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Abstract: Lamprocapnos spectabilis (L.) Fukuhara is a perennial plant species valued in the horticultural,
cosmetic, and pharmaceutical markets. To date, however, there were no studies on tissue culture
systems in this species when adjusted from non-meristematic explants. The aim of this study is to
induce callogenesis, organogenesis, and somatic embryogenesis in non-meristematic explants of
Lamprocapnos spectabilis ‘Alba’ cultured in various media and to analyze the chemical diversity of
the produced callus. Leaf, petiole, and internode explants were cultured on the modified Murashige
and Skoog (MS) medium fortified with various combinations and concentrations of 6-benzyladenine
(BA), indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), 2,4-dichlorphenoxyacetic acid
(2,4-D), and picloram (PIC). After 10 weeks of culturing, the morphogenetic response of explants was
evaluated and the concentration of chlorophylls, carotenoids, anthocyanins, and polyphenols in callus
was analyzed. There was no influence of explant type on the callogenesis efficiency (62.1–65.3%).
The highest fresh weight of callus was produced on leaf explants in the presence of 2,4-D or PIC.
In contrast, the highest share of dry weight was found in internode-derived calli and cultured on
IAA-supplemented medium (up to 30.8%). Only 2.5% of all explants regenerated adventitious shoots,
while rhizogenesis was reported in 4.5% of explants. Somatic embryos were produced indirectly by 0%
to 100% of explants, depending on the culture medium and explant type. The highest mean number
of embryos (11.4 per explant) was found on petioles cultured in the MS medium with 0.5 mg·L−1 BA
and 1.0 mg·L−1 PIC. Calli cultured in media with NAA usually contained a higher content of primary
and secondary metabolites. There was also a significant impact of explant type on the content of
anthocyanins, polyphenols, and carotenoids in callus. Further studies should focus on the elicitation
of metabolites production in callus culture systems of the bleeding heart.
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1. Introduction

Lamprocapnos spectabilis (L.) Fukuhara (syn. Dicentra spectabilis (L.) Lem.) or bleeding heart is a
perennial plant species, originating from Asia. It is a member of a small botanical family known as
Fumariaceae, which is closely related to Papaveraceae. Due to its spectacular flowers, the species is
commonly used as both an indoor and outdoor/landscape plant [1]. There is also lots of information on
the health-stimulating properties of extracts derived from the bleeding heart. Its roots have been used
in Asian folk medicine for treating pus and paralysis [2]. Strong anti-aging effects, against UV-induced
skin photoaging, of L. spectabilis extracts, were observed even at a low (0.1% w/v) concentration [3].
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Studies conducted by McNulty et al. [4] revealed the presence of antidepressants and apoptosis-inducing
lactones (butenolides, menisdaurilide, and aquilegloide), which are useful in the elimination of human
tumor cell lines at 10 µM concentration. Moreover, isoquinoline alkaloids present in bleeding heart can
be applied in treating inflammation [5] and several other conditions [6]. The species is also a source
of natural fungicides and antibacterial alkaloids useful in eliminating methicillin-resistant strains of
Staphylococcus aureus F. J. Rosenbach [7]. Therefore, more attention should be focused on that species
and the possible acquisition of its valuable compounds in vitro.

Similar to other plant species, the bleeding heart was introduced to in vitro culture conditions for
large scale reproduction. Micropropagation techniques used with horticultural crops include shoot
culture (i.e., induction of axillary shoots from the existing meristems) and regeneration via adventitious
organogenesis, somatic embryogenesis (SE), and protocorm-like-bodies. Regeneration may occur either
directly, from explant cuttings to shoots, or indirectly, with passage through a callus phase. Lee and
Lee [8] reported indirect SE from seeds of the bleeding heart cultured in medium supplemented with
various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). About 64.2% of the somatic embryos
converted to rooted plantlets with a 46% survival rate when acclimatized ex vitro. Kulus [9] developed
a micropropagation protocol via axillary bud activation in different culture media for two commercial
cultivars of L. spectabilis and achieved up to 3.3 new shoots from a single-node explant. On the other
hand, there are no reports on adventitious organogenesis induced from non-meristematic explants in
this species.

Due to the high accessibility and totipotency of plant cells, non-meristematic organs such as leaf
blades, leaf petioles, and internodes are a good explant source for micropropagation, which is useful in
breeding [10]. By placing them in a properly optimized medium, a change in their native developmental
program takes place and adventitious embryos, shoots, and/or roots are produced. During this process,
specialized cells lose their differentiated character and rejuvenate into a ‘stem cell-like state’ that
confers a pluripotential [11]. In vitro culture conditions, especially medium supplementation with
plant growth regulators (PGRs) and explant type, play an essential role in this process [12].

PGRs were first described in the mid-20th century by Skoog, Miller, and Tsui (reviewed by
Thorpe [13]). Among the most commonly applied types of growth regulators, one can find auxins (AXs)
and cytokinins (CKs). Those growth regulators are complementary and generally have numerous
opposite effects. Auxins were the first PGRs described and are essential for cell growth, which
affects both cell division and cellular expansion. Under in vitro conditions, AXs usually stimulate the
development of roots and callus. They are also often used to initiate SE [14]. Among the most popular
AXs added into culture media, one can find 2,4-D, indole-3-acetic acid (IAA), indole-3-butyric acid
(IBA), 1-naphthaleneacetic acid (NAA), and picloram (PIC). Cytokinins, on the other hand, promote cell
division and differentiation. Under in vitro conditions, they usually stimulate axillary/adventitious bud
activation and maturation of somatic embryos [15]. The most commonly used CKs are 6-benzyladenine
(BA), kinetin (KIN), thidiazuron (TDZ), and zeatin (ZEA). However, the final effect of PGRs is a
species-dependent, cultivar-dependent, and even explant-dependent issue [16].

Besides biomass formation, PGRs affect the plant metabolism and synthesis of chemical compounds
in which some are important for the industry. Plant tissue culture systems are used in the acquisition
of secondary metabolites used as pharmaceuticals, agrochemicals, flavors, fragrances, coloring agents,
biopesticides, and food additives [17]. Callus cultures emerged as a particularly useful system in
achieving this goal [18]. By following specific strategies, it is possible to produce significant amounts
of biomass with an increase in the accumulation of chemical compounds [17]. The common plant
species, where callus cultures were used for the overproduction of secondary metabolites, are Centella
asiatica L., Stevia rebaudiana Bertoni, Vaccinium myrtillus L., Hypericum perforatum L. var. angustifolium,
Maackia amurensis Rupr., Sophora flavescens Aiton, Ononis arvensis L., and Maclura pomifera Raf. [19].
Production of metabolites in vitro can be more reliable, simpler, and more predictable when compared
to uncontrolled in vivo conditions [18]. Unfortunately, there are no profound reports on the chemical
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composition of callus produced from bleeding heart explants or the impact of tissue culture conditions
on this parameter. Such studies are necessary to improve the commercial use of L. spectabilis.

The aim of this study was to induce callogenesis, organogenesis, and somatic embryogenesis
in non-meristematic explants of Lamprocapnos spectabilis ‘Alba’ cultured in various media in order to
analyze the chemical diversity of the produced callus.

2. Results

2.1. Morphogenetic Response of Explants—Callogenesis and Organogenesis

Callogenesis began in the third week of the culture. Varied effectiveness in callus induction was
observed, depending on the experimental object (Table 1, Supplementary Figure S1A). No callogenesis
was reported in the PGR-free control medium (M0). Media M1 (0.5 mg·L−1 BA + 1.0 mg·L−1 IAA) and
M4 (1.0 mg·L−1 BA + 2.0 mg·L−1 IAA) were less effective in stimulating callus development (59.3–66.7%
of responding explants) than other PGR combinations (70.4–100%). On the other hand, there was no
influence of explant type on this parameter. The callogenesis is reported in 62.1%, 62.4%, and 65.3% of
internode, petiole, and whole-leaf explants, respectively (Table 1).

Table 1. Effect of medium composition and explant type on the share of bleeding-heart explants
forming a callus, a callus fresh weight, and a share of dry weight in the callus.

Medium
Symbol

Plant Growth Regulator
(mg·L−1)

Explant Type Mean

BA Auxin Leaf Petiole Internode

Callus (%)

M1 0.5

IAA

1.0 66.7 ab 66.7 ab 44.4 b 59.3 C
M2 0.5 2.0 88.9 ab 88.9 ab 77.8 ab 85.2 A–C
M3 1.0 1.0 55.5 b 77.8 ab 77.7 ab 70.4 A–C
M4 1.0 2.0 55.5 b 77.8 ab 66.7 ab 66.7 BC
M5 0.5

NAA

0.5 88.9 ab 55.6 ab 77.8 ab 74.1 A–C
M6 0.5 1.0 88.9 ab 77.8 ab 77.8 ab 81.5 A–C
M7 1.0 0.5 100 a 77.8 ab 88.9 ab 88.9 AB
M8 1.0 1.0 100 a 77.8 ab 100 a 92.6 AB
M9 0.5

2,4-D

0.5 100 a 66.7 ab 77.8 ab 81.5 A–C
M10 0.5 1.0 100 a 100 a 88.9 ab 96.3 A
M11 1.0 0.5 77.8 ab 88.9 ab 88.9 ab 85.2 A–C
M12 1.0 1.0 100 a 100 a 100 a 100 A
M13 0.5

PIC

0.5 100 a 100 a 88.9 ab 96.3 A
M14 0.5 1.0 100 a 100 a 100 a 100 A
M15 1.0 0.5 100 a 88.9 ab 100 a 96.3 A
M16 1.0 1.0 100 a 100 a 88.9 ab 96.3 A

Mean 65.3 A 62.4 A 62.1 A

Callus fresh weight [mg]

M1 0.5

IAA

1.0 6.0 ± 2.2 g 8.3 ± 4.4 g 12.9 ± 6.3 g 9.0 E
M2 0.5 2.0 12.6 ± 1.0 g 16.0 ± 5.8 g 34.0 ± 13.5 fg 20.9 E
M3 1.0 1.0 20.1 ± 7.2 g 19.6 ± 14.0 g 37.5 ± 30 fg 25.7 E
M4 1.0 2.0 41.8 ± 10.7 fg 12.9 ± 2.6 g 20.3 ± 4.7 g 25.0 E
M5 0.5

NAA

0.5 339.8 ± 70.8 a–g 147.2 ± 47.3 d–g 70.0 ± 10.3 e–g 185.6 CD
M6 0.5 1.0 313.6 ± 153.7 a–g 195.8 ± 50.5 c–g 231.4 ± 77.1 c–g 246.9 BC
M7 1.0 0.5 207.4 ± 81.0 c–g 140.4 ± 35.3 d–g 55.4 ± 25.1 e–g 134.4 C–E
M8 1.0 1.0 239.4 ± 74.9 c–g 99.3 ± 15.4 e–g 77.8 ± 10.2 e–g 138.8 C–E
M9 0.5

2,4-D

0.5 642.8 ± 157.0 a 466.9 ± 42.4 a–e 226.1 ± 15.9 c–g 442.6 A
M10 0.5 1.0 548.0 ± 86.4 a–c 376.1 ± 71.9 a–g 192.2 ± 55.2 c–g 372.1 AB
M11 1.0 0.5 617.3 ± 158.8 ab 521.7 ± 157.2 a–c 229.4 ± 31.8 c–g 456.1 A
M12 1.0 1.0 561.6 ± 90.5 a–c 199.2 ± 57.9 c–g 228.0 ± 28.7 c–g 329.6 AB
M13 0.5

PIC

0.5 372.7 ± 20.4 a–g 479.9 ± 27.2 a–d 208.7 ± 34.9 c–g 353.8 AB
M14 0.5 1.0 403.7 ± 31.4 a–f 552.5 ± 31.7 a–c 250.1 ± 16.9 b–g 402.1 AB
M15 1.0 0.5 340.8 ± 26.4 a–g 481.1 ± 48.7 a–d 280.0 ± 49.5 a–g 367.3 AB
M16 1.0 1.0 556.8 ± 134.4 a–c 537.0 ± 8.4 a–c 258.9 ± 85.1 b–g 450.9 A

Mean 326.5 A 261.6 B 150.8 C
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Table 1. Cont.

Medium
Symbol

Plant Growth Regulator
(mg·L−1)

Explant Type Mean

BA Auxin Leaf Petiole Internode

Callus dry weight [%]

M1 0.5

IAA

1.0 30.6 a 20.5 b–e 17.5 c–f 22.8 A
M2 0.5 2.0 22.4 b–d 24.5 a–c 24.0 a–c 23.6 A
M3 1.0 1.0 27.1 ab 25.5 ab 24.7 a–c 25.8 A
M4 1.0 2.0 16.1 d–g 27.3 ab 30.8 a 24.7 A
M5 0.5

NAA

0.5 10.0 f–i 14.4 e–i 10.3 f–i 11.6 BC
M6 0.5 1.0 9.5 f–i 10.6 f–i 14.0 e–i 11.4 BC
M7 1.0 0.5 11.9 f–i 14.1 e–i 9.2 f–i 11.7 BC
M8 1.0 1.0 11.7 f–i 13.7 e–i 13.8 e–i 13.0 B
M9 0.5

2,4-D

0.5 9.3 f–i 10.9 f–i 12.1 f–i 10.8 BC
M10 0.5 1.0 6.8 g–i 8.9 f–i 15.0 e–h 10.2 BC
M11 1.0 0.5 4.9 i 8.8 f–i 9.7 f–i 7.8 C
M12 1.0 1.0 10.1 f–i 6.1 hi 9.1 f–i 8.4 BC
M13 0.5

PIC

0.5 7.6 g–i 8.0 f–i 10.1 f–i 8.6 BC
M14 0.5 1.0 7.3 g–i 7.6 g–i 8.5 f–i 7.8 C
M15 1.0 0.5 7.8 f–i 9.2 f–i 11.1 f–i 9.4 BC
M16 1.0 1.0 6.9 g–i 7.5 g–i 8.1 f–i 7.5 C

Mean 12.5 B 13.6 AB 14.3 A

Means ± standard errors in rows and columns followed by the same letter do not differ significantly according to
the Newman-Keuls test at p ≤ 0.05. Upper-case letters refer to the main effects (irrespectively) while lower-case
letters refer to the interaction between the two studied, independent variables. 2,4-D, 2,4-dichlorphenoxyacetic acid;
BA, 6-benzyladenine; IAA, indole-3-acetic acid; M, medium; NAA, 1-naphthaleneacetic acid; PIC, picloram.

Media fortified with PIC or 2,4-D, generally stimulated a more abundant callus formation
(329.6–456.1 mg fresh weight, FW) than NAA (134.4–246.9 mg), while calli regenerated in the presence
of IAA were of the lowest FW (9.0–25.7 mg, Table 1, Supplementary Figure S1B). In addition, leaf explants
produced a higher mean FW of callus (326.5 mg), followed by petioles (261.6 mg), and internodes
(150.8 mg). Maximal biomass of callus was found in the leaf explants cultured in M9 (0.5 mg·L−1 BA +

0.5 mg·L−1 2,4-D) medium (642.8 mg). In contrast, calli produced on internodes had a higher share of
dry weight (DW, 14.3%) compared to leaf-derived biomass (12.5%, Table 1). The presence of NAA,
2,4-D, or PIC had a negative impact on the DW in calli (Supplementary Figure S1B). The highest share
of DW was found in internode explants cultured in the M4 (1.0 mg·L−1 BA + 2.0 mg·L−1 IAA) medium
(30.8%). There was no impact of AXs and CKs ratio on the general callus regeneration frequency, callus
FW, and DW (Table 2).

Table 2. Effect of balance between cytokinin and auxin (irrespective of type) on the morphogenetic
response in L. spectabilis.

PGRs Concentration Total Callus
(%)

Callus FW
(mg)

Callus
DW (%)

Non-Embryogenic
Callus (%)

Embryogenic
Callus (%)

No. of Embryos
Per Explant

Cytokinin Auxin

low low 77.8 a 242.2 ± 37.3 a 13.4 a 41.7 ab 36.1 b 3.0 ± 0.7 ab
low high 90.7 a 260.5 ± 34.1 a 13.3 a 31.5 b 59.3 a 4.8 ± 0.8 a
high low 85.2 a 245.9 ± 38.0 a 13.7 a 56.5 a 28.7 b 2.2 ± 0.7 b
high high 88.9 a 236.1 ± 36.7 a 13.4 a 48.8 ab 40.0 b 2.5 ± 0.5 ab

Means ± standard errors in columns followed by the same letter do not differ significantly according to the
Newman-Keuls test at p ≤ 0.05. Low concentration of cytokinin/auxin: 0.5 mg·L−1 BA, NAA, 2,4-D or PIC,
1.0 mg·L−1 IAA. High concentration of cytokinin/auxin: 1.0 mg·L−1 BA, NAA, 2,4-D or PIC, 2.0 mg·L−1 IAA. 2,4-D,
2,4-dichlorphenoxyacetic acid; BA, 6-benzyladenine; DW, dry weight; FW, fresh weight; IAA, indole-3-acetic acid;
NAA, 1-naphthaleneacetic acid; PGR, plant growth regulator; PIC, picloram.

The produced calli were usually firm and compact but differed in color. Callus produced on the
IAA-supplemented medium was bronze-red (Figure 1A,B), in the presence of NAA—yellow-green-brown
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(Figure 1C–E), in the presence of 2,4-D—white-brown (Figure 1F), and in the PIC-supplemented
medium—yellow-green (G,H).

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 19 

 

weight; IAA, indole-3-acetic acid; NAA, 1-naphthaleneacetic acid; PGR, plant growth regulator; PIC, 
picloram. 

The produced calli were usually firm and compact but differed in color. Callus produced on the 
IAA-supplemented medium was bronze-red (Figure 1A,B), in the presence of NAA—yellow-green-
brown (Figure 1C–E), in the presence of 2,4-D—white-brown (Figure 1F), and in the PIC-
supplemented medium—yellow-green (G,H). 

 
Figure 1. In vitro callogenesis in bleeding heart ‘Alba’ after 10 weeks of culture: (A)—embryogenic 
callus formed on a leaf petiole cultured in the MS medium with 0.5 mg·L−1 BA and 2.0 mg·L−1 IAA 
(M2). (B)—non-embryogenic callus on an internode in MS medium with 0.5 mg·L−1 BA and 1.0 mg·L−1 
IAA (M1). (C)—embryogenic callus and its structure (D) on a whole-leaf explant in MS medium with 
1.0 mg·L−1 BA and 1.0 mg·L−1 NAA (M8). (E)—non-embryogenic callus developed on an internode in 
MS medium with 0.5 mg·L−1 BA and 0.5 mg·L−1 NAA (M5). (F)—callogenesis on an internode in MS 
medium with 1.0 mg·L−1 BA and 0.5 mg·L−1 2,4-D (M11). (G)—embryogenic callus on a petiole in MS 

Figure 1. In vitro callogenesis in bleeding heart ‘Alba’ after 10 weeks of culture: (A)—embryogenic
callus formed on a leaf petiole cultured in the MS medium with 0.5 mg·L−1 BA and 2.0 mg·L−1

IAA (M2). (B)—non-embryogenic callus on an internode in MS medium with 0.5 mg·L−1 BA and
1.0 mg·L−1 IAA (M1). (C)—embryogenic callus and its structure (D) on a whole-leaf explant in MS
medium with 1.0 mg·L−1 BA and 1.0 mg·L−1 NAA (M8). (E)—non-embryogenic callus developed
on an internode in MS medium with 0.5 mg·L−1 BA and 0.5 mg·L−1 NAA (M5). (F)—callogenesis
on an internode in MS medium with 1.0 mg·L−1 BA and 0.5 mg·L−1 2,4-D (M11). (G)—embryogenic
callus on a petiole in MS medium with 0.5 mg·L−1 BA and 1.0 mg·L−1 PIC (M14). (H)—transparent
non-embryogenic callus on a leaf in MS medium with 1.0 mg·L−1 BA and 1.0 mg·L−1 PIC (M16).
Bar = 1 mm. 2,4-D, 2,4-dichlorphenoxyacetic acid; BA, 6-benzyladenine; IAA, indole-3-acetic acid;
M, medium; MS, Murashige and Skoog (1962); NAA, 1-naphthaleneacetic acid; PIC, picloram.
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Among the 550 inoculated explants, only 14 (2.5%) regenerated indirectly a total of 36 adventitious
shoots, usually in the presence of IAA (88.6% of all shoots) and at the cutting site (Figure 2A). Similarly,
only 4.5% of explants formed indirectly adventitious roots (Figure 2B) mostly in NAA-supplemented
media (72% of all roots. Data not shown). Explants cultured in the PGR-free control medium (M0)
turned white or brown and died without any morphogenetic response.
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Figure 2. Adventitious organogenesis and embryogenesis in bleeding heart ‘Alba’ after 10 weeks of
in vitro culture: (A)—adventitious shoots regenerating from an internode cultured in MS medium
with 1.0 mg·L−1 BA and 1.0 mg·L−1 IAA (M3). (B)—adventitious root (arrow) regenerating on a leaf
in MS medium with 0.5 mg·L−1 BA and 1.0 mg·L−1 NAA (M6). (C)—somatic embryo at a globular
stage regenerating on leaf explant in MS medium with 0.5 mg·L−1 BA and 1.0 mg·L−1 2,4-D (M10).
(D)—somatic embryo at an early torpedo stage (arrows) on petiole in MS medium with 0.5 mg·L−1

BA and 1.0 mg·L−1 NAA (M6). (E)—somatic embryo at late torpedo/maturity developmental stage
from a leaf in MS medium with 0.5 mg·L−1 BA and 1.0 mg·L−1 NAA (M6). (F)—germination of a
somatic embryo (arrow) on petiole in MS medium with 0.5 mg·L−1 BA and 1.0 mg·L−1 NAA (M6).
Bar = 1 mm. 2,4-D, 2,4-dichlorphenoxyacetic acid; BA, 6-benzyladenine; IAA, indole-3-acetic acid; M,
medium; MS, Murashige and Skoog (1962); NAA, 1-naphthaleneacetic acid.
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2.2. Morphogenetic Response of Explants—Somatic Embryogenesis

Both factors tested (explant type and medium composition) affected the embryogenic potential of
the bleeding heart (Table 3). Leaves formed embryogenic callus most often (54.3% of explants), which
was followed by petioles (45.1%) and internodes (23.6%, Table 3).

Table 3. Effect of medium composition and explant type on the share of bleeding-heart explants
forming embryogenic callus and a mean number of somatic embryos per inoculated explant.

Medium
Symbol

Plant Growth Regulator
(mg·L−1)

Explant Type Mean

BA Auxin Leaf Petiole Internode

Embryogenic Callus (%)

M1 0.5

IAA

1.0 11.1 bc 22.2 a–c 0.0 c 11.1 DE
M2 0.5 2.0 44.4 a–c 33.3 a–c 0.0 c 25.9 CD
M3 1.0 1.0 22.2 a–c 0.0 c 0.0 c 7.4 DE
M4 1.0 2.0 11.1 bc 33.3 a–c 0.0 c 14.8 DE
M5 0.5

NAA

0.5 0.0 c 0.0 c 0.0 c 0.0 E
M6 0.5 1.0 55.6 a–c 44.5 a–c 22.2 a–c 40.7 B–D
M7 1.0 0.5 11.1 bc 0.0 c 0.0 c 3.7 DE
M8 1.0 1.0 69.5 a–c 22.2 a–c 0.0 c 30.6 CD
M9 0.5

2,4-D

0.5 100 a 55.6 a–c 33.3 a–c 63.0 A–C
M10 0.5 1.0 88.9 ab 88.9 ab 55.6 a–c 77.8 AB
M11 1.0 0.5 55.6 a–c 55.6 a–c 11.1 bc 40.7 B–D
M12 1.0 1.0 88.9 ab 22.2 a–c 11.1 bc 40.7 B–D
M13 0.5

PIC

0.5 77.8 a–c 66.7 a–c 66.7 a–c 70.4 AB
M14 0.5 1.0 100 a 100 a 77.8 a–c 92.6 A
M15 1.0 0.5 55.5 a–c 88.9 ab 44.4 a–c 63.0 A–C
M16 1.0 1.0 77.8 a–c 88.9 ab 55.6 a–c 74.1 AB
Mean 54.3 A 45.1 B 23.6 C

No. of embryos per explant

M1 0.5

IAA

1.0 0.3 ± 0.3 cd 0.8 ± 0.4 b–d 0.0 d 0.4 E
M2 0.5 2.0 1.6 ± 0.3 b–d 1.1 ± 0.7 b–d 0.0 d 0.9 E
M3 1.0 1.0 1.8 ± 1.0 b–d 0.0 d 0.0 d 0.6 E
M4 1.0 2.0 0.4 ± 0.4 cd 0.4 ± 0.1 cd 0.0 d 0.3 E
M5 0.5

NAA

0.5 0.0 d 0.0 d 0.0 d 0.0 E
M6 0.5 1.0 2.0 ± 0.5 b–d 1.9 ± 1.0 b–d 0.3 ± 0.2 cd 1.4 DE
M7 1.0 0.5 0.1 ± 0.1 d 0.0 d 0.0 d 0.0 E
M8 1.0 1.0 2.2 ± 0.2 b–d 0.3 ± 0.3 cd 0.0 d 0.9 E
M9 0.5

2,4-D

0.5 9.2 ± 2.7 a–d 7.1 ± 3.6 a–d 2.3 ± 0.2 b–d 6.2 A–C
M10 0.5 1.0 8.9 ± 1.3 a–d 9.1 ± 3.1 a–d 3.9 ± 1.8 a–d 7.3 AB
M11 1.0 0.5 5.1 ± 4.2 a–d 4.3 ± 3.4 a–d 0.1 ± 0.1 d 3.2 C–E
M12 1.0 1.0 5.6 ± 0.3 a–d 2.1 ± 2.1 b–d 1.3 ± 1.3 b–d 3.0 C–E
M13 0.5

PIC

0.5 8.8 ± 3.5 a–d 4.7 ± 1.9 a–d 2.8 ± 0.9 b–d 5.4 BC
M14 0.5 1.0 9.7 ± 1.3 ab 11.4 ± 0.5 a 7.2 ± 2.1 a–d 9.4 A
M15 1.0 0.5 2.9 ± 2.2 b–d 9.3 ± 3.9 a–c 2.2 ± 0.6 b–d 4.8 B–D
M16 1.0 1.0 5.9 ± 1.1 a–d 6.3 ± 1.7 a–d 5.9 ± 3.4 a–d 6.0 A–C
Mean 4.0 A 3.7 A 1.6 B

Means ± standard errors in rows and columns followed by the same letter do not differ significantly according to
the Newman-Keuls test at p ≤ 0.05. Upper-case letters refer to the main effects (irrespectively). Lower-case letters
refer to the interaction between the two studied independent variables. 2,4-D, 2,4-dichlorphenoxyacetic acid; BA,
6-benzyladenine; IAA, indole-3-acetic acid; M, medium; NAA, 1-naphthaleneacetic acid; PIC, picloram.

The regeneration of embryos was indirect. IAA and NAA were generally less effective in
stimulating SE (0.0–40.7% efficiency, regardless of explant type) than 2,4-D or PIC (40.7–92.6%, Table 3,
Supplementary Figure S1A). The dominance of AXs over CKs promoted SE (59.3% embryogenic
calli and 4.8 embryos per explant), while CKs predominance declined the frequency of embryogenic
callus formation (28.7%) and the number of regenerating embryos (2.2, Table 2). Maximal 100% SE
efficiency was reported with leaf explants cultured in media M9 (0.5 mg·L–1 BA + 0.5 mg·L–1 2,4-D)
and M14 (0.5 mg·L–1 BA + 1.0 mg·L–1 PIC) as well as petioles in the M14 medium (Table 3). The latter
experimental object provided the maximal number of somatic embryos per inoculated explant (11.4)
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even though several other combinations were also effective. Most of the somatic embryos were at the
early globular stage (about 60%, Figure 2C) of development, even though more advanced torpedo
(35%, Figure 2D,E) and maturity stage (5%, Figure 2F) could also be distinguished. Embryos were
creamy-yellow, yellow-green or, less-often, brown (mostly in IAA-supplemented media). They had a
bipolar structure (evident in more mature embryos).

In contrast, internodes produced more non-embryogenic callus (mean of 60.4%) than other explant
types (34.6–38.9%, data not shown). Also, IAA and NAA auxins favored non-embryogenic callus
development (55.6–65.5%, Figure S1A).

2.3. Spectral Analysis of Primary and Secondary Metabolites in Callus

Calli cultured on media with NAA usually contained a higher content of chlorophyll a, b, and ct
(except for medium M6 with 0.5 mg·L−1 BA and 1.0 mg·L−1 NAA, Figure 3B, Supplementary Figure S1C).
The highest content of chlorophyll a (58.44–63.95 µg·g–1 FW), chlorophyll b (91.09–95.72 µg·g−1 FW),
and chlorophyll ct (154.16–155.04 µg·g−1 FW) were found in calli produced on leaf explants in media
M5 (0.5 mg·L−1 BA + 0.5 mg·L−1 NAA) and M8 (1.0 mg·L−1 BA + 1.0 mg·L−1 NAA) (Figure 4A–C).
In contrast, internodes cultured in M15 (1.0 mg·L–1 BA + 0.5 mg·L–1 PIC) medium produced the lowest
chlorophyll content (6.91 µg ct per gram FW). A balanced ratio between CKs and AXs promoted
chlorophyll biosynthesis (70.4–93.0 µg·g−1 FW, Table 4).

Figure 3. Main effects of explant type (A,C) and medium composition (B,D) (irrespectively) on the
content of primary and secondary metabolites in callus of the bleeding heart ‘Alba’ after 10 weeks of
in vitro culture.
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Table 4. Effect of balance between cytokinin and auxin (irrespective of type) on the biochemical activity
in callus of L. spectabilis.

PGRs Concentration Chlorophyll ct
(µg·g−1 FW)

Chlorophyll a/b
(µg·g−1 FW)

Carotenoids
(µg·g−1 FW)

Chlorophyll
ct/Carotenoids

Anthocyanins
(µg·g−1 FW)

Polyphenols
(mg·g−1 FW)Cytokinin Auxin

low low 93.0 ± 8.5 a 0.7 ± 0.04 a 18.4 ± 1.2 a 4.6 ± 0.4 a 31.3 ± 2.4 a 2.0 ± 0.07 a
low high 42.2 ± 3.5 b 0.7 ± 0.09 a 14.6 ± 0.7 b 3.2 ± 0.4 ab 25.1 ± 2.7 a 1.9 ± 0.05 a
high low 50.3 ± 9.0 b 1.2 ± 0.18 a 16.4 ± 0.8 ab 2.7 ± 0.4 b 30.5 ± 4.1 a 2.0 ± 0.09 a
high high 70.4 ± 11.0 ab 0.8 ± 0.14 a 17.4 ± 1.1 ab 4.2 ± 0.6 ab 35.6 ± 2.7 a 2.1 ± 0.08 a

Means ± standard errors in columns followed by the same letter do not differ significantly, according to the
Newman-Keuls test at p ≤ 0.05. Low concentration of cytokinin/auxin: 0.5 mg·L−1 BA, NAA, 2,4-D or PIC,
1.0 mg·L−1 IAA. High concentration of cytokinin/auxin: 1.0 mg·L−1 BA, NAA, 2,4-D or PIC, 2.0 mg·L−1 IAA. 2,4-D,
2,4-dichlorphenoxyacetic acid; BA, 6-benzyladenine; IAA, indole-3-acetic acid; NAA, 1-naphthaleneacetic acid;
PGR, plant growth regulator; PIC, picloram.

Only calli from media M11 (1.0 mg·L−1 BA + 0.5 mg·L−1 2,4-D), M15 (1.0 mg·L−1 BA + 0.5 mg·L−1

PIC), and M16 (1.0 mg·L−1 BA + 1.0 mg·L−1 PIC) had a chlorophyll a/b ratio above 1.0 (Figure 3D).
The highest value of this parameter was found in internode-derived calli in M15 (1.0 mg·L−1 BA +

0.5 mg·L−1 PIC) medium (2.44), while the lowest in callus produced on leaves in M14 (0.5 mg·L−1 BA
+ 1.0 mg·L−1 PIC) medium (0.47) and internodes in M9 (0.5 mg·L−1 BA + 0.5 mg·L−1 2,4-D) medium
(0.50) (Figure 4D). No impact of CKs and AXs ratio on this parameter was reported (Table 4).

Callus produced from leaf petioles contained more carotenoids (mean 17.84 µg·g−1 FW) than from
whole-leaf explants (15.64 µg·g−1 FW, Figure 3A). In addition, the presence of NAA and PIC usually
had a positive impact on this parameter, regardless of the explant type (Figure 3B, Supplementary S1C).
The highest value of this parameter for whole-leaf-derived callus was observed in M5 (0.5 mg·L−1

BA + 0.5 mg·L−1 NAA) medium (22.71 µg·g−1 FW), for internode-derived in M5 and M13 (0.5 mg·L−1

BA + 0.5 mg·L−1 PIC) media (22.58–22.69 µg·g−1 FW), and for petiole-derived callus in medium M8
(1.0 mg·L−1 BA + 1.0 mg·L−1 NAA) (22.52 µg·g−1 FW, Figure 4E). Callus formed on leaves in the M9
(0.5 mg·L−1 BA + 0.5 mg·L−1 2,4-D) medium was the least abundant in those pigments (4.5 µg·g−1 FW).
Balanced low concentrations of cytokinin and auxin were preferable for the biosynthesis of carotenoids
(Table 4).

Auxin NAA increased the value of total chlorophyll (ct) to carotenoids ratio (Figure 3D,
Supplementary Figure S1D). The highest and lowest values of this coefficient were reported in
leaf-derived callus on medium M8 (1.0 mg·L−1 BA + 1.0 mg·L−1 NAA) (9.34) and callus formed
on internodes in medium M15 (1.0 mg·L−1 BA + 0.5 mg·L−1 PIC) (0.53), respectively (Figure 4F).
Low concentrations of PGRs increased this parameter positively (Table 4).

Calli produced from internodes and petioles generally contained more anthocyanins (mean
32.25–35.86 µg·g−1 FW) than those from whole-leaf explants (23.77 µg·g−1 FW, Figure 3A). Similarly, the
presence of NAA increased the concentration of those pigments, except for medium M6 (0.5 mg·L−1 BA
+ 1.0 mg·L−1 NAA) (Figure 3B, Supplementary Figure S1C). The highest content of anthocyanins was
found in internode-derived calli in media M7 (1.0 mg·L−1 BA + 0.5 mg·L−1 NAA) and M8 (1.0 mg·L−1

BA + 1.0 mg·L−1 NAA) (59.54–61.26 µg·g−1 FW, Figure 4G). In contrast, leaf-derived callus in the M10
(0.5 mg·L−1 BA + 1.0 mg·L−1 2,4-D) medium contained the lowest concentration of those pigments
(3.40 µg·g−1 FW).

Petiole-derived and internode-derived calli had more polyphenols (mean 2.06–2.12 mg·g−1 FW)
compared to those formed on whole leaves (1.79 mg·g−1 FW, Figure 3C). Media with NAA usually
increased the production of those compounds (M5 with 0.5 mg·L−1 BA and 0.5 mg·L−1 NAA, M7 with
1.0 mg·L−1 BA and 0.5 mg·L−1 NAA, and M8 with 1.0 mg·L−1 BA and 1.0 mg·L−1 NAA; Figure 3D, S1D).
The content of polyphenols in callus from internodes cultured in medium M8 was nearly two-fold
higher than in callus formed on petioles in medium M13 with 0.5 mg·L−1 BA and 0.5 mg·L−1 PIC
(2.80 and 1.44 µg·g−1 FW, respectively, Figure 4H).

There was no impact of CKs and AXs ratio on the content of anthocyanins and polyphenols in the
callus of the bleeding heart (Table 4).
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Low (|r| ≤ 0.3) or moderate (0.3 < |r| ≤ 0.5) but always negative correlations between the content
of metabolites tested and the share of explants forming embryogenic callus/number of somatic
embryos per inoculated explant were observed (Table 5). On the other hand, there was a positive
association between the frequency of non-embryogenic callus formation and the number of biochemical
compounds. In addition, the production of various metabolites was positively correlated with each
other (r = 0.20–0.93).

Table 5. Magnitude of association between the content of chemical compounds in callus and the share
of explants forming (non-)embryogenic callus, and the number of somatic embryos per explant, based
on the Pearson correlation coefficient (p ≤ 0.05), regardless of medium composition and explant type.

Trait 1 2 3 4 5 6 7 8
1. Non-embryogenic callus 1.00
2. Embryogenic callus −0.87 1.00
3. No. of embryos −0.70 0.83 1.00
4. Chlorophyll a 0.36 −0.39 −0.34 1.00
5. Chlorophyll b 0.30 −0.33 −0.31 0.93 1.00
6. Carotenoids 0.23 −0.27 −0.23 0.39 0.36 1.00
7. Anthocyanins 0.39 −0.43 −0.32 0.33 0.32 0.20 1.00
8. Polyphenols 0.41 −0.48 −0.36 0.33 0.33 0.28 0.78 1.00

Shade refers to the type of correlation: green colors represent positive correlation, orange colors represent negative
correlation; color gradient refers to the strength of correlation (low: |r| ≤ 0.3, moderate: 0.3 < |r| ≤ 0.5, strong: 0.5 < |r|
≤ 0.7 or very strong: |r| > 0.7). Axes separate morphogenetic and biochemical traits.

3. Discussion

Morphogenesis in vitro is a complex process affected by several endogenous and external factors
with cumulative effects expressing the embryogenic and organogenic potential in explants that has
not been fully explained to date [20]. It is widely used for reproduction and breeding purposes in
numerous (floricultural) crops but adventitious organogenesis in the bleeding heart has not been
elucidated. This is the first report on exploring morphogenetic events from non-meristematic explants
in L. spectabilis.

3.1. Callogenesis, Adventitious Organogenesis, and Embryogenesis in the Bleeding Heart

Non-meristematic explants, such as whole leaves, leaf petioles, and internodes, were used in
the present study since they are the easiest and most abundant to obtain. It was found that most
of the indirectly regenerating adventitious shoots were produced on the cutting site of the explant.
This could be a result of mechanical stimuli, which is known to promote the regenerability of the plant
tissue. A similar phenomenon was observed by Tymoszuk et al. [21], with transversely-cut ligulate
florets of chrysanthemum. Unfortunately, the efficiency of caulogenesis was surprisingly low with
the bleeding heart (a total of 36 adventitious shoots were produced), even though media fortified
with cytokinins and auxins were successfully utilized with numerous other plant genera [16,22].
For example, 7.9–17.4 adventitious shoots per explant were reported for Mammillaria perbella Hildm.
ex K. Schum. and M. orcutii Boed. cultured in MS medium with 1.0 mg·L−1 IAA and 10.0 mg·L−1

KIN by Ramirez-Malagon et al. [23]. Those observations classify L. spectabilis as a species “difficult”
to manipulate in vitro. The efficiency of adventitious shoots regeneration in Meconopsis paniculata D.
Don. on media supplemented with different auxins (NAA, IAA, IBA, 2,4-D) and cytokinins (BA, KIN)
ranged from 1 to 7 per explant [24]. Similarly, cells and tissues of other systematically related species
representing Papaveraceae family, e.g., Chelidonium majus L., Eschscholtzia californica Cham., and
Papaver somniferum L., have proven to be difficult to culture [25]. Problems with establishing efficient
culture systems were reported with several woody species [26], but they are not so often reported
with herbaceous plants [27]. The scarce number of adventitious shoots produced in a gross number
of PGR combinations tested (including the separate application of BA, KIN, IAA, NAA, and PIC,
unpublished data) could result from the small size of bleeding heart explants and indicate the need for
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evaluating other explant types, e.g., flower petals, roots, or a thin cell layer culture, which worked
well with other ornamentals, such as chrysanthemum [28]. Another possibility is the utilization of less
popular media types (e.g., Schenk and Hildebrandt [29] medium, SH) and/or PGRs such as gibberellins,
jasmonates, brassinosteroids, polyamines, and strigolactones. The use of structural analogs of BA,
e.g., 6-benzyl-adenine riboside (BAR) or (meta-)topolin (TOP), effective with Sesamum indicum L. [30],
which might also enhance the in vitro regeneration frequency of a bleeding heart.

On the other hand, SE in L. spectabilis was much more effective. The produced embryos had
a typical morphology as those described in several other plant species [9,16,28]. The highest mean
number of somatic embryos (11.4 per inoculated explant in MS with 0.5 mg·L−1 BA and 1.0 mg·L−1 PIC)
is quite high. As for chrysanthemum, a maximal of 5.7 embryos per explant (with 85% regeneration
frequency) were produced in the MS medium with 4.0 mg·L−1 2,4-D and 2.0 mg·L−1 KIN [21]. In yellow
horned poppy (Glaucium flavum Crantz.), the efficiency of somatic embryogenesis reached 17.2 embryos
per explants in the MS medium supplemented with 1.0 mg·L−1 2,4-D, 0.5 mg·L−1 TDZ and 0.2 mg·L−1

BA [31]. Somatic embryogenesis is a powerful tool since it allows the production of complete functional
embryos, without fertilization, potentially from each somatic cell of the explant under appropriate
conditions. Conversion of the embryos into complete plantlets seems a bottleneck in L. spectabilis,
but an additional subculture on an embryo-germination medium is often a necessity [32]. Perhaps
with bleeding heart ‘Alba’, a subculture of somatic embryos to a KIN-supplemented medium would
be effective for embryo maturation, as reported in other studies [8].

Auxins and cytokinins are considered the principal PGRs involved in modulating the occurrence
of signaling events during morphogenesis. The results obtained in this case allowed us to decipher
that BA had a pleiotropic effect in the bleeding heart, as it caused different morphogenetic responses
depending on its concentration and presence of other PGRs, including callus formation, indirect
shoot organogenesis, and/or SE. On the contrary, IAA showed an inhibiting role in callus and somatic
embryo formation, which stimulates adventitious shoot regeneration. Similar results were reported by
García-Pérez et al. [12] with the Bryophyllum subgenus. Auxin NAA enhanced root formation (data
not shown), which coincides with the previous findings with a bleeding heart [9]. As for SE, 2,4-D
and PIC were superior to obtain a high regeneration frequency of embryogenic callus and somatic
embryos. Synthetic auxins are very effective during the initiation and proliferation of embryogenic
cultures (by initiating cell division activity in the procambial cells of explant) compared to natural
auxins, but block the expression of genes involved in the transition to the more mature stages [32].

The balance between AXs and CKs determines the morphogenetic response in explants. Normally,
the dominance of CKs over AXs promotes cell division and shoot elongation. A balanced ratio between
CKs and AXs favors callus formation and embryogenesis, and AXs predominance results in root
formation and elongation [33]. In the present study, there was no impact of PGRs ratio on the general
callus regeneration frequency and its weight, although AXs predominance stimulated SE, which
coincides with the findings of other authors, who used increased concentrations of AXs as promoters
of cell redifferentiation [32].

It is well known that somatic embryos develop mostly from a single totipotent somatic cell in
the explant (the pre-embryogenic determined cells in the direct path) or in pro-embryogenic masses
re-differentiated from the parenchyma-like callus cells in the indirect path [32]. Nonetheless, various
explant types have different embryogenic potential, depending on the species. In the present study,
it was found that whole-leaf explants are superior for the establishment of callogenesis and SE in
the bleeding heart, whereas internodes are the least efficient. Callus derived from leaf explants is
permeated by vascular tissue, which favors embryo development and explains the present findings [32].
Leaf explants were also successfully utilized in achieving direct somatic embryogenesis in Oncidium
Gower Ramsey and subsequent plant regeneration [34]. In contrast, nodal segments were more efficient
than whole leaves, half leaves, petioles, and root segments in Anthurium andreanum Linden [35].
The high-frequency embryogenesis of leaf cells in the bleeding heart is strong evidence of their
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totipotency, and further modification of the protocol for plant formation could be useful for the mass
reproduction and transformation of selected elite lines.

3.2. Biosynthesis of Metabolites in Callus

Plants are a tremendous source for the discovery of new products with medicinal and industrial
importance. Approximately 25% of all drugs approved by the Food and Drug Administration proceed
from plant sources [36]. For example, in Artemisia annua L., tissue cultures are used for the synthesis
of artemisinin [37]. The present study, for the first time, evaluated the impact of various exogenous
factors on the synthesis of different metabolites in callus cultures of the bleeding heart.

Chlorophylls and carotenoids are involved in photosynthesis, but their derivatives consistent
with cancer prevention include antioxidant and antimutagenic activity. They are also used as a food
coloring agent [38,39]. Anthocyanins are secondary metabolites determining the pink, purple, and blue
color of plant organs, valuable in medicine due to anticancer, antioxidant, and other health-promoting
properties [40]. There is also substantial evidence that specific polyphenols, normally involved in the
plant defense system, benefit human health status, especially for the prevention and management
of certain chronic diseases, including obesity, type 2 diabetes, and neurodegenerative diseases [41].
Therefore, establishing an effective tissue culture system of their production is justified and needed.

The present study showed that metabolite biosynthesis in L. spectabilis can be controlled by medium
variables and explant type, which is in agreement with the reports of other authors [18]. Secondary
metabolites are known to play a major role in the adaptation of plants to their environment [18], which
could explain the observed variation in their content.

When an explant is inoculated in vitro, diverse responses are expected, depending on its origin.
According to Tarrahi and Rezanejad [42], the highest anthocyanin and chlorophyll yield in Rosa
spp. were obtained in vegetative calluses, especially in the leaf and stem, compared with flower
calluses. In the present study, calli derived from petioles and internodes contained more anthocyanins,
carotenoids, and polyphenols than those produced on whole leaves, but did not differ in terms of
chlorophyll content. This could be the effect of mechanical injury during explant excision, which
stimulated the production of stress-related metabolites [43].

Cytokinins play an important role in the development and structural differentiation of
chloroplasts [15]. Consequently, increased BA concentration raised the content of chlorophyll and
carotenoids in the leaves of Gerbera jamesonii Bolus cultured in vitro [44]. Callus cultures of the bleeding
heart, however, seem to respond differently since the highest levels of chlorophylls and carotenoids
were found in the experimental combination with the lowest concentrations of PGRs. There was also
no impact of various PGRs ratios on the chlorophyll a/b ratio or anthocyanins and polyphenols content.
In contrast, NAA elevated the levels of all metabolites analyzed in this study, which suggests strong
antioxidant activities in calli. Similarly, NAA proved to stimulate isoflavone production in Genista
tinctoria L. calli at 5.0 mg·L−1 when applied jointly with 0.5 mg·L−1 cytokinin [45]. Perhaps using a light
factor instead of PGRs combination would allow for even more effective control of pigment synthesis
in the bleeding heart, as reported by Cioć et al. in gerbera [44].

In the present study, a negative correlation between the content of chemical compounds in callus
and SE efficiency was found (Table 5). To the best of our knowledge, this is the first study to analyze
such a relationship. Due to the consistent results, it seems that measurement of callus chemical
compositions can be used as a marker for evaluating the occurrence of somatic embryogenesis in
the bleeding heart as well as in other plant species. In contrast, acquisition of metabolite synthesis
should be performed with the use of non-embryogenic callus. Since a positive correlation between
the concentrations of all analyzed compounds was observed (r = 0.20–0.93), the in vitro production of
those metabolites can be performed simultaneously.

Further studies should focus on the use of exogenous melatonine [46,47], elicitors (exogenous
IBA, fungal elicitors, and oligochitosan), and/or precursor feeding in the overproduction of valuable
metabolites in the bleeding heart [48].
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4. Materials and Methods

4.1. Plant Material, Media Preparation, and General Culture Conditions

The Murashige and Skoog [49] medium (MS) was used in the experiment, modified by increasing
half the concentration of calcium II chloride (CaCl2·6H2O), iron sulfate (FeSO4), and Na2EDTA·2H2O,
supplemented with 3% (w/v) sucrose, and solidified with 0.8% (w/v) agar (Biocorp, Warsaw, Poland).
A cytokinin (BA) and auxin (IAA, NAA, 2,4-D, or PIC) were added into the culture medium in
combination, at the concentration of 0.5; 1.0, or 2.0 mg·L−1 each. Based on the qualitative and
quantitative composition of PGRs, the media were assigned the following symbols: M0 (a PGR-free
control medium), M1 (0.5 mg·L−1 BA + 1.0 mg·L−1 IAA), M2 (0.5 mg·L−1 BA + 2.0 mg·L−1 IAA),
M3 (1.0 mg·L−1 BA + 1.0 mg·L−1 IAA), M4 (1.0 mg·L−1 BA + 2.0 mg·L−1 IAA), M5 (0.5 mg·L−1 BA +

0.5 mg·L−1 NAA), M6 (0.5 mg·L−1 BA + 1.0 mg·L−1 NAA), M7 (1.0 mg·L−1 BA + 0.5 mg·L−1 NAA), M8
(1.0 mg·L−1 BA + 1.0 mg·L−1 NAA), M9 (0.5 mg·L−1 BA + 0.5 mg·L−1 2,4-D), M10 (0.5 mg·L−1 BA +

1.0 mg·L−1 2,4-D), M11 (1.0 mg·L−1 BA + 0.5 mg·L−1 2,4-D), M12 (1.0 mg·L−1 BA + 1.0 mg·L−1 2,4-D),
M13 (0.5 mg·L−1 BA + 0.5 mg·L−1 PIC), M14 (0.5 mg·L−1 BA + 1.0 mg·L−1 PIC), M15 (1.0 mg·L−1 BA +

0.5 mg·L−1 PIC), and M16 (1.0 mg·L−1 BA + 1.0 mg·L−1 PIC) (Table 1). All PGRs were provided by
Sigma-Aldrich®, St. Louis, MO, USA. The pH was adjusted to 5.8 after adding all media components
(Chemia, Bydgoszcz, Poland), prior to sterilization at 105 kPa and 121 ◦C for 20 min. The medium
(40 mL) was poured into 350-mL glass jars and sealed with plastic caps.

The 10-week-old in vitro-derived shoots of Lamprocapnos spectabilis (L.) Fukuhara ‘Alba’ were
used as the donor plant material. Whole leaves (7–10 mm-long), leaf petioles (3–5 mm), and internodes
(1–2 mm) were excised from the central part of shoots and inoculated polarly (leaves) or vertically
(petioles and internodes) in the modified MS medium with nine explants per jar. Each jar was
considered a single repetition. The experiment was repeated thrice.

The cultures were kept in the growth chamber at 24 ± 1 ◦C, under 16-h photoperiod conditions
and photosynthetic photon flux density of approximately 30 µmol·m−2

·s−1 provided by standard
cool daylight TLD 54/36W fluorescent tubes with a color temperature of 6200 K (Koninklijke Philips
Electronics N.V., Eindhoven, the Netherlands).

4.2. Evaluation of a Morphogenetic Response in Explants

After 10 weeks of culturing, the share of explants forming callus, adventitious shoots, and roots
was counted. The fresh weight and share of dry weight of calli (dried in a laboratory oven at 105 ◦C for
3 h) were also evaluated. The share of inoculated explants forming somatic embryos, and the number
of embryos per one inoculated explant was included.

4.3. Spectral Assay

The spectral analysis of metabolites was performed for in vitro regenerated calli in the 10th week
of the culture in three repetitions. Twelve experimental combinations (M5–M16) were included in the
array. Due to an insufficient amount of callus produced in combinations M0–M5 (PGR-free control and
media with BA and IAA), those experimental objects were not included in the study.

Chlorophylls and carotenoids were extracted from fresh calli, as described by Lichtenthaler [50]
using 100% acetone and 50 mg of tissue samples. Anthocyanins were extracted using 200 mg callus
samples and methanol containing 1% HCl (v/v), according to the Harborne [51] method. The same
extract was used to analyze the total phenolic content, according to the Folin-Ciocalteau procedure [52].
The total phenolic content was calculated using gallic acid as the calibration standard.

The spectrophotometric analysis of extracts was performed in a spectrophotometer SmartSpec
PlusTM (BioRad, Hercules, CA, USA) at specific wavelengths (λmax): for carotenoids at 470 nm,
for anthocyanins at 530 nm, for chlorophyll a and b at 645 and 662 nm, and for phenolics at 765 nm,
respectively. The content of pigments and phenolics was calculated per gram of fresh matter.
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4.4. Statistical Analysis

The experiment was set up in a completely randomized design. To obtain the normal distribution
of the data expressed as a percentage, the Freeman-Tukey transformation was used. Data were
statistically verified by applying Statistica 12.0 (StatSoft, Warsaw, Poland) software. The analysis
of variance (ANOVA) was performed and means were evaluated with the Newman-Keuls test at
the significance level of p ≤ 0.05. Tables with results provide real, untransformed numerical data
(mean ± standard error) with the alphabet indicating the homogeneous groups.

Associations between the content of chemical compounds in callus and the share of explants
forming (non-)embryogenic callus and number of somatic embryos per explant were also analyzed,
based on the Pearson correlation coefficient (r, p ≤ 0.05).

5. Conclusions

This is the maiden research on the in vitro culture systems adjusted from non-meristematic
explants in Lamprocapnos spectabilis. Due to the multifactorial behavior, the design of a universal
protocol for plant regeneration is a challenging task. The induction of adventitious organogenesis seems
difficult and not efficient in the bleeding heart. Somatic embryogenesis is more promising, especially
when using whole-leaf or petiole explants and 2,4-D or PIC-fortified media. Medium composition
affects not only the production of biomass but also the biosynthesis of metabolites. Calli cultured
on media with NAA usually contain a higher content of primary and secondary metabolites, but
produce less somatic embryos. There is also a significant impact of the explant type on the content of
anthocyanins, polyphenols, and carotenoids in callus. Further studies should focus on the application
of elicitor stimulation in the overproduction of economically important compounds.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/16/
5826/s1. Figure S1. Influence of auxin type on the morphogenetic (A,B) and biochemical response (C,D) of the
bleeding heart explants, irrespective of cytokinin concentration and explant type.
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ct Total chlorophyll
DW Dry weight
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MS Murashige and Skoog (1962) medium
NAA 1-naphthaleneacetic acid
PGR Plant growth regulator
PIC Picloram
SE Somatic embryogenesis
SH Schenk and Hildebrandt (1972) medium
TDZ Thidiazuron
TOP Topolin
ZEA Zeatin

References

1. Hodges, L. Bleeding heart: A review for growers. Hort. Technol. 2012, 22, 517–522. [CrossRef]
2. Iwasa, K.; Kim, C.-W. Biotransformations of protoberberines in cell cultures of Dicentra spectablis.

Phytochemistry 1997, 46, 1359–1363. [CrossRef]
3. Lee, D.-H.; Lee, B.-C.; Yoon, E.-J.; Leem, K.-E.; Park, S.-M.; Pyo, H.-B.; Choe, T.-B. Development of effects

of plant extracts on the activity and expression of UVA-induced MMPs (matrix metalloproteases). Int. J.
Cosmet. Sci. 2004, 26, 317–319. [CrossRef]

4. McNulty, J.; Poloczek, J.; Larichev, V.; Werstiuk, N.H.; Griffin, C.; Pandey, S. Discovery of the
apoptosis-inducing activity and high accumulation of the butenolides, menisdaurilide and aquilegiolide in
Dicentra spectabilis. Planta Med. 2007, 73, 1543–1547. [CrossRef] [PubMed]

5. Kim, A.H.; Jang, J.H.; Woo, K.W.; Park, J.E.; Lee, K.H.; Jung, H.K.; An, B.; Jung, W.S.; Ham, S.H.; Cho, H.W.
Chemical constituents of Dicentra spectabilis and their anti-inflammation effect. J. Appl. Biol. Chem. 2018, 61,
39–46. [CrossRef]

6. Petruczynik, A.; Plech, T.; Tuzimski, T.; Misiurek, J.; Kaproń, B.; Misiurek, D.; Szultka-Młyńska, M.;
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39. İnanç, A.L. Chlorophyll: Structural properties, health benefits and its occurrence in virgin olive oils.
Akademik Gıda 2011, 9, 26–32.

40. Li, D.; Wang, P.; Luo, Y.; Zhao, M.; Chen, F. Health benefits of anthocyanins and molecular mechanisms:
Update from recent decade. Crit. Rev. Food Sci. Nutr. 2017, 57, 1729–1741. [CrossRef]

41. Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food
systems: A mini-review. Front. Nutr. 2018, 5, 87. [CrossRef]

42. Tarrahi, R.; Rezanejad, F. Callogenesis and production of anthocyanin and chlorophyll in callus cultures of
vegetative and floral explants in Rosa gallica and Rosa hybrida (Rosaceae). Turk. J. Bot. 2013, 37, 1145–1154.
[CrossRef]

http://dx.doi.org/10.1007/s00709-014-0647-7
http://dx.doi.org/10.1016/j.scienta.2019.108766
http://dx.doi.org/10.1007/s11627-007-9076-z
http://dx.doi.org/10.1007/BF00046097
http://dx.doi.org/10.17660/ActaHortic.2013.988.3
http://dx.doi.org/10.5114/bta.2018.79964
http://dx.doi.org/10.1007/s11738-015-1773-3
http://dx.doi.org/10.1139/b72-026
http://dx.doi.org/10.1016/j.bcab.2019.101320
http://dx.doi.org/10.3389/fpls.2017.01385
http://www.ncbi.nlm.nih.gov/pubmed/28848586
http://dx.doi.org/10.1007/s002990050724
http://www.ncbi.nlm.nih.gov/pubmed/30754739
http://dx.doi.org/10.4025/actasciagron.v36i1.16557
http://dx.doi.org/10.3390/molecules25020309
http://dx.doi.org/10.3390/nu6020466
http://dx.doi.org/10.1080/10408398.2015.1030064
http://dx.doi.org/10.3389/fnut.2018.00087
http://dx.doi.org/10.3906/bot-1205-42


Int. J. Mol. Sci. 2020, 21, 5826 18 of 18

43. De Matos Nunes, J.; Bertodo, L.O.O.; da Rosa, L.M.G.; Von Poser, G.L.; Rech, S.B. Stress induction of valuable
secondary metabolites in Hypericum polyanthemum acclimatized plants. S. Afr. J. Bot. 2014, 94, 182–189.
[CrossRef]
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