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Autonomous optimization of non-aqueous
Li-ion battery electrolytes via robotic
experimentation and machine learning
coupling

Adarsh Dave1,2, Jared Mitchell2,3, Sven Burke 2,3, Hongyi Lin 1,2,
Jay Whitacre2,3 & Venkatasubramanian Viswanathan 1,2

Developinghigh-energy and efficient battery technologies is a crucial aspect of
advancing the electrification of transportation and aviation. However, battery
innovations can take years to deliver. In the case of non-aqueous battery
electrolyte solutions, the many design variables in selecting multiple solvents,
salts and their relative ratios make electrolyte optimization time-consuming
and laborious. To overcome these issues, we propose in this work an experi-
mental design that couples robotics (a custom-built automated experiment
named "Clio”) tomachine-learning (a Bayesian optimization-based experiment
planner named "Dragonfly”). An autonomous optimization of the electrolyte
conductivity over a single-salt and ternary solvent design space identifies six
fast-charging non-aqueous electrolyte solutions in two work-days and forty-
two experiments. This result represents a six-fold time acceleration compared
to a randomsearchperformedby the sameautomated experiment. To validate
the practical use of these electrolytes, we tested them in a 220 mAh graphi-
te∣∣LiNi0.5Mn0.3Co0.2O2 pouch cell configuration. All the pouch cells containing
the robot-developed electrolytes demonstrate improved fast-charging cap-
ability against a baseline experiment that uses a non-aqueous electrolyte
solution selected a priori from the design space.

High-performance batteries are crucial to the electrification of trans-
portation and aviation1,2. However, new battery designs can require
extensive manual testing for material optimization, which can take
years. Designing a material is fundamentally a complex function that
takesmaterial formulation as input and outputs performance. Efficient
optimization of such a black-box function via machine learning has
been successfully demonstrated in many engineering domains,
including catalyticmaterials3,4, photovoltaics5,6, solid-statematerials7,8,
and battery-charging protocols9. There is a great deal of recent
research on coupling automated experiments to these machine-

learning methods10–14. The hope is that “closed-loop” approaches (i.e.,
the automated execution of experiments coupled directly to an
experiment planner, working in tandem to achieve a goal without
humanoperator influence) display the following traitswhen compared
to the standard design of materials via human-operated experi-
mentation: (1) closed-loop experiments are able to discover optimal
material designs within a given design space; (2) closed-loop experi-
ments discover optima faster and with fewer experiments; (3) closed-
loop experiments offer a principled basis for design-of-experiments
(DOE), balancing exploiting design regions likely to have optimal
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performance with exploring regions of unknown performance. These
traits have been demonstrated in related fields3,6–8,10,11,15, but have not
yet been demonstrated in battery material design outside of aqueous
electrolytes16.

Out of the materials present in a battery, liquid electrolytes are a
particular challenge to optimize. There are many choices for
solvent17–19 or salt20,21, each potentially yielding vastly different per-
formance; optimized electrolyte solutions often contain more than
three or four components. Both species choice and relative propor-
tions of species matter, creating a high-dimensional design space
spanning both efficient and inadequate battery performance. Battery
electrolytes can be optimized for different applications. The elec-
trolyte design often must fulfill multiple, competing objectives
within each application22, so optimal designs for rate-capability can
differ from optimal designs for cycle-life. Relevant to this work, fast-
charging battery electrolytes must be able to transport lithium ions
to and into the negative electrode active material at high current
rates (5–10mA/cm2), which is strongly associated with bulk transport
properties (ionic conductivity, viscosity, diffusivity, cation transfer-
ence number) and electrode interfacial kinetics (charge transfer
impedance, desolvation dynamics)23,24.

In this work, we develop a robotic platformnamed “Clio”, capable
of closed-loop optimization of nonaqueous Li-ion electrolyte solu-
tions. Clio enables high-throughput experiments characterizing
transport properties over a range of solvents and salts. When con-
nected to an experiment planner, Clio can efficiently and autono-
mously explore and optimize an objective over a given design space.
We consider optimization for fast-charging, focusing initially on single
objective optimization of the bulk ionic conductivity as an objective
for improving battery rate-capability performance. While this aspect is
a preliminary objective function, theworkflow introduced in this paper
can also enable effective multi-objective optimization25 of electrolytes
in future studies. Clio autonomously optimized conductivity over
solvent mass fraction and salt molality in a design space featuring:
ethylene carbonate (EC), ethyl-methyl carbonate (EMC), and dimethyl
carbonate (DMC) as a ternary solvent combination; and lithium hexa-
fluorophosphate (LiPF6) as a single-salt system. Optimal electrolytes
are passed through a sequence of fast-charging electrochemical tests
conducted in graphite∣∣LiNi0.5Mn0.3Co0.2O2 pouch cells. These results
are reported against a baseline electrolyte selected a priori from the
design space.

Results and discussion
Clio is illustrated schematically in Fig. 1, andpictured in Supplementary
Fig. 1. The instrument was custom-built for autonomous operations by
the authors of the present article and is essentially an automated liquid
handler at the front end (inspired by previous lab automation26), and a
flow-through liquid electrolyte characterization tool at the back end.
Given a specified electrolyte, Clio will create it by mixing together
feeder solutions and measure the ionic conductivity, viscosity, and
density of the liquid sample. The instrument is a closed volumewith all
wetted surfaces comprised of polytetrafluoroethylene (PTFE), stain-
less steel, or platinum (Pt). This geometry requires a solvent rinse cycle
between each composition tested. Acetonitrile was used as a rinse
solvent due to its provision of high vapor pressure, low viscosity, and
high LiPF6 solubility

27–29. The orchestration for the rinse cycle has been
open-sourced (see “Code availability”). All experiments are run in tri-
plicate as developed during a rinse solvent contamination study
(Supplementary Fig. 2). Ionic conductivity is measured via electro-
chemical impedance spectroscopy (EIS) measurements using a Palm-
sens4 (compact potentio/galvanostat and frequency analyzermade by
Palmsens) connected to symmetric Pt wires. The temperature of the
sample under test was taken during each ionic conductivity evaluation
via thermocouple, and remained between 26 and 28 °C for all mea-
surements reported. The mean absolute difference between repeated
measurements of the ionic conductivity of the same electrolyte is
found tobe ± 1.3% across a rangeof electrolytes (Supplementary Figs. 3
and4). Samples canbe retained in 2-mL vials for use in characterization
outside of Clio; this feature was used to test electrolytes measured to
have high ionic conductivity in pouch cells outside of Clio.

The liquid sample was dosed and transferred by two positive-
displacement pumps made by Fluid Metering Inc (FMI) calibrated to
5 µl per stroke. Compared to other pump types and test geometries,
these valveless, reversible pumps enable multiplexing of many feeder
solutions with fewer valves, complexity, and capital expenditure.
However, single tracking through a pump leads to challenges in
priming the pump and handling viscous solutions, solutions to which
are discussed in “Methods”.

LabViewwas used to orchestrate all devices-specific interfaces are
detailed in Supplementary Table 1, and the code is available to the
public, segregated into high-level orchestration VIs for runs and rinses
and low-level control VIs as specified in the README. The autonomous
experiment literature has already explored C++/ROS and Python

Fig. 1 | Schematic diagramof automated electrolyte experiment—“Clio”. It uses
a series of two programmatic pumps to dose and transfer a liquid sample. Dosing
occurs from feeder solutions (a) through a 24-port valve (b)mediated bypumps (c)
and a three-way valve (d) into either a waste vessel (e) or a common vessel with a
sonicator for mixing (f). Transfer takes the liquid sample through a dual Pt-wire

conductivity chamber connected to a Palmsens4 potentiostat (g), a three-way valve
leading to a mass balance (h), and a Brookfield viscometer (i). All 5 V switching is
handled by a Devantech relay (j). Custom Labview software (k) orchestrates all
instruments. Argon from the glovebox is piped in at high pressure (l) to assist in
clearing out the closed volume.
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options30,31 for experiment management. LabView was selected for
ease of development, management of multiple VISA connections via
NI-MAX, and reliably low latency (single milliseconds) for triggering
calls to these multiple VISA connections—this last point is crucial for
Clio as high-pressure argon contacts many valves, pumps, and instru-
ments in the rinse process.However, LabView isnaturally lessmodular,
shareable, and maintainable than the other languages, and lacks ver-
sion control entirely; thus, it may be worthwhile to further assess
LabView against the other frameworks already present. Clio is con-
trolled over HTTP via a LabView REST API, where a client requests
experiments from Clio in JSON and Clio returns experimental results.
This enables facile integration with any experiment planner. A man-
agement layer handling inventory volumes, chemical conversions, grid
creation, and HTTP sessionmanagement was designed in Python—this
code is made publicly available. Further details on Clio’s hardware,
software, and operation are contained in “Methods”.

A system of ternary solvents featuring EC, EMC, and DMC with
LiPF6 as salt was chosen for study. This is a well-known space for
electrolyte design and an appealing domain to demonstrate a novel
experimental method. EC-EMC 30–70% mass fraction with 1.1mol
LiPF6 per kilogram solvent was chosen a priori as a baseline, as EMC is
commonly chosen as a co-solvent in relevant literature to benchmark
electrolyte transport properties32–34.

Dragonfly—an open-source Bayesian optimization package
designed for black-box optimization25,35—is used as the experiment
planner in this work. Dragonfly’s adaptive sampling strategy and broad
support for discretized and constrained domains were of interest to
the authors of the present article. The experiment domain was repre-
sented to Dragonfly by three axes: (1) EC mass fraction, (2) DMC co-
solvent ratio, calculated as (mass fractionofDMC)/(1 −mass fractionof
EC), and (3) LiPF6 molality. Axis 1 was limited to EC mass fractions of
30% to 50%, and axis 2 was limited between 0 and 2mols LiPF6 per
kilogram solvent, keeping with conventional choices for non-aqueous
liquid electrolyte design. Each axis was split into 10–12 equivalently
spaced levels, creating more than 1000 points within the domain to
search. Dragonfly optimized for ionic conductivity over 42 experi-
ments. This optimization campaign was initialized with five samples
drawn randomly froma space-constrained to the top and bottom faces
of the design space (i.e., EC-EMC and EC-DMC electrolytes only)—
subsequent random sampling was not subject to this constraint. The
electrolytes investigated are illustrated as points in the three-
dimensional design space in Figs. 2 and 3.

An adaptive DOE is constructed with three different acquisition
functions evaluated over a Gaussian process regression-based

surrogate model—expected improvement, top-two expected
improvement, and upper-confidence bound. These sampling algo-
rithms roughly balance exploration and exploitation. We interspersed
the optimization run with periodic random sampling to further favor
exploration. Figure 2 illustrates a convergenceon an ionic conductivity
optimumwithin 15 experiments. The optimizer evaluatesmainly in the
high DMC region compared to the high EMC region, generally in the
middle band of salt concentration between 0.7 to 1.3mols LiPF6 per
kilogram solvent (known to be near the concentration of peak con-
ductivity in standard non-aqueous Li-ion electrolyte solutions). Sam-
ples from the high and low salt, mixedDMC-EMC regions could also be
desired.

Figure 3 shows measured ionic conductivities in the three-
dimensional design space. Linear carbonates like DMC are mixed
with cyclic carbonates like EC to lower viscosity and increase ionic
conductivity22, but more recent studies reveal that ionic conductivity
can also increase with higher dielectric constant as it improves ion
dissociation (e.g., EC over DMC, DMCover EMC)36. Our study indicates
that the ionic conductivity optimum of the EC:DMC:EMC LiPF6 system
at 26–28 °C is found at EC:DMC 40:60 by mass, 0.9m LiPF6 with
13.7mS cm−1 (gold arrow in Fig. 3). Further experiments were con-
ducted on the EC:DMC face of the design space along the 30%, 40%,
and 50% by ECmass contours, confirming this optimum in this design
space (Supplementary Figs. 5 and 6). Theoretical calculations con-
ducted with the Advanced Electrolyte Model (AEM; a highly accurate
model for nonaqueous electrolyte transport properties37,38) also show
a higher ionic conductivity in the 40% EC blend compared to 30% or
50%—this could be due to the improved ion dissociation in the 40%
compared to the 30%, and lowered viscosity in the 40% relative to the
50% (Supplementary Fig. 7).

Out of 42 evaluations, seven candidate electrolytes were picked
for follow-up Li-ion cell assembly and testing. Three of the highest
ionic conductivity electrolytes were chosen (blends A, C, and F in
Fig. 3), as were two higher-salt concentration electrolytes with >10mS/
cm (blends B and E) and one lower-salt concentration electrolyte with
>10mS/cm (blend D). As mentioned above, EC-EMC 30–70% by
weight, LiPF6 1m was a baseline electrolyte denoted blend G. The cell-
testing candidates are givenwith their color codes in Table 1. A suite of
tests on small pouch cells was devised to test electrolyte candidate for
fast-charging capability. Dry cells of 220mAh capacity were received
from the manufacturer with electrode materials, current collectors,
and tabs pre-made. Detailed cell specifications, materials, and proce-
dures are given inMethods. To guard against cell-to-cell discrepancies,
all cellswere run in at least pairs. Candidate electrolytesweremixed by

Fig. 2 | Sampling in an electrolyte design space during optimization. A The
specific points (electrolytes) sampled by Clio during autonomous optimization of
ionic conductivity in anEC-EMC-DMC, LiPF6 design space. Theblackcircle indicates
baseline electrolyte selected a priori (EC/EMC 30%/70% by mass, 1.1m LiPF6).

B Learning rate of Clio during this optimization. Random sampling (RAND) is
interspersed with Bayesian optimization (BO), biasing the optimization toward
exploring the space. Dashed black line indicates the conductivity of the baseline
electrolyte as measured by Clio.
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Clio and routed into the retain rack (blue tray, bottom left of Supple-
mentary Fig. 1). A human operator emptied Clio’s retain rack and
manually injected each electrolyte into these dry cells.

Cells were assembled and preconditioned, then subject to a
five-step rate test of increasing constant-current charges up to
10.4 mA/cm2 (4C), with 1.3 mA/cm2 (0.5 C) constant-current dis-
charges between each step, each followed by constant-voltage
(CV) hold at 4.3 V until a termination current of 0.7 mA/cm2 (C/20).
Cells were then repeatedly cycled at the highest charge rate until
failure due either to overvoltage (>4.5 V) or capacity fade. Further
details on this cell testing—including current conversions and cell

assembly, preconditioning, and materials—are given in “Methods”
and Supplementary Table 2.

Figure 4A–Cgives the results fromthe rate-test for each candidate
electrolyte. Electrolyte blends optimized by Clio show greater or equal
discharge capacity at the 4C step compared to baseline, showing
greater usable capacity put into the cells at this high charging rate
(Fig. 4B). The worst cell containing a Clio electrolyte showed a 5%
improvement on discharge capacity after 4C charging compared to
the worst baseline cell, and the best cell with a Clio electrolyte showed
a 13% improvement on this metric compared to the best baseline cell
(Fig. 4C). Capacity fade during these further 4C charge cycles, along

Fig. 3 | Evaluations of the electrolyte design space, and electrolytes chosen for
cell testing. AMeasured ionic conductivities (in color) of each electrolyte sampled
by Clio during autonomous optimization of ionic conductivity in an EC-EMC-DMC,
LiPF6 design space. The gold arrow indicates the highest ionic conductivity

electrolyte found (EC/DMC 40%/60% by mass, 0.9m LiPF6). B Electrolyte candi-
dates chosen for testing in pouch cells. Blends A–F are discovered by Clio. Blend G
is the baseline electrolyte.

Table 1 | Table of electrolyte compositions involved in autonomous optimization

Blend C and F had the highest measured ionic conductivities in the space; blend B and E had high salt concentrations and >10mS/cm ionic conductivity; blend D had a low salt concentration and
>10mS/cm. Blend A had the highest ionic conductivity with EMC present. Blend G was chosen as a baseline electrolyte a priori.
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with coulombic efficiency and related metrics, are shown in Supple-
mentary Fig. 8. Discharge capacity after the 4C step of the rate-test
shows correlation with discharge capacity after five cycles of 4C
charging (Fig. 4D).

These results indicate that our workflow is able to optimize
material designs within a given design space, and deliver an optimum
from a common design space. Better fast-charging performance over
baseline in a pouch cell was realized after only 42 experimental eva-
luations optimizing for bulk ionic conductivity. Similar closed-loop
workflows have been demonstrated in the literature to discover opti-
malmaterials faster orwith fewer experiments compared to randomor
exhaustive searches8,11,39,40. These are frequently assessed with two
figures-of-merit with respect to random sampling—an enhancement
factor (the relative improvement in discovered optima over samples
taken) and acceleration factor (the relative improvement in samples
required to achieve a given value of the objective)12,41. We calculate
these quantities with simulated optimizations over the design space
multiple times, using a machine-learning model as the “black-box
function” to be optimized. This model was fit to data calculated by
AEM, and shows great fidelity when predicting on points sampled by
Clio (Supplementary Fig. 9).

Campaigns comparing various forms of Bayesian optimization to
random sampling are shown in Supplementary Fig. 10, out of which we
calculate enhancement and acceleration factors (EF, AF, respectively).
For the form of optimization used in the fast-charging study, EF
(Fig. 5A) is upper-bounded by 5%, trending to 2.5% over 40 samples.
Thismay be due to design space, as shown in Supplementary Figure 11:
the objective has a single optimum and varies quite smoothly with
wide bands of high conductivity throughout the space. TheAF (Fig. 5B)
reaches 10× on average for at the optimumobjective—again, due to the
smooth, widely dispersed objective in this design space, AF is negli-
gible until 95% of the maximum objective. Relevant to Clio and its
precision in measuring conductivity, the AF for achieving a 98.5% of

the maximum objective is on average 6x and ranges from 4.5×–11.5×
depending on individual runs.

An automated workflow also adds time and material efficiency
compared to human testing, detailed in Supplementary Table 3 and
Supplementary Fig. 12. For repeated conductivity measurements on
two electrolyte samples, Clio likely performs more measurements
per day than an average human operator and uses about 30% of the
volume compared to literature equivalents. Still, this conclusion sug-
gests that future work aim to improve the acceleration factor of
autonomous experiments as physical automation tends to yield fixed
efficiency improvements that scale, at best, linearly with sample size.
Research efforts on applying improved machine-learning methodolo-
gies to plan experiments in complex design spacesmay unlock greater
overall efficiencies than focusing on laboratory automation alone.
Already, literature has demonstrated AFs above 20× to 1000×11,12,41,
implying the potential for higher AFs when Clio searches complex
design spaces.

In summary, we have demonstrated a “closed-loop” optimization
of a non-aqueous battery electrolyte for ionic conductivity and close
the device gap to show performance improvements when tested in
pouch-cell configuration. Our workflow using a Bayesian experiment
planner produces a highly efficient DOE, finds a yet-unreported con-
ductivity optimum in a well-studied design space, and reveals candi-
dates with better fast-charging performance in a Li-ion cell than an
intuitively chosen baseline. This demonstrates the potential of closed-
loop experiments to discover optimal material designs within well-
explored and unexplored design spaces. By comparing this workflow
in simulation to a randomly sampled optimization, we estimate a six-
fold overall acceleration using our scheme.Webelieve thisworkwill be
useful beyond the battery community; our custom-designed robotic
platform, experiment planning, and integrationwith device testingwill
be valuable in optimizing other autonomous discovery platforms for
energy applications and material science in general.

Fig. 4 | Li-ion cell performance with various electrolyte solutions. A Constant-
current charge capacity of each electrolyte, averaged from two cells. B Constant-
current discharge capacity of each electrolyte, averaged from two cells.C Bar chart
of each cell's discharge capacity after 4 C charge—cycle 7 on panels A and B.

D Relationship between performance at 4 C rate-test step and capacity of cell after
five back-to-back 4C charge cycles; unfilled markers are cells that did not make it
five cycles—the last cycle capacity is reported here.
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Methods
Clio: hardware and metrology
Hardware utilized in Clio’s design is seen in Fig. 1 and Supplementary
Table 1. The flow path of the liquid sample is determined two pumps
(Fluid Metering Inc. ICST-02) and three three-way valves
(Cole–Parmer) that are switched, along with a Qsonica Q55 sonicator
(55 watt, 20 kHz) in the mixing vessel, by a Devantech relay. Crucial to
this work, ionic conductivity is measured using electrochemical
impedance spectrocopy (EIS) in a custom chamber, a PTFE fixture in
which the liquid sample fills between symmetric platinum electrodes.
Complex impedance is measured at five frequencies between 14 and
800 kHz—the real part of the impedance at the frequency with the
smallest measured phase difference is taken as the resistance of the
sample. A cell constant is derived from single point calibration to an
acetonitrile solution of known ionic conductivity (see Supplementary
Fig. 2)—inverse resistance divided by cell constant is reported as the
specific ionic conductivity of the sample.

A rinse cycle is required between samples, for which we chose
acetonitrile. The contamination study in Supplementary Figure 2
shows that, after a rinse, two experiments will converge on the
known conductivity of a standard. All experimental evaluations are
run in triplicate for this reason, with the final two runs in each triplet
averaged and reported as the measurement. The repeatability of the
conductivity measurement is assessed in Supplementary Figs. 3 and
4—120 samples were taken in triplicate across a range of carbonate
solvents and LiPF6 concentrations. These were assessed for the var-
iance between run 2 and run 3 in each set, finding a mean averaged
percent error of 1.3% and a 95% confidence interval of ± 3.8%.

The temperature of the sample under test was taken during each
conductivity evaluation via a thermocouple connected to the Palm-
sens4 (18-bit resolution combined potentiostat, galvanostat, and fre-
quency response analyzer), and remained between 26 and 28 °C for all
measurements reported. Clio is kept in a glovebox maintaining a dry
argon atmosphere, with moisture levels measured every 5min to be
below 10 parts permillion H2O and oxygen levels remaining below 100
parts per million.

Clio: viscous solution handling, priming
Two challenges of using a single valveless pumps to manage dosing
and transfer include accurately dosing solutions of wide viscosity
ranges and priming the pump. As viscosity increases, the pump must

slow down its strokes per minute (RPM) to maintain its calibrated
microliter-per-stroke value. This is illustrated in Supplementary
Fig. 13—solutions of known densities and viscosities are pumped
through the dosing pump at a variety of RPMs. The viscosimeter used
was a Brookfield DV-II Pro (cone and spindle viscosimeter, ± 1% full-
range accuracy model RVDV-II+ with RV2 spindle). By massing the
output, we derive a microliter-per-stroke value and compare that to
the calibrated setting. The pumps have a stated precision of 0.5%
around the calibration mark; cutoffs for each viscosity level were set
conservatively based on this data. The resulting linear curve is shown
in Supplementary Fig. 14. This curve is highly dependent on tubing
diameter and system pressure—the priming tube had an internal dia-
meter of 1.016mm, and the feeder vials feature a small hole (~1.5mm
diameter) in the lids to minimize pressure differential within the vials.
These choices enabled a top-end dosing viscosity of 70 centipoise for
Clio as set up in this study, and further optimizations for higher visc-
osity design spaces can be discussed in future work. For a study
focusing on ionic conductivity, transfer pump precision is less
important. We simply used a 50 stroke offset from the dosing pump
derate curve to account for the higher systempressure in the back half
of Clio (marker g–j in Fig. 1). More precise derating of the transfer
pump will feature in future work on viscosity, density, and surface
tension measurements.

The pumps used in this study only operate at high accuracy when
they are filled with fluid—a state of being primed. Thus, in the dosing
process, the pump must change from primed (dosing solution 1) to
unprimed to primed again (dosing solution 2). This requires an open-
air valve maintained in the VICI valve (marker b in Fig. 1), and a three-
wayvalve switchingbetweenwaste and themixing vessel (markersd, e,
and f, respectively, in Fig. 1). Furthermore, the authors of the present
article developed a priming method that alternates between feeder
solution and open-air valve to de-contaminate shared lines (present in
dose_FMI.vi) in a volume-efficient manner. When pulling the feeder
solution through the unprimed pump, the RPMwas slowed down by a
factor of 3, which was visually verified to prime the pump at the visc-
osity range present in the derate curve.

Clio: software
Clio is orchestrated with a suite of Labview tools developed in-house,
focusing on low-level device communication and timings. Labview
manages a webhook for supplying Clio a specific DOE; electrolyte

Fig. 5 | Calculation of enhancement factor (EF) and acceleration factor (AF).
These are calculated based on the simulated optimizations shown in Supplemen-
tary Fig. 10. Standard deviations are calculated from the spread of outcomes of the

random sampling baseline. A EF remains upper-bounded by 5% over the optimi-
zation. B AF achieves a value of 10 on average for finding the true optimum, and a
value of 6 at 1.8% of optimum (this is near Clio's experimental precision).
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compositions are passed to the webhook via HTTP, and Clio’s mea-
surements are passed back in the response. Experiment and inventory
management is handled through a Python API that interfaces with this
webhook; any generic machine-learning recommender can interface
with this given appropriate configurations. Two Python classes are
central to Clio operation. "Experiment” objects manage Clio sessions,
inventory, and input/output with the Labview control suite. Because
Clio mixes by volume, "ElectrolyteComposition” objects handle elec-
trolyte representation and conversions needed to transform
electrolyte-composition axes (molality andmass fractions in thiswork)
to volumes of feeder solutions. An additional script is provided that
creates grids of volumes across n feeder solutions and converts the
grid to composition axes in a fast, vectorized manner.

Electrolyte conversion also requires a priori estimates of feeder
solution density; these values were estimated via the Advanced Elec-
trolyte Model37,42, a high-fidelity electrolyte calculation software, and
confirmed by Clio’s density measurement. All code used is made
available, see “Code availability”. The client managing Clio experi-
ments sits on an AWS EC2 instance managed by Toyota Research
Institute.

Clio: advanced electrolyte model
Asmentioned, the Advanced Electrolyte Model37,42 (AEM) was used for
a variety of uses throughout this study. AEM is a proprietary electrolyte
calculation software providing estimations of transport, thermo-
dynamic, and other electrolyte quantities at high fidelity across a large
swath of liquid electrolytes relevant to battery operation. In this study,
we used densities and viscosities from AEM in dosing and derating
liquid samples in Clio. We also used data from AEM in the simulated
optimizations further discussed below.

Clio: machine learning
Dragonfly—the code-base used for Bayesian optimization in this study
—is open source and available at github.com/dragonfly/dragonfly.

The “live” optimization are run by wrapping Clio’s Experiment
object into Dragonfly’s maximise_function API. The run was initialized
with 5 randomsamples pulled from top andbottom faces of the design
space cube (either DMCor EMC co-solvent, not amixture)—this traded
off random sampling with a space-filling design to seed optimization.
Dragonfly’s Bayesian optimization (BO) default settings were used for
the live run—aGaussianprocess regressor formedby theMaternkernel
was used with parameters fit every experiment round with maximum
likelihood estimation (MLE). Dragonfly uses an adaptive choice of
acquisition function35. The agent starts optimization by sampling a
uniform distribution containing acquisition functions upper-
confidence bound (UCB), expected improvement (EI), and top-two
expected improvement (TTEI). If the experiment run with the acqui-
sition function drawn from this sample improves the optimum found,
the distribution is incremented in favor of this acquisition function.

We examined the acquisition function dependence of the opti-
mization in simulated runs. These simulated runs were obtained by
drawing “experiment” data from a Gaussian process regressor trained
on data from the Advanced Electrolyte Model (AEM). This regressor
was also formed by a Matern kernel and fit byMLE, with the simulated
objective shown in Supplementary Fig. 11. Results for these simulated
optimizations are seen in Supplementary Fig. 10, averagedover 10 runs
(except for random sampling which is run 120 times). We see that all
BO-inclusive campaigns perform much better than random sampling
in discovering the optimum, and do not show strong dependence on
initialization as each campaign ends up discovering the design space
optimum. Acquisition function dependence is also weak, as perfor-
mance differences are negligible between adaptive, UCB, and TTEI-led
campaigns. Often, acquisition function choice is crucial to good
performance35, but this does not appear to be the case in this simple
design space. Enhancement factor (EF) and acceleration factor (AF)

were calculated in an identical manner to recent literature11,12,41. Stan-
darddeviations are calculated from spread of outcomes of the random
sampling baseline, as this variance is much larger than variance in the
Bayesian optimization strategies.

Materials availability
The solvents and solutes used in this investigation, except for the
baseline electrolyte and acetonitrile, were obtained as anhydrous
(<20ppmmoisture), battery-grade (99.9%pure)materials fromGELON
LIB Group. Materials used for pouch-cell testing were also obtained
from the GELON LIB Group. Baseline electrolyte of 1.1m LiPF6 in
EC:EMC 30:70 and acetonitrile was obtained from Sigma-Aldrich,
anhydrous (<10 ppm) and battery-grade (99.9% pure).

Stock feeder solutions were made for this investigation through
firstmaking solute-freemixtures of solvents, then gradually adding the
appropriatemass of solute. All solutions weremixed for aminimumof
30min past the dissolution of the last visible solute. All measurements
of solvent and solute were done bymass using a Denver Instrument PI-
214.1 analytical balance (210 g capacity, 0.1-mg readability/repeat-
ability). All solutions were mixed with a VWR brand magnetic stir bar
and magnetic stir plate. All glassware and stir bars were washed thor-
oughly with acetonitrile between solutions and were allowed to dry
completely before any more solutions were made. Miscibility and co-
solubility screening tests were conducted on these feeder solutions
before solutions were used in the test stand. Solutions were routinely
checked for the stability of dissolved species and were routinely
inverted to prevent any stratification of the solutions. Feeder solutions
were stored in 60-ml amber glass vials with Sure/Seal septa lids. All
materials were stored and handled in a dry argon atmosphere with
<5 ppm moisture. All experimental procedures, except cell testing,
were also conducted in a dry argon atmosphere.

Cell testing
Dry pouch cells with a nominal capacity of 220 milliampere-hours
(mAh) were sourced from Linyi Gelon LIB Co. Ltd. Cells contained
LiNi0.5Mn0.3Co0.2O2 cathode and graphite anode. Cells were run in
duplicate or triplicate—blend C was only run once due to a cell pre-
senting with incorrect capacity. Full information on cell materials,
dimensions, compositions, and specifications is given in Supplemen-
tary Table 2.

All tests were completed on Neware BTS-CT-4008-5V12A battery
cyclers. Testing was carried out in an uncontrolled temperature
environment (i.e., no environmental/climactic control). The average
lab temperature was 25 °C ( ± 2 °C). Cells were cut open and dried in a
vacuum oven overnight and then transferred into a glovebox, with
moisture levels below 10 parts per million H2O and oxygen levels
remaining below 100 parts per million. Cells were then filled with
0.7mL of electrolytes by an Eppendorf pipette and sealed with a heat
sealer. Finally, cells were transferred out for the following four steps
done in sequence: (1) cell construction followed by a 36-h rest held at
1.5 V for electrolyte infiltration, (2) cell formation at C/20 (1C = 2.6mA/
cm2) symmetric for three cycles, (3) rate-test with charge rates of C/2,
1C, 2C, 4C, thenC/2 again, discharging each time at C/2. Each constant-
current charge was completed with a constant-voltage hold at 4.3 V
until C/20. Each C/2 discharge was completed with a constant-voltage
hold at 2.5 V until C/20. Then, each cell was subjected to a cycling test
until failure—either overvoltage of 4.5 V during the charge or low
capacity. Each cycle had a charge rate of 4C, discharge rate of 0.5C,
completing eachcycle againwith aCVhold at 4.3 V. EachC/2discharge
was completed with a constant-voltage hold at 2.5 V. Cells were rested
for 10min between each step of the test. An image of an example dry
pouch cell with a length scale, identical to the cells used in this study, is
provided in Supplementary Fig. 15. Translations of C-rates into cur-
rents, specific currents, and current densities are given in Supple-
mentary Table 4.
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Data availability
All data generated in this study have been deposited in Github for
public accession at github.com/BattModels/Clio-NatCommData.

Code availability
All code generated in this study have been deposited in Github for
public accession at github.com/BattModels/Clio-LabViewControl (for
LabView orchestration code) and github.com/BattModels/Clio-
PythonAPI (for Python management API).
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