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In Brief
We demonstrate GAGrank, an
algorithm that uses a bipartite
graph model for sequencing
glycosaminoglycans from EDD
or NETD tandem mass spectra.
The process involves first
assigning glycosaminoglycan
product ions using the
GAGfinder algorithm. The
second step is to rank possible
sequences using GAGrank. We
show GAGrank’s ability to
sequence isomeric mixtures.
Highlights
• GAGfinder assigns glycosaminoglycan EDD and NETD product ions.

• GAGrank assigns the most probable sequence from the tandem MS.

• GAGrank ranks nodes using a bipartite network’s structure.

• GAGrank ranks glycosaminoglycan sequences based on their importance in the network.
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GAGrank: Software for Glycosaminoglycan
Sequence Ranking Using a Bipartite Graph
Model
John D. Hogan1,2, Jiandong Wu2, Joshua A. Klein1,2, Cheng Lin2 , Luis Carvalho1,3, and
Joseph Zaia1,2,*
The sulfated glycosaminoglycans (GAGs) are long, linear
polysaccharide chains that are typically found as the
glycan portion of proteoglycans. These GAGs are char-
acterized by repeating disaccharide units with variable
sulfation and acetylation patterns along the chain. GAG
length and modification patterns have profound impacts
on growth factor signaling mechanisms central to
numerous physiological processes. Electron activated
dissociation tandem mass spectrometry is a very effective
technique for assigning the structures of GAG saccha-
rides; however, manual interpretation of the resulting
complex tandem mass spectra is a difficult and time-
consuming process that drives the development of
computational methods for accurate and efficient
sequencing. We have recently published GAGfinder, the
first peak picking and elemental composition assignment
algorithm specifically designed for GAG tandem mass
spectra. Here, we present GAGrank, a novel network-
based method for determining GAG structure using in-
formation extracted from tandem mass spectra using
GAGfinder. GAGrank is based on Google’s PageRank al-
gorithm for ranking websites for search engine output. In
particular, it is an implementation of BiRank, an extension
of PageRank for bipartite networks. In our implementa-
tion, the two partitions comprise every possible sequence
for a given GAG composition and the tandem MS frag-
ments found using GAGfinder. Sequences are given a
higher ranking if they link to many important fragments.
Using the simulated annealing probabilistic optimization
technique, we optimized GAGrank’s parameters on ten
training sequences. We then validated GAGrank’s perfor-
mance on three validation sequences. We also demon-
strated GAGrank’s ability to sequence isomeric mixtures
using two mixtures at five different ratios.

The sulfated glycosaminoglycans (GAGs) are long, linear
polysaccharides that can be found as the glycan portion of
proteoglycans on cell surfaces and in extracellular matrices.
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There are three classes of sulfated GAGs, each with its own
distinct repeating disaccharide unit (Fig. 1) and biology.
Heparan sulfate (HS) participates in or affects blood coagu-
lation (1), growth factor signaling (2), angiogenesis (3), and cell
proliferation and migration (4). Chondroitin sulfate (CS), and
the closely related dermatan sulfate (DS), participates in or
affects brain development (5), spinal cord injury and neuro-
regeneration (6), neural stem cell migration (7), and osteoar-
thritis (8). Keratan sulfate (KS) participates in or affects corneal
hydration (9), infection and wound repair (10), and cell migra-
tion (11). As a part of membrane proteoglycans and the
extracellular matrix, GAGs bind numerous growth factors and
growth factor receptors and thereby mediate cell–cell, cell–
matrix, and host–pathogen interactions. As such, the ability to
sequence GAGs quickly and accurately is an important step in
understanding how changes in GAG sequences alter biolog-
ical mechanisms.
We and others have demonstrated the effectiveness of

electron activated dissociation tandem MS for sequencing
GAG saccharides (12–22). Interpretation of the tandem mass
spectra requires first assignment of product ion charge states
and monosaccharide compositions. This requires a solution
that can handle the varying elemental compositions of the
product ions that make application of a simple averagine
decomposition model impractical. Next, the most likely GAG
sequence(s) must be assigned to the product ion pattern. In a
typical MS2 experiment, spectra are preprocessed depending
on the type of mass analyzer used. For ion cyclotron reso-
nance and Orbitrap analyzers, the signal is first transformed
from the time domain to the frequency domain, then calibrated
to produce m/z domain spectra. The conversion of the m/z
values to neutral masses requires special consideration for the
GAG classes. Algorithms based on THRASH (23) for identifi-
cation of monoisotopic peaks and estimation of elemental
compositions do not suffice for GAGs because the sulfur and
achusetts, USA; 2Department of Biochemistry, Center for Biomedical
assachusetts, USA; 3Department of Mathematics & Statistics, Boston
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FIG. 1. Repeating disaccharide unit for each GAG class. Each
glycosaminoglycan class has its own unique repeating disaccharide
unit that has distinct linkages and modification positions. Heparan
sulfate (HS) can have up to four sulfates per disaccharide, chondroitin
sulfate/dermatan sulfate can have up to three sulfates per disaccha-
ride, and keratan sulfate can have up to two sulfates per disaccharide.
HS and chondroitin sulfate/dermatan sulfate can have one of two C5
epimers as their uronic acid: glucuronic or iduronic acid. HS is the only
class that can have hexosamine residues that are not N-acetylated.

Glycosaminoglycan Sequence Ranking via Bipartite Graph Node Ranking
oxygen contents vary significantly among fragment ions, thus
precluding use of a single averagine for elemental composition
approximation. Our group recently developed a GAG-specific
algorithm performing both of these steps, GAGfinder (18).
GAGfinder provides a list of peaks and annotations from an
MS2 experiment for the sequencing pipeline.
Electron activated dissociation (ExD) is a general term that

refers to use of ion–ion or ion–electron reactions to dissociate
the analyte. For fragmentation of anionic species, including
GAGs, ExD includes electron detachment dissociation (EDD)
2 Mol Cell Proteomics (2021) 20 100093
(24), where the analyte is fragmented by detaching an electron
from the analyte with a high-energy electron beam, and
negative electron transfer dissociation (NETD) (25), where the
analyte is fragmented by transferring an electron from the
anionic precursor to a cationic radical reagent. Wolff and
colleagues first demonstrated the efficacy of ExD for disso-
ciating GAG oligosaccharides in various applications, using
both EDD (14, 15, 26) and NETD (13). Huang and colleagues
have also shown the utility of ExD for GAG oligosaccharides in
terms of reducing labile sulfate loss (20). Clearly, ExD methods
show promise as the analytical tool of choice in GAG
sequencing.
Existing methods for computational GAG sequencing trace

their origins to the heparin oligosaccharide sequencing tool
(HOST) (27), published in 2005. HOST was developed as a
Microsoft Excel workbook designed as an interface that in-
tegrates disaccharide information with MS2 data for
sequencing of heparin/HS enzymatic digests. An update to
GlycoWorkbench by Tissot et al. (28) calculates elemental
compositions for GAG sequences and facilitates interpretation
of GAG mass spectra by calculating m/z values and anno-
tating fragment ions (29). In 2010, Spencer and colleagues
published a method for estimation of the domain structure of
HS chains based on disaccharide analysis and user-defined
biosynthesis rules (30). This method uses three modular in
silico steps: HS chain generation, HS chain digestion, and HS
chain sorting based on domain matching. In 2014, Hu and
colleagues published HS-SEQ (19), the first de novo
sequencing tool for HS oligosaccharides. Based on a user-
submitted MS2 fragment ion list and HS backbone informa-
tion, HS-SEQ outputs probabilities for modifications at each
position along the chain using a spectrum graph model. In
2015, Chiu and colleagues published the first database search
application for GAG sequencing, GAG-ID (31). GAG-ID auto-
mates the interpretation of permethylated HS LC/MS2 data
using a multivariate hypergeometric distribution with detected
peaks separated into high-, medium-, and low-intensity bins.
The same group later used a multivariate mixture model to
determine GAG-ID identification accuracy given database
search scores and ambiguity values among identifications
(32). Finally, Duan and colleagues recently published over two
publications a method for interpreting CS GAG MS2 data that
uses a genetic algorithm to assign a likelihood score to each
sequence for a given MS2 spectrum (33, 34).
These computational methods have succeeded in making

GAG sequencing faster and easier, but they each have
drawbacks. The first three—HOST, the Tissot method, and the
Spencer method—use the results of disaccharide analysis to
guide their algorithm, meaning that the methods are inap-
propriate for top- or middle-down glycomics studies. HS-SEQ
shows promise in locating site-specific sulfation for HS oli-
gosaccharides but requires prior knowledge about the HS
backbone and does not handle mixtures as would be seen in
an LC-MS2 experiment. Furthermore, it only considers HS



FIG. 2. Example bipartite network of sequences and fragments. This is a toy visualization of a bipartite network of sequences and
fragments. In this case, there are five sequences and six fragments. An edge between a sequence and a fragment denotes that fragment being a
possible fragment for that sequence. The edge width denotes the type of fragment for that sequence; a wider edge represents a terminal
fragment, whereas a narrower edge represents an internal fragment.

Glycosaminoglycan Sequence Ranking via Bipartite Graph Node Ranking
oligosaccharides and does not work on CS or KS GAGs.
GAG-ID shows promise in ranking individual GAG sequences
mapping to a given GAG composition but requires an exten-
sive chemical workup involving permethylation, desulfation,
and pertrideuteroacetylation. Duan and Amster’s genetic al-
gorithm shows great promise for reducing search space and
computation time, but it is a nondeterministic algorithm and
therefore cannot guarantee to reach a global optimum. We
sought to develop a novel, deterministic GAG sequencing
method that has fewer steps before use than the existing
methods but still delivers optimal performance.
At the core of any sequencing method using MS2 data is the

relationship between the unknown sequence and its frag-
ments: the actual sequence is ascertained based on the
fragment ions generated in the fragmentation process. For
GAGs, there are often many possible sequences for a given
composition, and in an ExD experiment, there is a rich com-
plement of product ions in the spectrum. The relationship
between possible sequences and observed product ions is
many-to-many, and can be represented in a network struc-
ture. In particular, the network structure is that of a bipartite
network, which is a network whose nodes can be separated
into two distinct partitions with edges only connecting nodes
in one partition to nodes with the other partition. Figure 2
shows a graphical representation of the bipartite network
relationship between potential sequences and product ions.
The determination of node importance has been a topic of

significant interest in network analysis, in particular for social
networks (35), protein–protein interaction networks (36), and
the World Wide Web (37), among many others. The concept of
centrality in network analysis aims to solve this problem, and
there are numerous existing algorithms for computing cen-
trality measures. One such method is PageRank (38), devel-
oped by Brin and Page in 1996 for Google as a way to rank
webpages according to their importance for search engine
optimization purposes. Briefly, PageRank gives webpages
higher importance values if they are linked to by other
important webpages. PageRank was developed for general
networks (i.e., not bipartite networks), but a recent method,
BiRank (39), was developed that adapts the PageRank algo-
rithm for the specific case of bipartite networks. Briefly, BiR-
ank gives nodes in partition A higher importance if they are
linked to important nodes in partition B, and vice versa.
Because of its design for bipartite networks, we employed
BiRank with the goal of determining precursor sequence
based on fragmentation patterns in the first GAG sequencing
method developed using a network structure and network
analysis algorithm, GAGrank. GAGrank was developed as a
command line interface in the Python language (v3.8.1), and
its repository can be cloned via Github at http://www.bumc.
bu.edu/msr/software/. This paper describes the method and
demonstrates its performance on a set of GAG standards.
EXPERIMENTAL PROCEDURES

GAGrank Overview

Figure 3 shows the steps in the GAGrank algorithm, the details of
which are presented in the next several subsections.

Inputs–GAGrank has several inputs, both required and optional.
The required inputs are the peak/fragment list, the GAG class, the
precursor ion m/z, and the precursor ion charge, assuming unad-
ducted deprotonated ions. The peak/fragment list must be an output
data file from our previous work, GAGfinder (18), and the GAG class
being analyzed must be denoted by its initials (i.e., HS, CS, or KS).
Since DS is a class of CS, the initials CS are required for these GAGs.
The optional inputs are the reducing end tag and the number of sulfate
losses to consider. If the analyte was tagged on the reducing end to
break potential molecular symmetry, the user must denote what ele-
ments the tag adds to the sequence. For instance, if the reducing end
tag is 4-nitrophenol, the tag should be encoded as C6H3NO2 rather
than the 4-nitrophenol elemental composition of C6H5NO3, since that
is the number of each element that is added to the structure. For
Mol Cell Proteomics (2021) 20 100093 3
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FIG. 3. Workflow for GAGrank algorithm. The steps in GAGrank’s
algorithm.

Algorithm 1: BiRank Algorithm, adapted from (39)

Glycosaminoglycan Sequence Ranking via Bipartite Graph Node Ranking
deciding an appropriate number of sulfate losses for GAGrank to use,
we recommend using the floor of two times the free proton index
described in (40). However, this input is left to the user’s discretion.

Step 1: Load Peak/Fragment List–First, GAGrank loads the peak/
fragment list returned by GAGfinder into Python as a NumPy array
with two columns, fragment and G-score. The G-score is GAGfinder’s
goodness-of-fit score for fitting experimental isotopic distributions
found in spectra to theoretical isotopic distributions. A smaller G-
score represents a better fit between the two distributions.

Step 2: Determine Precursor Composition–Next, GAGrank utilizes
the database GAGfragDB to determine the precursor composition in a
manner similar to GAGfinder. GAGfragDB was developed in SQLite to
store every possible fragment for a given precursor composition, but it
also stores useful information about precursors, such as their chem-
ical formula and monoisotopic mass. GAGrank selects the precursor
composition by comparing the neutral mass of the spectral precursor
ion to the list of neutral masses in GAGfragDB and picking the one that
is arithmetically closest. Further detail concerning GAGfragDB is
present in our GAGfinder paper (18).

Step 3: Determine Reducing End and Nonreducing End Mono-
saccharides, if Possible–The next step in GAGrank’s pipeline is also
similar to the one found in GAGfinder. By evaluating the number and
type of monosaccharides present in the precursor’s composition, we
can potentially determine the order of the monosaccharides in the
oligosaccharide backbone. For a detailed description of this process,
see (18).

Step 4: Set Up GAG Backbone(s)–We can build the backbone(s) of
the GAG sequence using our understanding of GAG sequence
4 Mol Cell Proteomics (2021) 20 100093
construction and the terminal sugar residues determined in step 3. In
the event that we cannot determine the terminal sugar residues, we
must consider two backbones; one with amino sugars in the odd
positions in the backbone and another with amino sugars in the even
positions in the backbone. Given the backbone(s) of sugar residues
and the GAG class for the structure, we can define the positions for
potential modifications (Fig. 1).

Step 5: Generate All Possible GAG Sequences–We now have the
backbone(s) of the GAG, the potential modification positions along the
backbone(s), and the number of each modification (sulfation and
acetylation). We use combinatorics to generate each possible
sequence for a given composition.

Step 6: Build Bipartite Network–Using Python’s NetworkX module
(41), we encode the relationships between each potential sequence
and each fragment found by GAGfinder in a bipartite network. For
each potential sequence, we derive its potential fragments by gener-
ating all terminal glycosidic fragments, terminal cross-ring fragments,
and internal glycosidic–glycosidic fragments. We do not consider in-
ternal glycosidic–cross-ring or internal cross-ring–cross-ring frag-
ments because they are rare and of low intensity, do not add much
additional information about the sequence (and, in fact, may actually
hurt the scoring because of coincidental matches), and increase
computational time. We then compare this list of potential fragments
to those found in the spectrum loaded in step 1 and place edges
between the sequence and each fragment in the intersection. Equa-
tion 1 shows how we encode the edge width for these edges. The
values for Equation 1 are based on those used in our previous work,
HS-SEQ (19). In cases where a fragment could be both a terminal
fragment and an internal glycosidic–glycosidic fragment, the edge
width is selected as a terminal fragment. The tuning parameter r1
controls the effect that double glycosidic bond fragments has on the
performance of BiRank.

wxy = { 1.0 if fragment x is a terminal
fragment in sequence y

0.2r1 if fragment x is an internal double
glyosidic fragment in sequence y

(1)

Step 7: Run BiRank and Return Results–The final step in
GAGrank’s pipeline is to run the BiRank algorithm (39) on the network
built in step 6. The pseudocode for BiRank is in Algorithm 1.
The inputs for BiRank include the graph’s weight matrix W, query
vectors p0 and u0, and hyper-parameters α and β. The weight matrix is
symmetric, consisting of the edge weights between nodes in the
graph, as described in Equation 1. For pairs of nodes with no edge
between them, the weight wij is given as 0. The query vectors store a
prior belief about the ranking criterion for the sequences and frag-
ments before iterating through the BiRank algorithm. For our
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purposes, we consider p to be the fragments vector and u to be the
sequences vector. The fragments’ query vector values are calculated
using Equation 2:

p0
x = Ix

Gr2
x

(2)

For fragment x, we assign the query value as its intensity divided by
its GAGfinder G-score. The tuning parameter r2 controls the effect the
G-score has on the overall score. The sequences’ query vector values
are calculated using Equation 3:

u0y = (∏
m

scorem)
r3

(3)

For sequence y, we assign the query value as the product of the
residue likelihood scores for each monosaccharide residue in the
sequence. The residue likelihood is calculated using Equation 4:

scorem = 1.0−0.6*Nm−0.3*Sm

Nm = {1 if amine is unoccupied
0 otherwise

Sm = { 1 if 3−O−sulfation without 6−O−sulfation
0 otherwise

(4)

Each residue has a maximum likelihood value of 1.0. If the
residue is an amino sugar that has a free amine group, the value
is decreased by 0.6. If the residue is an HS GlcN residue that is
3-O-sulfated and not also 6-O-sulfated, the value is decreased by
0.3. These deductions account for the rarity of free amines and
3-O-sulfation without 6-O-sulfation in nature. The tuning param-
eter r3 controls how much a sequence with rare modification
patterns is punished prior to running the BiRank algorithm. The
hyper-parameters α and β control how much of each iteration’s
FIG. 4. Structures analyzed in this study. A, the ten training sacchari
D, key for the symbols in the figure. Each analyzed structure was dis
compounds #T6 and #T7, which were dissociated via electron detachm
range from −2 to −6. The compounds were selected to represent diversit
for glycosaminoglycan oligosaccharides.
ranking score is due to the query vectors for the fragments and
sequences, respectively. A larger value for either hyper-parameter
weights the iterating results of BiRank more than the query vector.
Once the BiRank algorithm iterates to convergence, GAGrank
outputs the ranking of sequences with their ranking score into a
tab-delimited file. A larger score represents a higher ranking.
Data Acquisition and Preprocessing

We selected 13 pure synthetic GAG standards on which to train and
validate GAGrank and two isomeric mixtures of pure synthetic GAG
standards to show GAGrank’s performance on mixtures, shown in
Figure 4. These samples were selected for their varying lengths,
modification amounts and patterns, disaccharide order, and precursor
charge. Ten pure synthetic standards were selected as training data,
and three pure standards were selected as validation data. Training
compounds T1, T3, T5, T8, T9, and T10 were acquired through a
publicly available set of HS standard saccharides funded by the NIH
and maintained by the Zaia laboratory (http://www.bumc.bu.edu/zaia/
gag-synthetic-saccharides-available/). The remaining training com-
pounds, all of the validation compounds, and the compounds mixed in
the isomeric mixtures were synthesized as described (42–45). Each of
the two mixtures was tested in ratios of 100:0, 90:10, 70:30, 50:50,
30:70, 10:90, and 0:100.

Each sample was subjected to either EDD or NETD using a Bruker
solariX 12T FTMS instrument. The spectra were converted to cen-
troided mzML using the compassXport command line utility 3.0.13
(Bruker Daltonics, Inc). Elemental compositions of tandem mass
spectral peaks corresponding to GAG fragments were determined
using a modified version of GAGfinder that requires an isotopic dis-
tribution to have peaks A and A + 1 to have an intensity above the
noise threshold, with error tolerance of 5 parts per million (ppm) or
better and considered sulfate losses determined by the floor of two
times the free proton index. The mass spectrometry glycomics data
des. B, the three validation saccharides. C, the two isomeric mixtures.
sociated via negative electron transfer dissociation, except training
ent dissociation. The precursor charge states for these compounds

y in chain length, modification amounts and patterns, and charge state
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TABLE 1
Summary statistics for each GAGrank parameter that resulted in the

best performance on the training compounds

Statistic r1 r2 r3 α β # Fragments

Minimum 0.5 0.9 0.1 0.77 0.76 61
Maximum 9.8 9.6 1.7 0.99 1.00 97
Mean 5.5 5.2 0.6 0.93 0.92 70
Median 5.4 5.1 0.4 0.98 0.94 68
Mode 9.3 4.9 0.1 0.98 0.94 64
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have been uploaded to the GlycoPost repository with the dataset
identifier [GPST000014].

Parameter Optimization

In order to determine optimal values for the above parameters, we
employed the simulated annealing (SA) probabilistic optimization
procedure. SA is named after the process of annealing in metallurgy
whereby material is heated to the point where its geometric structure
breaks down and it can be shaped, followed by a slow cooling to
reestablish the geometric structure. SA works by randomly moving
from one solution to a neighboring solution until a very good, although
not necessarily perfect, solution is found. During the course of the SA
algorithm, if the new solution has a better fitness than the current
solution, the new solution will always be selected; however, if the new
solution has a worse fitness than the current solution, the new solution
may be selected based on a probabilistic criterion. Equation 5 shows
the formula for calculating the probability of moving to a worse
solution:

P(move) = e
fnew−fcurrent

T (5)

Here, fnew and fcurrent represent the fitness scores for the new
solution and the current solution, respectively. T represents a
“temperature” parameter that is analogous to the cooling process in
annealing, described above, and “cools” from a value of 1 to 0. For
cases where the new solution’s fitness is worse than the current
solution’s, when T is close to 1, the algorithm will probably still
move to that solution, whereas when T is close to 0, the algorithm
will probably stay at the current solution. Therefore, at the begin-
ning of the algorithm, it is more likely to move to a worse solution
than toward the end. This helps combat the problem of local
maxima. In addition, each time a new solution produces a fitness
value that is higher than any previous fitness value, that solution is
stored and may be returned to later if no other solution produces a
fitness value as high.

In our implementation, we employed SA to find a very good solution
for GAGrank on our ten training oligosaccharides. We optimized the
five aforementioned parameters as well as the number of fragments
returned by GAGfinder. To identify a new solution we randomly
selected one of the six parameters and randomly changed its value.
For α and β, the value could be any number between 0 and 1. For r1,
r2, and r3, the value could be any number between 0 and 10. For the
number of fragments used, the value could be any integer between 5
and 100, or all of the found fragments. We rounded the value for α and
β to the hundredth decimal point, and we rounded the value for r1, r2,
and r3 to the 10th decimal point. We reduced T by multiplying it by 0.9.
In order to slow the SA process and more completely explore the
search space, we remained at each value of T for 100 iterations. We
calculated the fitness of each solution as the average percent of
incorrect sequences with a worse BiRank score than the correct
sequence. For example, if a composition has ten possible sequences,
the solution’s fitness is equal to 1.0 (9/9) if the correct sequence has
the highest BiRank score, 0.0 (0/9) if the correct sequence has the
lowest BiRank score, and 0.778 (7/9) if the correct sequence has the
third-highest BiRank score.

RESULTS

Optimal Parameters

Parameter optimization via SA found multiple combinations
of parameters that resulted in optimal performance on the
training data, which are found in supplemental Table S1 and
summarized in Table 1. These combinations all returned a
6 Mol Cell Proteomics (2021) 20 100093
fitness value across the ten training compounds of 0.9997,
meaning that, on average, GAGrank returned a better ranking
score for the correct sequence than 99.97% of incorrect se-
quences. Each parameter combination follows similar pat-
terns: large values for r1 and r2, small values for r3, large
values for α and β, and between 61 and 97 GAGfinder frag-
ments used. The large values for r1 can be interpreted as
evidence that internal double glycosidic bond fragments are
far less important for GAG sequencing than terminal frag-
ments. The large values for r2 can be interpreted as evidence
that the fragments’ goodness-of-fit G-scores from GAGfinder
are more important factors in GAG sequencing than their in-
tensities. The small values for r3 can be interpreted as evi-
dence that rare modifications do not need to be punished
severely for sequences without rare modifications to perform
well. The large values for α and β can be interpreted as evi-
dence that the initial ranking scores for the fragments and
sequences are much less important to the optimal perfor-
mance than the placement and widths of the edges in the
graph structure. Finally, the range for the number of fragments
to input into GAGrank mostly relates to the number of frag-
ments initially found by GAGfinder; for some saccharides,
GAGfinder found fewer than 60 fragments in the spectrum,
whereas for others, GAGfinder found well over 100. The range
of 60 to 70 suffices to get positional detail for modifications
without introducing false positives. In the GAGrank code, we
set the default values to the medians in Table 1. Exact values
for each combination of parameters are in supplemental
Table S1.
Table 2 shows the overall ranking and percent of incorrect

sequences outscored for each of the training compounds in
GAGrank, and supplemental Tables S3–S12 show the
GAGrank outputs for each. For eight of the ten training com-
pounds, GAGrank returned the correct sequence with the best
ranking score of all of the possible sequences. In training
compound #T6, GAGrank returned the correct sequence tied
with two other sequences for the second-best ranking score
of all of the possible sequences. This is likely due to the effect
that training compound #6’s rare 3-O-sulfation without 6-O-
sulfation has on the prior sequence rankings; indeed,
supplemental Table S8 shows that the top four sequences all
differ only by the presence (or absence) and location of the
3-O-sulfation in the sequence. In training compound #T9,
GAGrank returned the correct sequence tied with 25 other



TABLE 2
GAGrank performance for the training compounds using any of the

optimal parameter combinations

Training compound Ranking % Incorrect outscored

#T1 #1 of 2 100
#T2 #1 of 1848 100
#T3 #1 of 440 100
#T4 #1 of 1584 100
#T5 #1 of 60 100
#T6 #2-#4 of 1848 99.8
#T7 #1 of 990 100
#T8 #1 of 3640 100
#T9 #1-#26 of 23,298 99.9
#T10 #1 of 1092 100
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sequences for the best-ranking score of all of the possible
sequences, as seen in supplemental Table S11. This is likely
due to the large number of possible sequences for that
particular composition, combined with the relative dearth of
fragments found by GAGfinder.

Parameter Validation

Table 3 shows the ranking score, overall ranking, and
percentile of each of the validation compounds in GAGrank,
and supplemental Tables S13–S15 show the GAGrank out-
puts for each. Similar to the results for the training com-
pounds, GAGrank returned the correct sequence with the
best ranking score of all of the possible sequences, while
GAGrank returned the correct sequence tied with one other
sequence for the third-best ranking score of all of the
possible sequences for the compound with a single 3-O-
sulfation without a 6-O-sulfation. As can be seen in
supplemental Table S15, for validation compound #V3, the
two sequences with a better ranking score than the actual
sequence did not have any rare modifications, whereas the
actual sequence and the incorrect sequence with which it
tied both have one residue with 3-O-sulfation without 6-O-
sulfation. Unlike the results for training compound #T6, one
of the two sequences with a better ranking score than vali-
dation compound #V3 did not have the correct modification
numbers at each residue in the sequence; the sequence that
had the second-best ranking score placed a sulfate at the
2-O position of the nonreducing end GlcA rather than at the
6-O position of the neighboring GlcN.
TABLE 3
GAGrank performance for the validation compounds using any of the

optimal parameter combinations

Validation compound Ranking % Incorrect outscored

#V1 #1 of 140 100
#V2 #1 of 1584 100
#V3 #3-#4 of 990 99.7
GAGrank and GAG Mixtures

Figure 4C shows the structures of two pairs of saccharide
isomers used to show the ability of GAGrank to analyze mix-
tures. Table 4 shows the rankings for each compound in each
of the two mixtures at each of the ratios and supplemental
Tables S16–S29 show the GAGrank outputs for each. As in
the training compounds and validation compounds, one of the
sequences, mixture compound #M1B, has a rare modification,
3-O-sulfation without 6-O-sulfation. Furthermore, this
sequence never has the best ranking score at any mixture
ratio, just as in the similar cases in the training compounds
and validation compounds. The sequences corresponding to
the remaining three compounds have the highest-ranking
score when they comprise at least 70% of the isomeric
mixture of which they are a part. Furthermore, each of the
compounds used in the mixtures performs as well as it does
when it is pure as long as it is 70% or more of the isomeric
mixture.

Runtime Analysis

Information about the runtime of GAGrank on each of the
compounds and mixtures is available in supplemental
Table S2. With the exception of training compound #T9,
whose composition has 23,298 different possible sequences,
GAGrank ran to completion in under 17 s for each compound,
with many running to completion in under 10 s. There is a
strong relationship between the number of possible se-
quences for a compound’s composition and the runtime.
GAGrank was tested on a 2011 MacBook Pro that has a
2.4 GHz Intel Core i5 processor with 4 GB RAM. GAGrank
should run even faster on a more modern machine with
greater computational resources.

DISCUSSION

Here, we have presented our work on bipartite network
representations and analyses for the relationship between
GAG sequences and MS2 fragment ions, GAGrank. GAGrank
is an algorithm that ranks nodes using the bipartite network’s
structure and prior information about the sequences and
fragments, giving each node an importance score that is
derived based on how that fragment fits into the sequence.
GAGrank is currently available in command line form. We plan
to merge it and our previous work, GAGfinder (18), into a GAG
sequencing pipeline in the near future. The command line
interface is easy to use, with only a few arguments required for
operation.
To our knowledge, this is the first time this approach has

been used for the problem of GAG sequencing, and it has
certain inherent advantages. One such advantage is that the
concept of a relationship between sequences and fragments
is intuitive and easy to visualize. Another advantage is that
bipartite networks have been exhaustively studied in other
fields, meaning that methods for analyzing them have already
Mol Cell Proteomics (2021) 20 100093 7



TABLE 4
GAGrank performance for the mixture compounds using any of the optimal parameter combinations

Mixture and ratio Compound A rank
Compound A %

incorrect outscored
Compound B rank

Compound B %
incorrect outscored

#M1 100:0 #1 of 1584 100 – –

#M1 90:10 #1 of 1584 100 #10-#11 of 1584 99.4
#M1 70:30 #1 of 1584 100 #8-#9 of 1584 99.6
#M1 50:50 #22 of 1584 98.7 #2-#3 of 1584 99.9
#M1 30:70 #64 of 1584 96.0 #2-#4 of 1584 99.8
#M1 10:90 #109 of 1584 93.2 #2-#4 of 1584 99.8
#M1 0:100 – – #2-#4 of 1584 99.8
#M2 100:0 #1 of 30 100 – –

#M2 90:10 #1 of 30 100 #6 of 30 85.7
#M2 70:30 #1 of 30 100 #5 of 30 89.3
#M2 50:50 #2 of 30 100 #1 of 30 100
#M2 30:70 #3 of 30 96.4 #1 of 30 100
#M2 10:90 #4 of 30 92.9 #1 of 30 100
#M2 0:100 – – #1 of 30 100
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been developed. GAGrank, at its most basic level, is simply an
implementation of one of these methods, BiRank (39).
Furthermore, enumerating every sequence that is possible for
a given GAG composition allows for ranking sequences by
their importance in the network, which is analogous to their
likelihood. It is important to note that GAGrank is not a simple
fragment counting method but relies on the nimble techniques
associated with network analyses, and product fragments
score differently depending on the sequence to which they are
connected.
We used three separate sets of GAG compounds for

training and validation. We optimized GAGrank’s parameters
using the ten compounds in our training set and found
numerous sets of parameters that returned a near-optimal
solution. Using these parameters, we tested GAGrank’s per-
formance on the three compounds in our validation set, and
GAGrank returned a similarly near-optimal solution for these
compounds. We also tested GAGrank’s ability to sequence
GAG mixtures on two separate isomeric mixtures that differed
only in one positional sulfation. On these mixtures, GAGrank
performed well, ranking the sequence that made up more of
the mixture highly while ranking the sequence that made up
less of the mixture lower. An intuitive way to view GAGrank’s
performance on mixtures is that, the higher the percentage of
the mixture a particular sequence is, the higher that sequence
ranks. Although GAGrank’s performance on mixtures shows
that this method has potential for characterizing mixture
constituents, there is currently no means by which users can
determine that their sample is a mixture.
For the cases in the training set, validation set, and mixture

set where the actual sequence did not rank highest of all the
possible sequences, each compound had a rare modification
(3-O-sulfation without 6-O-sulfation on a glucosamine residue)
that was penalized in the sequences’ query vector. A simple
solution to this problem would be to not punish sequences
with rare modifications, but we hypothesize that this would
8 Mol Cell Proteomics (2021) 20 100093
penalize the final performance of sequences that are much
more common in nature. In the course of parameter optimi-
zation, an α equal to 1.00 was tested numerous times but
never returned the best solution. This case (α = 1.00) means
that the sequence ranking is derived entirely from the graph
structure, without any input from the query vectors. Without a
near-full complement of fragments in the spectrum, there will
be many sequences that have the exact same edges, and
without prior information, GAGrank cannot distinguish them.
We believe that the benefit of teasing out the exact correct
sequence when it has no rare modifications outweighs the
slightly worse performance for those sequences that do have
a rare modification. This argues for the use of enrichment
steps to increase the concentration of rare modifications in the
sample.
There are a couple of unique aspects to GAGrank that may

fundamentally alter how GAG sequence analysis is performed,
both of which are mostly about user preference. The first is
that it requires a peak list from GAGfinder that contains
correctly fit elemental compositions, and will not work on peak
lists exported from the vendor MS2 software generated using
averagine approximations. Although this adds an extra step
into the pipeline that other programs may not have, it uses the
most appropriate means of assigning monoisotopic peaks
and elemental compositions. We have demonstrated the ef-
ficacy and speed of GAGfinder in that project’s article (18).
Another is that GAGrank was not developed to work on metal
cationized compounds. Wolff and colleagues were the first
group to show how metal cationization reduces sulfate loss for
EDD-dissociated HS compounds (46), and this approach
succeeds in this endeavor. However, including saccharide
ions that have been cationized can severely increase the
search space, making the sequencing problem intractable.
Furthermore, none of the samples in this article was cat-
ionized, and GAGrank performed well even with the higher
amounts of sulfate loss.
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Of course, GAGrank was tested on pure synthetic saccha-
rides, but biological data are typically noisy and not pure. A
typical experiment that generates biological GAG data uses
liquid chromatography-tandem mass spectrometry (LC-MS2).
In LC-MS2, samples can be separated in the LC column based
on their different physiochemical properties, including charge,
size, shape, and hydrophilicities, and an online mass spec-
trometer generates MS2 spectra as samples elute off of the
column. This results in a large number of spectra that contain
mixtures of GAG structures. We demonstrated GAGrank's
performance on mixtures of pure chemicals and showed that
there is potential there, but GAGrank is not yet ready to handle
such large amounts of high-throughput data and it does not
perform as well on mixtures as it does on pure samples. For
biological GAG samples, the use of on-line liquid chroma-
tography separations will provide a degree of saccharide pu-
rification that is compatible with ExD tandem mass
spectrometry (21). The use of ion mobility separations has also
been demonstrated with GAG saccharides (22, 47). We envi-
sion a combination of on-line LC with ion mobility separations
as a means to provide separation of GAG saccharide posi-
tional isomers prior to the tandem MS step.
In conclusion, GAGrank demonstrates excellent perfor-

mance in the difficult task of GAG sequencing. It ranks se-
quences accurately based on the complement of fragments
found via GAGfinder and will be a valuable resource for GAG
researchers who need fine structure detail for their samples.
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