (TGF-β, CTGF, MMP7) 

indirectly regulated by HNF6 [9, 39–41]. Similar results were found in both published 

datasets. Pei, et al. performed gene expression analyses of 36 pancreatic tumors and 16 
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normal tissue samples [27]. HNF6 expression was lower in tumors compared to normal 

pancreatic tissues with statistical significance (p=0.007, Table 3). Badea, et al. performed 

gene expression analyses of 36 pancreatic tumors and 36 normal tissue samples [28]. Again, 

HNF6 expression was significantly lower in tumors compared to normal pancreatic tissues 

(p=0.004, Table 4). In accordance with our mouse model of Hnf6 gene inactivation, 

expression of TGF-β, CTGF and MMP7 was up-regulated in the human tumor samples. In 

addition, several known direct and indirect HNF6 target genes were down-regulated in the 

tumor samples [PDX1, FoxA2, hepatic nuclear factor (HNF) 4α, and polycystic kidney and 

hepatic disease (PKHD) 1] [20] [40].

We next examined whether expression of HNF6 in human pancreatic cancer correlated with 

sensitivity to a commonly used chemotherapy in pancreatic cancer, gemcitabine. In 

pancreatic cancer patients, loss of sensitivity to gemcitabine strongly correlates with poor 

prognosis [42]. Using a published dataset [29] in which nine human pancreatic cancer cell 

lines with known sensitivity to gemcitabine were compared to an immortalized “normal” 

human pancreatic epithelial line (HPDE; [30]) we examined expression of HNF6 and its 

associated genes. Gemcitabine-sensitive pancreatic cancer cell lines included SU.86.86, 

CFPAC-1, BxPC3, and L3.6pl. Resistant cell lines included Panc-1, Hs766t, MPanc-96, 

AsPC1, and MIA-PaCa. HNF6 expression did not correlate with gemcitabine sensitivity in 

these cell lines. However, HNF6 showed a reciprocal relationship with CTGF expression in 

the majority of these cell lines (6/9 of cell lines examined), similar to what we observe in 

vivo [9, 41]. In five out of nine of the cell ines examined, expression of the direct HNF6 

target gene, HNF4α,and the PKHD1 gene (indirectly regulated by HNF6 through its 

activation of the direct target, HNF1α) followed the expression pattern of HNF6 (Figure 1).

These meta-analyses of the published literature show that loss of HNF6 is detected in 

several human pancreatic cancer cell lines. To more directly determine whether loss of 

HNF6 gene expression is associated with pancreatic cancer in humans, we extracted RNA 

from normal human pancreas samples and pancreatic tumor samples and quantified HNF6 

expression and expression of known direct (FOXA2, PDX1) and indirect (PKHD1) target 

genes, as well as genes whose expression inversely correlates with HNF6 in other situations 

(TGF-β, CTGF, MMP7). As shown in Figure 2, expression of HNF6 and its positively 

associated genes was decreased in all of the human pancreatic cancer samples compared 

with the controls. In one tumor sample, HNF6 expression was completely undetectable. 

Genes reported to be inversely correlated with HNF6 in other tissues, and in our meta-

analysis, were either unchanged in these human tumor samples (CTGF, MMP7) or were 

slightly decreased (TGF-β). Thus, genes that rely on HNF6 for activation seem to be more 

consistently affected by HNF6 loss than those that maybe negatively regulated by HNF6 

indirectly. In contrast with the primary human tumor samples analyzed here and in the meta-

analysis, expression of FoxA2 in pancreatic cancer cell lines tended to be inversely 

correlated with HNF6 expression (7/9 cell lines examined; Figure 1).

Loss of HNF6 protein is correlated with PanIN and PDAC in human tissues

To examine the correlation between HNF6 protein expression and the progression to 

pancreatic cancer in humans, immunohistochemistry labeling of HNF6 was performed on 
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tissue samples taken from patients with pancreatic cancer to assay for the presence of the 

HNF6 protein (Figures 3–5). The microscopic images were examined to determine a 

correlation of HNF6 protein expression with pancreatic morphology. Analyses of images 

suggested that there was a general trend for decreasing HNF6 expression with increasing 

severity of disease. HNF6 protein was clearly observed in normal human pancreatic ducts 

and at lower levels in acinar cells (Figure 3A, C and Figure 4A; n = 11). The lower level of 

HNF6 in acinar cells can be better appreciated when compared with expression of the 

acinar-specific transcription factor, MIST1 (Figure 4B, C). Compared with normal exocrine 

tissue, late stage PanINs and pancreatic adenocarcinoma samples showed a dramatic loss of 

HNF6 protein (Figure 3B, D; n = 13).

To analyze expression of HNF6 during pancreatic disease progression in more detail, we 

examined HNF6 protein by immunolabeling of human tissue microarrays containing ADM, 

non-invasive precursor (PanIN) lesions, and invasive adenocarcinomas (Figure 5). Acinar 

expression of HNF6 was clearly detected in only 21% of the normal tissue microarray 

resection samples in this dataset, although ductal expression was evident in all samples 

(Figure 5A). HNF6 expression was more easily detected in acinar cells in the setting of 

ADM (50%; Figure 5B; n = 14), in agreement with recently published findings from 

Jacquemin and colleagues showing increased HNF6 expression in ADM [43]. However, 

70% of PanIN1 (Figure 5C; n = 10), 50% of PanIN2 (Figure 5D; n = 6), 78% of PanIN3 

(Figure 5E; n = 9), and 91% of cancer samples (Figure 5F; n = 34) were negative for HNF6 

protein expression. In the few tumor samples in which HNF6 protein was detected (3/34), 

this was only in a subset of cells within the tumor (Figure 6). Thus, loss of HNF6 protein 

strongly correlates with more severe PanIN lesions and PDAC.

HNF6 expression is inversely correlated with severity of lesions in mouse models of PanIN 
and PDAC

Because early stages of pancreatic cancer are seldom observed in humans due to the 

inaccessibility of the organ and the diffuse nature of symptoms, we examined mouse models 

to determine when Hnf6 expression was altered in the course of disease progression. 

Ptf1aCre; LSL-KrasG12D (henceforth KrasG12D) mice are a well-established model of 

pancreatic cancer that closely mimics that seen in humans [36]. While these mice have a 

normal pancreas at birth, as they age they accumulate PanIN lesions and progress to 

pancreatic ductal adenocarcinoma with low frequency and long latency. We examined 

young KrasG12D mice at 4–6 weeks of age, when PanINs are first beginning to develop. At 

this stage, Hnf6 was abundant in the cytoplasm and nuclei of acinar cells that had 

characteristics of early acinar-to-ductal metaplasia (reduced apical cytoplasm and lumen 

formation) (Figure 7A). In regions of established acinar-to-ductal metaplasia, Hnf6 was still 

abundant but primarily localized to nuclei (Figure 7B). To determine if Hnf6 expression in 

acinar-to-ductal metaplasia was specific to cells expressing the activated KrasG12D allele, we 

examined pancreata from another mouse model of acinar-to-ductal metaplasia: transgenic 

over-expression of the growth factor HB-EGF [34]. These mice also showed high levels of 

Hnf6 in areas of acinar-to-ductal metaplasia (Figure 7C).
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In one year old KrasG12D mice with established PanINs of different stages, we found that 

Hnf6 expression inversely correlated with the degree of severity of the lesion (Figure 7D, 

E). Duct cells with normal, cuboidal architecture maintained a high level of Hnf6 while 

PanIN1 lesions had a slightly lower but variable level. PanIN2 lesions, characterized by loss 

of polarity and other cellular atypia, had little or no detectable Hnf6. Combination of HB-

EGF overexpression with KrasG12D expression leads to rapid development of advanced 

PanINs and locally invasive lesions [44]. In these mice, PanIN3 lesions, characterized by 

cribriform architecture, luminal budding and cellular atypia, as well as PanIN2 lesions 

similarly had no detectable Hnf6 protein (Figure 7F and data not shown) mirroring the 

results from human patient samples.

Discussion

These studies examine the link between HNF6, a critical regulator of embryonic pancreas 

development, and pancreatic cancer progression. The original hypothesis in this study was 

that inactivation of HNF6 would occur in a progression from acinar-to-ductal metaplasia, to 

PanIN stages, and ultimately invasive carcinoma. Our observation that the percentage of 

HNF6-negative tissue samples increases with increasing disease stage supports this 

hypothesis. However, our results also indicated that loss of HNF6 in pancreatic cancer 

progression does not begin during acinar-to-ductal metaplasia but occurs in later stages, 

beginning with PanIN lesion formation, suggesting that HNF6 expression is inconsistent 

with more transformed phenotypes such as cellular atypia and expression of genes such as 

CTGF [9]. The lack of HNF6 protein immunolabeling in the majority of late stage PanIN 

lesions and nearly all of the pancreatic cancer tissue samples, strongly reiterates the negative 

correlation between HNF6 expression and cancer. The progressive loss of HNF6 expression 

in human pancreatic disease development outlined here may potentially indicate the course 

of the development of PDAC, which is a subject that currently remains unclear.

While HNF6 protein was lost from late stage PanINs and from PDAC, HNF6 was elevated 

in acinar cells beginning to undergo acinar-to-ductal metaplasia. It is now well-established 

that acinar cells can alter their cellular identity through transdifferentiation to become duct 

cells [45–47] and this may explain the increase in HNF6 to levels seen in ducts. We found 

that elevation of HNF6 occurs early in this process while cells still maintain some acinar 

properties. While the cell of origin for pancreatic cancer remains a highly debated topic, 

recent work in a mouse model demonstrated that acinar cells can give rise to PanIN lesions 

presumably through acinar-to-ductal metaplasia [19]. Because HNF6 is elevated as cells go 

from an acinar to ductal phenotype in both premalignant and benign disease, but is lost as 

cells undergo atypia during cancer progression, we speculate that HNF6 may function in 

establishment and/or maintenance of normal ductal epithelium. Loss of HNF6 disrupts this 

process, such that acinar-to-ductal metaplasia is altered, leading to abnormal ducts and 

chronic disease, such as PanIN/ductal adenocarcinoma when cells contain a Kras mutation, 

or benign lesions when they do not. Some of this dependence on HNF6 may be through its 

repression of CTGF expression [9, 41]. When HNF6 is lost, acinar-to-ductal metaplasia may 

be more likely to lead to fibrosis via CTGF production. This fibrotic microenvironment may 

then promote cancer development in some cases or chronic pancreatitis in others.

Pekala et al. Page 8

Lab Invest. Author manuscript; available in PMC 2014 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Since HNF6 is expressed only in duct (high) and acinar cells (low) in healthy adult 

pancreata [8], a future goal is to determine the role of HNF6 in maintenance of the 

differentiated state specifically in each of these cell types using conditional gene 

inactivation. Results from these studies would be compared with those from the pancreatic 

epithelial-specific Hnf6 mutant [9], to help determine the potential cell of origin for the cysts 

and metaplasia observed in this line. These studies may, in turn, help to confirm the cell-

type of origin of PDAC. We propose that loss of HNF6 expression could be used as a 

biomarker for staging pancreatic disease in the progression toward pancreatic cancer. 

Interestingly, HNF6 expression appeared to increase in acinar clusters undergoing acinar-to-

ductal metaplasia, similar to observations recently made by another group [43].

Experimental animal models that mimic human pancreatic disease are essential to better 

understand the pathophysiology of these diseases and to evaluate potential therapeutic 

agents. The ability to specifically alter the expression of a gene(s) of interest in a particular 

cell type makes the mouse the best available model system to dissect the molecular 

regulation of pancreas organogenesis and mature organ function. To date, there has been no 

examination of HNF6 function in promoting pancreatic neoplasia. Our data indicate that 

decreased HNF6 expression correlates strongly with severity of pancreatic disease in 

humans. Our findings are supported by a previous study showing decreased expression of 

HNF6 and some of its known target genes in human pancreatic cancer compared with 

normal ductal tissue [25], although an analysis of the timing of HNF6 loss in human 

pancreatic cancer progression was not reported. In that study, reintroduction of HNF6 into a 

human pancreatic cancer cell line reduced invasiveness, but not tumor growth, in an in vitro 

assay, suggesting that HNF6 can reestablish some aspects of normal cell behavior even in a 

long-standing immortalized cell line.

In the liver, HNF6 inhibits TGF-β signaling [48]. We found that pancreata from HNF6⊗panc 

animals show characteristics of TGF-β pathway up-regulation including up-regulation of 

CTGF and MMP7 in and around pancreatic ducts [9]. Thus, HNF6 may inhibit the TGF-β 

pathway in the pancreas as it does in the liver. Both CTGF and the TGF-β type II receptor 

are over- expressed in human pancreatic cancer and increased TGF-β signaling is found in 

pancreatic cancer in humans and is associated with decreased survival [49]. Therefore, loss 

of HNF6 may promote pancreatic ductal hyperplasia/metaplasia via TGF-β activation. 

CTGF expression is induced in response to TGF-β in several cell types [50–53] and it 

interacts with TGF-β extracellularly to enhance signaling [54]. Increased CTGF expression 

in pancreatic tumor cells is correlated with enhanced growth of these cells, while siRNA 

inhibition of CTGF results in decreased tumor growth and increased apoptosis [55]. In 

addition, increased TGF-β and CTGF production is important for the desmoplastic stroma 

(proliferating fibroblasts, inflammatory cells, and excess collagen) present in human 

pancreatic cancer [56]. Because many pancreatic adenocarcinomas have loss of Smad4, an 

obligate component of TGF-β signaling, the effects of increased TGF-β production by the 

tumor may have its most profound effects on the tumor microenvironment. Understanding 

the mechanisms underlying pancreatic cancer progression, including increased production of 

TGF-β and CTGF, is crucial in developing new therapeutic targets.
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Figure 1. Examination of HNF6 expression and associated genes in human pancreatic cell lines
Hierarchical clustering of HNF6 (ONECUT1; red text) and associated genes expression ratio 

of nine pancreatic cancer cell lines with known gemcitabine sensitivity and one 

immortalized “normal” human pancreatic epithelial line (HPDE). Cell lines in blue are 

gemcitabine-sensitive; cell lines in black are gemcitabine-resistant. Shades of red indicate 

increased expression compared with HPDE cells and shades of green indicate decreased 

expression compared with HPDE cells. (dataset from [29]).
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Figure 2. Expression of HNF6 and co-regulated genes in normal pancreas and PDAC tumors
Gene expression analysis of normal (open circles) and PDAC tumor (closed circles) tissue 

samples (n = 5 for each). qRT-PCR was performed on RNA extracted from samples and 

expression was normalized to GapDH. HNF6 expression was significantly decreased in all 

of the PDAC tumors, and was undetectable in one sample. Expression of direct (FOXA2, 

PDX1) and indirect (PKHD1, TGF-β) HNF6 target genes, were also significantly decreased 

in PDAC tumor samples compared with normal pancreas. (*, p<0.05; **, p<0.005; ***, 

p<0.0005)
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Figure 3. HNF6 Expression in normal and diseased human pancreas tissue
Representative examples of human pancreatic tissue immunolabeled for HNF6 protein 

expression. HNF6 (brown) is present in normal human ducts and acini (A,C), but absent 

from high grade human PanINs (B,D). Sections were counterstained with hematoxylin. Bars, 

50 µm.

Pekala et al. Page 16

Lab Invest. Author manuscript; available in PMC 2014 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. HNF6 is detected at consistently high levels in human pancreatic ducts but at low and 
variable levels in acinar cells
Normal human pancreas was immunolabeled for HNF6 (green) and MIST1 (red); nuclei 

were counterstained in blue. (A) Duct cells (MIST1 negative) have high levels of HNF6 

labeling (arrows). (B, C) MIST1-positive acinar cells have HNF6 levels ranging from barely 

detectable (open arrowheads) to intermediate (closed arrowheads) but consistently lower 

than duct levels. B and C are enlargements of areas indicated in panel A. B’ and C’, HNF6 

labeling alone for B and C, respectively. B” and C”, MIST1 labeling alone for B and C.
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Figure 5. Survey of HNF6 expression in normal and diseased human pancreas tissue using tissue 
microarrays
Representative examples from human tissue microarrays immunolabeled for HNF6 protein 

expression (brown) against eosin contrast. HNF6 expression is observed in normal pancreas 

(A), acinar-to-ductal metaplasia (B), and PanIN1 (C). PanIN2 (D) and PanIN3 (E) showed 

reduced HNF6 expression, while PDAC (F) lacked HNF6 protein expression. 

Magnification: 200×.
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Figure 6. Human pancreatic cancer showing some HNF6 protein expression
Three of thirty-four human PDAC samples contained variable numbers of HNF6-positive 

cells. Two examples are shown here (HNF6 in brown). Arrows, HNF6+ PDAC cells; 

arrowhead, HNF6+ normal duct cells.
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Figure 7. Tumorigenesis in a mouse model reflects altered expression of Hnf6 as was seen in 
human disease
A. Five week old Ptf1aCre;LSL-KrasG12D (KrasG12D) mouse pancreas labeled with Hnf6 

antibody (brown). At this age, most of the pancreas is normal and labeling is observed at a 

high level in ducts and a lower and variable level in normal acini. In acini undergoing early 

changes associated with acinar-to-ductal metaplasia, a high level of Hnf6 is observed in both 

cytoplasm and nucleus. B. As acinar-to-ductal metaplasia develops, labeling becomes 

localized to nuclei. C. Hnf6 is also upregulated in acinar-ductal metaplasia initiated by 

transgenic overexpression of the active form of the growth factor HB-EGF. D, E. In 12 

month old KrasG12D pancreas, ducts with normal, low cuboidal architecture maintain a high 

level of Hnf6, but PanIN lesions exhibit lower levels, particularly in more advanced lesions 

that have begun to undergo cellular atypia. F. In KrasG12D mice that also over-express HB-

EGF, advanced PanINs are common and exhibit little to no Hnf6 labeling. Closed 

arrowheads, normal ductal epithelium; open arrowheads, acinar-to-ductal metaplasia; 

arrows, PanIN epithelium. Nuclei are counterstained with hematoxylin (blue). Scale bar, 50 

µm; all images at the same magnification.
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Table 1

Primers used for quantitative reverse-transcriptase PCR analysis

Gene Direction Sequence

GapDH
Forward TCAACGACCACTTTGTCAAGCT

Reverse AGCCAAATTGGTTGTGTCATACCA

Hnf6
Forward GAGTTCCAGCGCATGTCC

Reverse TGTTGCCTCTATCCTTCCCA

Pdx1
Forward GTCCAGCTGCCTTTCCCAT

Reverse TCCGCTTGTTCTCCTCCG

FoxA2
Forward CTACTATGCAGAGCCCGAGG

Reverse CGGCGTTCATGTTGCTCAC

PKHD1
Forward TGATGGTTTGGAGTTGGGTG

Reverse CACCACCATGTTCACGTTCA

Tgfβ
Forward TCAAGTTAAAAGTGGAGCAGCA

Reverse CGGTTGCTGAGGTATCGC

Ctgf
Forward GACGAGCCCAAGGACCAAA

Reverse CAAACGTGTCTTCCAGTCGG

MMP7
Forward ACAGGCTCAGGACTATCTCA

Reverse TGGCTTCTAAACTGTTGGCA
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Table 2

Reaction specifications for quantitative reverse-transcriptase PCR specifications.

Step Temperature (°C) Time Cycles

1 95 3 min 1

2 95 10 sec

393 58 10 sec

4 72 30 sec

5 95 10 sec 1

6 65 5 sec 1

1 1 1 1
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Table 3

Differential expression of HNF6 and related genes (Pei, et al. Cancer Cell, 2009, GSE 16515). Green box: 

False Discovery Rate <0.01

Probeset ID Gene Title Gene Symbol p-value
(T vs. N)

Fold-Change
Description

208559_at pancreatic and duodenal homeobox 1 PDX1 0.00145187 T down vs N

214312_at forkhead box A2 FOXA2 0.00193461 T down vs N

210745_at one cut homeobox 1 ONECUT1 0.00686838 T down vs N

241694_at polycystic kidney and hepatic disease 1 PKHD1 0.0138692 T down vs N

228739_at cystin 1 CYS1 0.0143826 T down vs N

214851_at hepatocyte nuclear factor 4, alpha HNF4A 0.0513435 T down vs N

205313_at transcription factor 2, hepatic; LF-B3 TCF2 (HNF1B) 0.388387 T down vs N

204259_at matrix metallopeptidase 7 MMP7 0.000251983 T up vs N

203085_s_at transforming growth factor, beta 1 TGFB1 0.0098017 T up vs N

209101_at connective tissue growth factor CTGF 0.465259 T up vs N
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Table 4

Differential expression of HNF6 and related genes (Badea, et al. Hepato-gastroenterology, 2008, GSE 15471) 

Green box: False Discovery Rate <0.01

Probeset ID Gene Title Gene Symbol p-value
(T vs. N)

Fold-Change
Description

208559_at pancreatic and duodenal homeobox 1 PDX1 2.96E-07 T down vs N

216889_s_at hepatocyte nuclear factor 4, alpha HNF4A 1.07E-06 T down vs N

214312_at forkhead box A2 FOXA2 2.24E-05 T down vs N

210745_at one cut homeobox 1 ONECUT1 0.00421182 T down vs N

1553003_at polycystic kidney and hepatic disease 1 PKHD1 0.00619324 T down vs N

208135_at transcription factor 2, hepatic; LF-B3 TCF2 (HNF1B) 0.0465427 T down vs N

228739_at cystin 1 CYS1 0.906878 T down vs N

204259_at matrix metallopeptidase 7 MMP7 4.58E-11 T up vs N

203085_s_at transforming growth factor, beta 1 TGFB1 1.21E-07 T up vs N

209101_at connective tissue growth factor CTGF 4.11E-06 T up vs N
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