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Abstract

Background: Numbers of giraffes are declining rapidly in their native habitat. As giraffe research and conservation
efforts increase, the demand for more complete measures of the impact of conservation interventions and the
effects of captive environments on animal health and welfare have risen. We compared the ability of six different
enzyme immunoassays to quantify changes in fecal glucocorticoid metabolites (FGM) resulting from three sources:
adrenocorticotropic hormone stimulation test, transport, and time of day that samples were collected.

Results: Two male giraffes underwent ACTH injections; all six assays detected FGM increases following injection
for Giraffe 1, while only three assays detected FGM increases following injection for Giraffe 2. Consistent with other
ruminant species, the two 11-oxoetiocholanolone assays (one for 11,17-dioxoandrostanes and the other for
30,11-0xo metabolites) measured the most pronounced and prolonged elevation of FGM, while an assay

for 3B,11p3-diol detected peaks of smaller magnitude and duration. Both of the 11-oxoetiocholanolone assays
detected significant FGM increases after transport in Giraffes 3-7, and preliminary data suggest FGM detected
by the assay for 11,17-dioxoandrostanes may differ across time of day.

Conclusions: We conclude the assay for 11,17-dioxoandrostanes is the most sensitive assay tested for FGM
in giraffes and the assay for FGM with a 5B-3a-ol-11-one structure is also effective. 11-oxoetiocholanolone
enzyme immunoassays have now been demonstrated to be successful in a wide variety of ruminant species,
providing indirect evidence that 5B-reduction may be a common metabolic pathway for glucocorticoids in
ruminants. As FGM peaks were detected in at least some giraffes using all assays tested, giraffes appear to
excrete a wide variety of different FGM. The assays validated here will provide a valuable tool for research

on the health, welfare, and conservation of giraffes.
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Background

Giraffes (Giraffa camelopardalis) are currently listed as a
species of least concern by the International Union for
Conservation of Nature (IUCN) [1]. However, wild pop-
ulations have recently suffered major declines, from an
estimated 140,000 individuals to an estimated 80,000
individuals over the course of a decade, and two
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subspecies (G. c. peralta [2] and G. c. rothschildi [3]) are
now recognized as endangered by IUCN. Against this
backdrop, efforts to study and conserve wild giraffes and
to ensure optimal health and welfare for captive giraffes
have intensified.

Studies of wild populations are revealing that giraffes
have complex social structures and habitat dynamics
with implications for conservation strategies [4-7].
Giraffes’ habitat preferences are shaped by energetically
costly reproductive strategies, resulting in sex segrega-
tion and female habitat preferences that change during

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12917-016-0864-8&domain=pdf
mailto:mbashaw@fandm.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Bashaw et al. BMC Veterinary Research (2016) 12:235

lactation [8, 9]. Zoos maintain a population of captive
giraffes that could be used as a hedge against extinction,
but at the turn of the century some captive giraffes
exhibited poor health [10-12] and behavioral problems
[13-15]. Zoos have worked successfully to improve
giraffe health and reduce abnormal repetitive behaviors
[15—-17], but these problems still persist at low rates so it
is unclear whether captive environments are yet optimal
for housing giraffes. The adrenal system plays a role in
energy regulation [18], reproduction [19], immune func-
tion [20], and physiological responses to disturbance
[21], so an efficient and ideally noninvasive measure of
adrenal responses in giraffes could shed important light
on population dynamics, conservation efforts, health,
and welfare in both in and ex situ populations. To the
best of our knowledge no data are currently available on
hypothalamic-pituitary-adrenal (HPA) axis functioning
in giraffes.

Measuring an individual’s physiological arousal pro-
vides a window into how that individual animal is coping
with its environment, whether in the wild or captivity.
As Webster [22] describes, arousal produced by exciting
or stressful stimuli results in an activation of the HPA
axis, which results in the release of glucocorticoid hor-
mones (GC), amongst others. GC produce a negative
feedback such that once the animal is no longer excited
or stressed, the HPA axis response ends and GC return
to baseline levels. If the organism is unable to resolve or
escape the situation, HPA axis activation continues and
negative feedback systems are disrupted, resulting in
prolonged elevations of GC concentrations with negative
consequences for the animals’ behaviour, health, and
ability to respond to future events [23, 24]. In addition
to within-animal changes, differences in GC levels be-
tween animals have been linked to behavioral differences
that may contribute to or reflect different life history
strategies [25, 26].

Fecal glucocorticoid metabolites (FGM) have become
a popular measure of physiological function and welfare
in a variety of species [27, 28] because they reflect adre-
nocortical activity over a certain time period [29] and
can therefore be used to answer a wide variety of re-
search questions. Technically, animals are not disturbed
during fecal sample collection, and sampling is therefore
feedback-free due to the absence of capture and hand-
ling. This is particularly beneficial for field studies,
where capture and handling may be logistically challen-
ging or cause long-term health consequences [30]. How-
ever, species-specific differences in the composition of
excreted FGM and the different affinities of the anti-
bodies used in each assay for specific FGM [31-33] re-
quire the measurement of FGM to be validated for each
species [21, 29] and ideally each sex [34]. Validation is
accomplished by experimentally stimulating the HPA
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axis using e.g., an injection of adrenocorticotrophic hor-
mone (an ACTH challenge) or by subjecting the animal
to a putative stressor (e.g., transport or aggressive inter-
action). These two validation techniques reveal two as-
pects of measurement effectiveness. Because an ACTH
challenge provides direct physiological stimulation of the
adrenal glands, it measures how well an assay detects an
increase in GC concentrations. Subjecting an animal to
a putative stressor, on the other hand, targets the degree
to which the assay is sensitive enough to detect
biologically-relevant changes in GC. If an assay detects
increased FGM levels following the event, one can
conclude both that the event was indeed stressful and
that the assay is sensitive enough to detect an envir-
onmental stress of that magnitude. When using feces
as a hormone matrix, these techniques allow re-
searchers to verify that FGM measured with a par-
ticular assay reflect both increased GC concentrations
and perceived stress [29].

This study aimed to demonstrate that measurement of
FGM in giraffes provides a feasible and noninvasive way
to assess the physiological function and affective state of
individual giraffes. More specifically, this study: a) com-
pared the ability of six different enzyme immunoassays
(EIAs) to quantify changes in FGM produced by an ad-
renocorticotropic hormone stimulation test (ACTH
challenge test) at two different sampling rates, b) mea-
sured changes in FGM concentrations in daily samples
as a result of transport, a putative stressor, and c) pre-
liminarily investigated the influence of time of day sam-
ples were collected on FGM results.

Methods

Study animals

A total of 7 giraffes were monitored in this study. Giraffe
1 was a 6-year old male South African (Giraffa camelo-
pardalis giraffa) singly housed in a 4000 m* enclosure at
the National Zoological Gardens of South Africa (NZG),
Pretoria, South Africa. Giraffe 2 was a 17-year-old male
hybrid-subspecies G. camelopardalis housed in a 10-ha
exhibit with two other adult male giraffes and zebra
(Equus burchellii), eland (Taurotragus oryx), forest buf-
falo (Syncerus caffer nanus), and ostrich (Struthio came-
lus) at Taronga Western Plains Zoo, Dubbo, NSW,
Australia. Giraffes 3—7 were a juvenile male (3), two ju-
venile females (4 and 5), and two adult females (6 and 7)
transported among seven German zoos (see Table 1).
The study of Giraffes 3—7 consisted solely of opportunis-
tic non-invasive collection of feces during and after
transfers that were occurring for management reasons.

ACTH challenge tests
Giraffe 1 was remotely injected into the caudal thigh
muscle with Synacthen Depot (Novartis) loaded into a
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Table 1 Demographic and transport information for focal animals 3-7

Giraffe  Sex  Subspecies Age at Transport (years) ~ Transport Type  Transport Duration® (h)  Samples Collected®  No. of Samples
3 M G. ¢ rothschildi 1 Within-zoo 033 -10to +30d n=38
4 F G. c. reticulata 3 Between-zoo 4 -38to +41d n=37
5 F G. c. reticulata 25 Between-zoo 4.5 -3to+14d n=18
6 F G. ¢. angolensis 10 Between-zoo 6 -8 to +38d n=38
7 F G. ¢. angolensis 11 Between-zoo 6 -5to +38d n=38

*The reported transport duration is the amount of time the animal was actually moving in the transport vehicle; the time to load, secure and unload the animal is

not included

PDate range for sample collection relative to the date of transport, followed by number of samples collected. - indicates the number of days before transport and

+ indicates the number of days after transport

10 ml dart syringe with a 60 mm x 2 mm standard nee-
dle (Dan-Inject, Denmark) at an estimated dose 1 IU/kg
at 18:00 on day 1 (21 October 2012). The animal was
continuously monitored and a fecal sample (3—4 pellets)
collected from each defecation beginning 12 h before
the ACTH injection and continuing until 72 h post-
injection. Fecal samples were frozen within 1 h of
collection.

Giraffe 2 was injected with approximately 0.7 IU/kg of
Synacthen Depot using two darts delivered 2 min. apart
into the shoulder beginning at 12:18 on day 6 (21 May
2013). To facilitate identification of the feces, the animal
was fed glitter beginning 1 week before the injection.
Fecal samples were collected daily between 08:00 and
10:00 for 5 days before and 4 days after injection and
transferred to a —20 °C freezer within 30 min. Fecal sam-
ples from each defecation between 20 and 28 h post-
injection were also collected; these samples were placed
on ice after collection and transferred to a -20 °C freezer
when animal care staff were available to let the re-
searcher out of the exhibit. All samples were frozen
within 1 h of defecation except two: one was on ice for
64 min and a second for 110 min before freezing.

Transport

Giraffes 3-7 were monitored opportunistically during
management-necessitated transfers between zoos or be-
tween exhibits within a zoo. Transports occurred in win-
ter (Giraffes 3 and 5), summer (Giraffe 4), and autumn
(Giraffes 6 and 7). For each transport, giraffes were
loaded onto a vehicle, driven for at least 20 min (individ-
ual transport lengths given in Table 1), and unloaded
into an unfamiliar location. Fecal samples were collected
daily at approximately 11:00 for at least 3 days before
and 14 days after transport (sampling details given in
Table 1). Fecal samples were collected within 1 h after
defecation and directly transferred to a —20 °C freezer.

Effects of collection time

To assess the effect of time of day on FGM concentra-
tion, samples were collected from Giraffe 1 immediately
following every defecation over a 48-h period. A total of

32 samples were collected beginning at 06:00 on 17
October 2012 and ending at 06:00 on 19 October 2012.
Fecal samples were frozen within 1 h of collection.

Sample processing and extraction procedures

Samples collected during the ACTH challenge trials as
well as for determining effects of collection time were
pulverized, mixed, and 0.1 - 0.11 g extracted by adding
3 ml 80 % methanol and vortexed for 15 min. Feces were
then pelleted by centrifuging at 2000 g for 15 min and
the supernatant decanted into polypropylene tubes for
storage. For shipping or storage at room temperature,
0.5 ml of each fecal sample’s extract were transferred
into Eppendorf tubes and air-dried [35]. Subsequent
steroid analyses were conducted at the Wildlife Repro-
ductive Centre, Taronga Conservation Society, Dubbo,
NSW Australia.

Samples collected for monitoring the effect of trans-
port were extracted by weighing 0.495-0.505 g of wet
feces, adding 5 ml 80 % methanol, vortexing for 30 min,
and centrifuging at 2500 g for 15 min [35]. Sample pro-
cessing and assays were performed at the University of
Veterinary Medicine, Vienna, Austria.

Assay procedures

Fecal extracts resulting from the ACTH challenge test
samples were measured for immunoreactive FGM
concentrations using six different enzyme immunoas-
says (EIAs), namely a cortisol, corticosterone, 11-
oxoetiocholanolone I (detecting 11,17-dioxoandrostanes;
11,17-DOA), 11-oxoetiocholanolone II (detecting FGM
with a 5B-3a-ol-11-one structure; 3a,11-0x0-CM), 5a-
pregnane-3(3,11p,21-triol-20-one (measuring 3(,113-diol-
CM), and an 11B-hydroxyetiocholanolone EIA (measuring
3a,11B-diol-CM). Detailed assay characteristics, including
references providing full descriptions of the assay compo-
nents and cross-reactivities, are provided in Table 2. Sam-
ples collected for monitoring the effect of transport and
collection time were assessed using only the two 11-
oxoetiocholanolone EIAs, which most effectively identified
FGM peaks following ACTH administration (Fig. 2).
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EIA (source laboratory, abbrev.) Sensitivity (ng/g feces) Intra-assay CV* Inter-assay CV° References
Cortisol (Munro, R4866) 23 49 % 37 % n=4 [77,78]
Corticosterone (Munro, CJM06) 176 81 % 81%,n=4 [79, 80]
11-oxoetiocholanolone | (Palme, 72a, 11,17-DOA) 72 48 % 123 %,n=5 [63, 81]
11-oxoetiocholanolone Il (Palme, 72T, 3a,11-ox0-CM) 96 8.8 % 138%, n=4 61, 671
5a-pregnane-33,113,21-triol-20-one (Palme, 37, 33,113-diol-CM) 96 6.1 % 95 %, n=4 [34]
11B-hydroxyetiocholanolone (Palme, 69a, 3a,113-diol-CM) 480 9.1 % 97 %, n=4 [54, 82]

“Intra-assay CV = SD/mean percent binding for 10 wells each of high- and low-concentrated pool samples, averaged across concentrations
PInter-assay CV = SD/mean percent binding for standards (72T, 69a) or high- and low-concentrated pool samples (other assays), averaged across concentrations,

n indicates number of plates used

To determine whether giraffe fecal extracts contained
FGM that would bind to the antibody in each EIA in a
way comparable to its standard, we first created a fecal
extract pool consisting of equal volumes of 10 samples
collected for the ACTH challenge experiment: 2 pre-
injection, 2 at the expected peak (12-48 h post-
injection), and 1 post-peak sample from each giraffe. For
all assays, parallelism was then demonstrated by com-
paring serial dilutions of a fecal extract pool to serial
dilutions of the steroid standard against which the anti-
body was raised [36]. Parallelism was acceptable for all
assays but best for the two 11-oxoetiocholanolone
assays; the correlation between percent binding for stan-
dards and samples within each assay was at least r=0.96
(Mean, = 0.98, Fig. 1). Using these data, appropriate dilu-
tion for samples in each assay was identified by deter-
mining what dilution produced close to 50 % sample
binding for the pool.

Data analysis

For data from both the ACTH challenges and the trans-
port events, the range of baseline FGM for each individ-
ual as measured by each assay was determined by
iteratively calculating a mean + 2SD threshold of concen-
tration based on all samples collected from that individ-
ual [33, 37, 38]. At each step, samples that fell above the
threshold were excluded and the mean and SD were
recalculated until all remaining samples fell below the
threshold and could be considered baseline values. After
the baseline range was established, the post-injection
peak was defined as the longest series of consecutive
post-injection samples above the final mean +2SD
threshold. Data are available in Additional file 1.

Once the post-injection peak had been identified, three
measures of assay effectiveness were computed. First, we
found the duration of the peak by computing the differ-
ence between the times the first and last peak samples
were collected. This allowed us to assess how useful the
assay would be in identifying FGM peaks under field or
zoo conditions with limited sampling frequency. Second,
we calculated the fold difference by taking the

concentration of the highest sample in the peak and
dividing it by the mean concentration of the baseline
samples. Third, we determined Z,c.x, the height of the
peak as measured by the number of standard deviations
away from the baseline mean, by taking the concentra-
tion of the highest sample in the peak, subtracting the
mean concentration of the baseline samples, and divid-
ing the result by the standard deviation of the baseline
samples.

To assess the effects of time of day, we conducted a
simple linear regression in which time since sunrise was
used to predict FGM, and then a hierarchical linear re-
gression in which time since sunrise was used to predict
FGM after controlling for the day on which the samples
were collected. Assays for which the addition of time
since sunrise significantly increased R” after the effect of
collection day was accounted for were considered to
detect a diurnal pattern. Data are available in Additional
file 1 (see Giraffe 1).

Results

ACTH challenge test

All EIAs showed acceptable performance characteristics
with giraffe samples (Table 2). Results of the assay com-
parison for ACTH samples are shown in Table 3 and
Fig. 2. For both giraffes, the two antibodies raised against
11-oxoetiocholanolone (measuring 11,17-DOA  and
3a,11-0x0-CM) performed best by all measures, identify-
ing elevations in FGM levels above individual baseline
for longer periods of time with respective peak values
being comparatively higher than those determined by
other assays (Fig. 2). The 3f,11B-diol-CM assay also per-
formed acceptably for both individuals, though respect-
ive peak values were not as distinct from baseline as the
ones determined by the 11-oxoetiocholanolone assays
(Fig. 2). The cortisol, corticosterone, and 3a,11B-diol-
CM EIAs detected peaks in Giraffe 1 but not Giraffe 2,
and the peaks detected were substantially shorter in dur-
ation and differed less from baseline values (Table 3).
One sample from Giraffe 2 was stored on ice for almost
2 h, which could have affected FGM [29, 39], but
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Fig. 1 Parallelism of serial dilutions of a fecal extract pool with standards for each of the six ElAs. Correlations between percent binding for
standards and samples within each assay were at least r=0.96

patterns of change over time were smooth, peaks
detected in 11,17-DOA, 3a,11-0x0-CM, and 3f,113-diol-
CM included both samples held on ice and those frozen
immediately, and this sample did not have the highest or
lowest FGM for any assay.

Transport

As samples from the transported giraffes were collected
once per day and only the two 11-oxoetiocholanolone
EIAs identified peaks lasting more than 24 h following
ACTH challenge, we selected these two EIAs to assess

Table 3 Assay comparison for the ACTH challenge tests

the influence of transportation on FGM levels. Post-
transport peaks were identified in both 11,17-DOA and
3a,11-0x0-CM in all 5 giraffes tested, regardless of the
sex of the giraffe (Fig. 3).

The responses of individual giraffe as measured by
both 11-oxoetiocholanolone EIAs are presented in
Table 4. Three of the five giraffes showed peak 11,17-
DOA concentrations the day after transport and the
longest delay to peak values was 2 days. Peak duration
averaged 4.2 days (range: 2—6 days) and intensity was
comparable to the ACTH challenge (Fold difference:

Enzyme immunoassay targeting

Animal Measure Cortisol ~ Cortico-sterone  11,17- DOA  3a,11-oxo-CM  3B,11R-diol-CM  3qa,11B-diol-CM
Giraffe 1° Latency to Peak 135 h 50.5 h 135 h 11.5h 135h 300 h

Peak Duration (no. of peak samples) 6 h <2h 37h 39 h 22 h 5h

n=4 n=1 n=24 n=25 n=12 n=3

Fold Increase (Xpea/Mpaseline) 26 1.6 334 182 4.1 26

Z peak 74 sd 2.2 sd 64.4 sd 796 sd 13.6 sd 34 sd
Giraffe 2°  Latency to Peak no peak  no peak 205 h 240 h 232 h no peak

Peak Duration (no. of peak samples) 7h <5h 5h

n=4 n=1 n=3
Fold Increase (Xpeak/Mpaseline) 96 29 29
Z peak 17.1 sd 33sd 11.3 sd

For Giraffe 1, fecal samples collected from every defecation from 12 h pre-injection to 72 h post-injection
PFor Giraffe 2, fecal samples collected daily (between 8 am and 10 am) for 5 days before and 4 days after injection, as well as from every defecation between 20 h

and 28 h post-injection
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Median = 5.99, range: 2.33-8.00; Z,ca: Median = 12.24,
range: 4.74-20.10). As in the ACTH challenge, 11,17-
DOA varied less within the baseline than 3a,11-0xo-CM.
Peak 3a,11-oxo-CM occurred at a longer delay; only two
of the five giraffes showed peaks the day after transport
and the longest delay to peak was 6 days. Peaks in
3a,11-0x0-CM were less prolonged (Mean =24 days,
range: 1-3 days) but of similar overall intensity (Fold
difference: Median =2.78, range: 2.48-5.19; Zjcac
Median = 4.37, range: 3.26-16.87). The two juvenile
females (Giraffes 4 and 5) had exceptionally high 3a,11-
0xo-CM concentrations in the three days following
transport.

Effects of collection time

11,17-DOA and 3a,11-0x0-CM were affected by collec-
tion time. With the 11,17-DOA EIA, time since sunrise
significantly predicted higher FGM concentrations (R* =
0.38, F;30=18.05, p<0.001, B=0.61, t=4.25 Fig. 4),
and this relationship was still significant even when col-
lection day was controlled (AR? = 0.37, F129=2649, p<
0.001, p=0.61, t =5.15). 3a,11-0x0-CM revealed a pulsa-
tile excretion pattern, but it was not significantly
predicted by time since sunrise (without controlling
collection day: p = 0.364; controlling collection day: p =
0.345, Fig. 4).

Discussion

Assay selection

We demonstrated that FGM changes produced by
both physiological stimulation (ACTH) and an envir-
onmental event (transport) could be reliably measured
in daily fecal samples from giraffes using two 11-
oxoetiocholanolone EIAs (measuring FGM with a
3a,11-oxo0 and 11,17-DOA structure, respectively). 11-

oxoetiocholanolone EIAs best identified FGM peaks
under field or zoo conditions where sampling fre-
quency is limited. These assays found more samples
with significant FGM elevation, better discriminated
peak samples from baseline samples, identified a
transport response with once-daily sampling, and
were effective for both males and females. The other
four EIAs we tested detected an increase in FGM fol-
lowing the ACTH challenge in at least one animal,
but did not provide as clear and reliable peak detec-
tion and so were not as sensitive or consistent as the
11-oxoetiocholanolone EIAs.

For the ACTH challenge with more frequent sampling
and larger dose (Giraffe 1: 1 IU/kg), both 11-
oxoetiocholanolone EIAs had peaks of similar duration
and intensity as measured by fold difference. However,
the Zpeu for 3o,11-0x0-CM was larger because there
was less variability among baseline samples. With less
frequent sampling and lower ACTH dose (Giraffe 2:
0.7 TU/kg), peak duration and intensity were reduced for
both assays; in fact, the peak in 3a,11-0xo-CM was iden-
tified in only a single sample. We did not collect blood
samples following ACTH administration to verify an
increase in serum GC because it would have required
anesthetizing the giraffe. We therefore cannot rule out
the possibility that Giraffe 2's ACTH challenge did not
sufficiently increase circulating GC, resulting in the fail-
ure of the Cortisol, Corticosterone, and 11{3-hydroxye-
tiocholanolone EIAs to detect a FGM peak. However,
given that the other three assays did detect a peak it is
unlikely the ACTH challenge failed entirely. ACTH
injections produce a dose-dependent increase in GC that
affects both serum GC concentration and clearance time
[40, 41]. As the dose of ACTH used in these challenges
was on the low end of the range used in other published
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challenges (1 and 0.7 IU/kg here; 0.5 to 12.5 IU/kg in
[42]; 0.5 to 31 IU/kg in [43]), and ACTH was adminis-
tered over a span of less than 2 min, the resulting in-
crease in GC would be expected to be of shorter
duration and perhaps lower intensity than those seen in
other ACTH challenge studies. In contrast to the acute
GC increase produced by the ACTH challenge, transport
to a new environment is a longer-duration, more sub-
stantial environmental stressor [44]. Under these condi-
tions, both 11-oxoetiocholanolone EIAs reliably detected

a peak in all animals, but 11,17-DOA peaks had more
rapid onset and greater duration.

The 11-oxoetiocholanolone I and II EIAs appear to
robustly measure giraffe FGM. Our experiments relied
on opportunistic access to zoo-housed giraffes, so there
was considerable variability in the management of and
procedures applied to each individual animal. We noted
possible effects of differences in ACTH dose and sam-
pling frequency above. In addition, the two animals sub-
jected to ACTH challenges also differed in age, housing,
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Table 4 Individual giraffe’s responses to transport as measured by 11-oxoetiocholanolone EIAs

EIA Measure Giraffe 3 Giraffe 4 Giraffe 5 Giraffe 6 Giraffe 7
11-oxoetiocholanolone |, targets 11,17- DOA Latency to Peak 1d 2d 2d 1d 1d

Peak Duration 6d 4d 2d 4d 5d

Fold Increase (Xpeak/Mpaseiine) 8.00 6.00 5.99 233 3.11

Z peak 20.10 12.24 6.88 4.74 13.14
11-oxoetiocholanolone I, targets 3a,11-oxo-CM Latency to Peak 6d 2d 3d 1d 1d

Peak Duration 1d 3d 2d 3d 3d

Fold Increase (Xpeak/Mpaseline) 2.78 5.19 3.04 248 2.66

Z peak 362 16.87 326 437 542

climate, diet, and time of ACTH administration. While
these factors likely increased variability in FGM patterns
between the individuals [21, 29, 36, 45, 46], three assays
(measuring 3a,11-ox0-CM, 11,17-DOA, and 3p,11p3-
diol-CM) reliably detected post-injection FGM increases
despite these differences. Similarly, demographic factors,
management, season of transport, and length of trans-
port differed among giraffes in the transport study. This
study also used a somewhat different extraction protocol
than the ACTH challenge. Despite these differences, the
11-oxoetiocholanolone I and II EIAs still detected sig-
nificant FGM increases as a result of transport in every
animal. We noted differences in the shape of the FGM
response to transport among individuals, which could be
explained by differences in demographic effects, man-
agement, season, transport variables, or individual differ-
ences in reactivity to the same event [47]. The
contributions of each of these factors to variation in
FGM in giraffes should be studied in more detail. In
addition, published experiments of domestic ruminant
feces stored at room temperature suggest results of the
11-oxoetiocholanolone EIAs may be prone to changes
during storage [48, 49]; these effects should be evaluated
for exotic ruminants.

11,17-DOA also showed diurnal variation in giraffe
feces similar to those found in African buffalo (Syncerus
caffer) [45]. With only a single subject and no serum
hormone data, it is not possible to determine whether
the observed pattern reflects a circadian rhythm in cir-
culating hormones; blood samples have shown circadian
secretion rhythms for cortisol are present in some rumi-
nants [50] but are weak [51, 52] or absent [53] in others.
The diurnal variations in 11,17-DOA may be idiosyn-
cratic to this individual or to the days samples were
collected. However, the more substantial 11,17-DOA
peaks in response to both ACTH and transport and a
consistent diurnal pattern suggests that the 11-
oxoetiocholanolone I EIA is the most biologically sensi-
tive assay we tested for giraffes.

Though the 11-oxoetiocholanolone I EIA (for 11,17-
DOA) is more sensitive, there may be situations where

the 11-oxoetiocholanolone II EIA (for 3a,11-0xo-CM) is
still preferable. First, for the two juvenile female giraffes,
the 11-oxoetiocholanolone II EIA detected a greater
change in FGM following transport than the 11-
oxoetiocholanolone I EIA. Cross-reactivity with gonadal
hormones could be responsible for the difference [54].
However, cross-reactivity should increase FGM concen-
trations independent of the transport event, and these
two individuals only had higher FGM concentrations
in the post-transfer peak, not in baseline. Instead, im-
munoreactive 3a,11-0xo-CM may be more prevalent
in the metabolite profiles of these two giraffes, per-
haps as a result of age- of sex-specific differences in
metabolism [34, 55]. Our data support using 3a,11-
0x0-CM in studies of juvenile female giraffes. Second,
we found systematic changes in 11,17-DOA concen-
trations across time of day, so studies using this assay
must control for the time of day during -either
sampling or statistical analysis. If such control is not
possible, assessing 3a,11-oxo-CM using the 11-
oxoetiocholanolone II EIA is advised. Finally, if the
aim of one’s study is to identify husbandry or envir-
onmental events that are perceived as very stressful,
as in [56, 57], the less biologically sensitive 11-
oxoetiocholanolone II EIA may set a higher criterion
for identifying peaks and so identify a smaller number
of events.

Ruminant FGM measurement

Consistent with other studies of ruminants, we found
that group-specific assays designed to target GC metab-
olites were more effective at measuring FGM than assays
using antibodies raised against circulating GC. Circu-
lating GC are metabolized extensively in the liver and
additionally by gut microbes before excretion, so the
types and ratios of specific FGM differ across sex and
species (for review, see [21]). While cortisol or
corticosterone EIAs effectively measure FGM in many
species including some ruminants [42, 58—60], native GC
are absent from the feces of most vertebrates [21, 42, 61]
so this measurement depends on having a sufficient
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Fig. 4 24 h patterns in baseline FGM levels in one male captive giraffe. 11,17-DOA (top) 3a,11-0xo-CM (bottom)

concentration of FGM that have retained the charac-
teristic of GC structure recognized by the particular
antibody. A radiometabolism study could be used to
identify exactly which FGM are present in a particular
species and allow targeting of assays based on metab-
olite profiles [61, 62], but it is difficult to conduct
such a study in wildlife species the size of a giraffe.
Instead, comparing assays that target different

metabolite structures can be used to infer some infor-
mation about metabolite profiles [43].

So-called group-specific assays targeting GC metabo-
lites [32] have been effectively used to measure FGM in
ruminant species for which GC-specific assays have
failed (e.g., sheep, cattle [63, 64]). Our study adds giraffes
to the list of ruminant species for which one of the 11-
oxoetiocholanolone EIAs is most effective in measuring
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FGM (dromedary camels: Camelus dromedarius [65],
cattle: Bos primigenius f. taurus [64], sheep: Ovis ammon
f aries [61, 64], goats: Capra aegagrus f. hircus [66], red
deer: Cervus elaphus [67], roe deer: Capreolus capreolus
[68], pampas deer: Ozotoceros bezoarticus [69], llama:
Lama guanicoe f glama, alpaca: Vicugna vicugna f
pacos, and vicuna: Vicugna vicugna [70]). The success of
the 11-oxoetiocholanolone EIAs in such a large number
of ruminant species suggests 5p-reduction may be a com-
mon metabolic pathway for GC in ruminants. However,
all assays we used detected some post-event FGM peaks,
which may indicate giraffes excrete a great variety of
measurable metabolites like other ruminants. While FGM
assays should still be validated for each species, we suggest
FGM validation studies in other ruminants should begin
by trying a group-specific 11-oxoetiocholanolone EIA.

Applications for giraffe health, welfare, and conservation
Our validation of multiple assays to measure FGM in
giraffes provides a tool that can be applied in monitoring
health and welfare, as well as conservation research. Zoos
are particularly interested in generating data that will allow
them to assess and improve giraffe health and manage-
ment. The adrenal system responds similarly to exciting
and stressful events, so FGM changes are best interpreted
in the context of information about the animal’s environ-
ment and behavior [22]. Adding FGM measurement to be-
havior data in other species has allowed animal managers
unique insights into animals’ perceptions of captive envi-
ronments. For example, captive wombats showed behav-
joral habituation to interaction with humans, but their
FGM response to these interactions remained unchanged,
suggesting they may have developed learned helplessness
[56]. Physiological measures of giraffe health and perceived
stress will help supplement behavioral welfare indicators
and may reveal critical aspects of the relationship between
captive management and welfare.

As giraffes can be individually identified by their nat-
ural markings [71], validation of FGM assays will also
allow researchers to obtain longitudinal measures of
adrenal activity from individual wild giraffes. Non-
invasive longitudinal adrenal assessment will aid in de-
termining the effects of environmental degradation and
conservation efforts on giraffe health, reproduction, diet,
and life history strategies [31, 72]. Giraffes in captivity
might reasonably be expected to have different baseline
levels of GC and/or respond differently to stressors than
wild giraffes [72], so field studies should seek within-
individual patterns of FGM that can be attributed to par-
ticular events. Recent studies have used FGM to evaluate
how primates perceive conservation-related stressors,
from ecotourism (orangutans: Pongo pygmaeus morio
[73], gorillas: Gorilla gorilla gorilla [74]) to long-term
changes in food distribution and disease prevalence (red
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colobus: Procolobus rufomitratus [75]); similar studies
could now be undertaken in giraffes. Across species,
Dantzer and colleagues’ [76] meta-analysis found that
anthropogenic disturbances are consistently associated
with increased FGM, but argue that these FGM changes
may enhance survival in disturbed populations. However,
there are well-described negative health consequences of
chronic exposure to elevated GC [22], so the relation-
ship between FGM and fitness in disturbed populations
is ripe for research. Giraffes live in a diverse array of
habitats with varying degrees of human disturbance; in
some areas giraffe populations are increasing, while in
most of the range populations are crashing. Giraffes are
therefore an ideal species in which to use FGM mea-
sures to investigate questions of captive health, welfare,
physiology, ecology, and conservation.

Conclusions

We conclude the assay for 11,17-dioxoandrostanes is the
most sensitive assay tested for FGM in giraffes and the
assay for FGM with a 5B-3a-ol-11-one structure is also
effective. 11-oxoetiocholanolone enzyme immunoassays
have now been demonstrated to be successful in a wide
variety of ruminant species, providing indirect evidence
that 5p-reduction may be a common metabolic pathway
for glucocorticoids in ruminants. As FGM peaks were
detected in at least some giraffes using all assays tested,
giraffes appear to excrete a wide variety of different FGM.
The assays validated here will provide a valuable tool for
research on the health, welfare, and conservation of
giraffes.
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