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In the domain of credit risk assessment lenders may have limited or no data on the

historical lending outcomes of credit applicants. Typically this disproportionately affects

Micro, Small, and Medium Enterprises (MSMEs), for which credit may be restricted or

too costly, due to the difficulty of predicting the Probability of Default (PD). However, if

data from other related credit risk domains is available Transfer Learning may be applied

to successfully train models, e.g., from the credit card lending and debt consolidation

(CD) domains to predict in the small business lending domain. In this article, we report

successful results from an approach using transfer learning to predict the probability

of default based on the novel concept of Progressive Shift Contribution (PSC) from

source to target domain. Toward real-world application by lenders of this approach, we

further address two key questions. The first is to explain transfer learning models, and

the second is to adjust features when the source and target domains differ. To address

the first question, we apply Shapley values to investigate how and why transfer learning

improves model accuracy, and also propose and test a domain adaptation approach to

address the second. These results show that adaptation improves model accuracy in

addition to the improvement from transfer learning. We extend this by proposing and

testing a combined strategy of feature selection and adaptation to convert values of

source domain features to better approximate values of target domain features. Our

approach includes a strategy to choose features for adaptation and an algorithm to

adapt the values of these features. In this setting, transfer learning appears to improve

model accuracy by increasing the contribution of less predictive features. Although the

percentage improvements are small, such improvements in real world lending could be

of significant economic importance.

Keywords: credit risk, transfer learning, domain adaptation, explainable AI, deep learning

1. INTRODUCTION

In 2014, 42% of all adults worldwide reported borrowing in the previous year (excluding credit
cards). Adults in underdeveloped nations borrow three times as much from family members and
friends as from financial institutions. Borrowing through an institution offers advantages over
borrowing from family or friends since it provides access to adequate funds and, presumably,
better credit conditions under regulation (World Bank, 2017). Access to formal credit has become
an issue for young adults in developed countries too. A recent survey by Bankrate found that
58% of millennials (born between 1981 and 1996) in the United States have been denied at least
one financial product because of their credit score (BankRate, 2019). Consequently, fintech-based
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financial products, such as Alipay, Affirm, Klarna, Paypal
Credit, and Afterpay have become popular with millennials and
Generation Z (born between 1997 and 2010), although with these
platforms credit is typically provided in very restricted domains,
such as for retail purchases.

Applications for unsecured consumer loans such as credit
cards and debt consolidation (CD) loans are common. They are
typically scored by algorithms that are mostly based on a person’s
credit score, income, spending, and other factors such as job and
housing stability. This area is now a crowded and competitive
marketplace that has been helped by recent fintech activities
(especially in the US, UK, and China). These activities have
amassed historical data and, consequently, reliable and accurate
scoring models. Small company financing is a relatively new
sector for fintechs; it is riskier, more diversified, more difficult
to forecast outcomes, and lacks data. Although public datasets
on this type of lending are scarce (apart from exceptions like
the Lending Club data used in this article1), it is known that
the quantity of historical lending outcomes for small business
loans is typically far lower than for other lending types, making
it very difficult to develop an accurate and stable model using
traditional supervised learning. Since small company lending
has less competition and larger margins than consumer lending,
finding strategies to forecast loan outcomes and service this
market is potentially more profitable for lenders. MSMEs are also
one of the most powerful generators of economic development,
innovation, and employment. MSMEs typically cite a lack of
access to capital as a major stumbling block to expansion.
Providing possibilities for MSMEs in developing markets is a
critical step toward economic growth and poverty reduction.
There are 65 million unmet financial requirements in developing
nations (or 40% of formal MSMEs). Forum (2019) estimates that
the MSME financing gap in developing nations is $5.2 trillion,
which is 1.4 times the present level of MSME lending.

However, resolving these concerns presents various
difficulties. When a lender enters new market segments, a
new credit risk model is necessary to evaluate loan applicants’
credit risk. The current strategy relies on expert rules, in which
a credit risk expert develops business rules based on data and
their expertise and knowledge. Lenders begin by collecting
sufficient labeled data with an expert model in order to develop
a supervised learning model. A comparison is made between the
expert model and the supervised learning model. The superior
model is adopted if one model outperforms the other by a
significant margin. In another way, if both models work well
together, they can be combined into an “ensemble” model.
Lenders in commercial lending systems usually charge more
money or limit the amount of credit they can give out because
there are not enough labeled data to test the expert models.
Consequently, many individuals and small enterprises are shut
out of these “conventional” financing systems. When sensitive
and personal data can only be accessed on-site by authorized
people, it may be hard to get a suitable expert to analyze
such data.

1Available from https://www.lendingclub.com/info/download-data.action

Transfer learning is proposed as a connection between
alternative lending data and standard credit history evaluation,
such as credit bureau ratings. We examine how transfer
learning may help with credit scoring accuracy in this research.
We investigate a domain with no or limited prior lending
results, such as providing credit to unbanked or underbanked
populations, or micro and small firms, where historical data is
scarce. Lenders currently dependmostly on expert rules for credit
scoring. Lenders demand a hefty fee or refuse to grant credit
because of the considerable unpredictability of such scoring
methods. Transfer learning from adjacent areas might help fill
in the gaps in information and increase financial inclusion.
Transferring CD loan knowledge to riskier small business loans,
or utility bill payments to loan repayments, e.g., might result in
a more accurate scoring model. The aim of this research is to
address the following issue: can we use this “alternative lending”
data to enhance credit behavior prediction, and hence credit
access, for those with low traditional credit histories?

We explore how transfer learning could be used in the early
stages of a credit risk model deployment when there is a lack
of historical labeled data. The stability and accuracy of model
performance in the credit risk domain are business goals in
order to anticipate the chance of default. We provide a method
for combining the results of transferred models from related
credit risk domains with new models based on newly acquired
labeled data from new domains. We get a greater level of
precision while also maintaining the overall model’s stability
using this method. Experiments on real-world commercial data
(which we are unable to discuss in this article) indicated
that utilizing a gradually transitioned strategy, combining the
transferred models and the new models can achieve these aims.
We reproduce in this article versions of our experiments using
publicly accessible Lending Club data to allow us to publish the
results while still complying with the privacy standards of our
client’s data.

We focus on two scenarios in which a big dataset of current
loan products is used to improve the credit risk model for new
loan products with a considerably smaller dataset. In the first
scenario, Lending Club data is used to resemble a lender that
already possesses (CD) data and is ready to start lending to small
companies. The second scenario likewise makes use of Lending
Club data to resemble a lender that already has a credit card loan
product and now wants to expand into vehicle loans.

For pre-processing, we pick 16 variables as inputs, and the
output to be predicted is whether or not a loanwill be approved or
not.We transform the loan status to a binary result to simplify the
model. Here, 1 indicates a defaulted loan, a charged-off loan, or a
late loan payment; 0 indicates a paid-off debt. Current loans that
are not yet due are not included in this calculation. The details of
the pre-processing are detailed in Data Availability Statement.

Furthermore, to adopt a transfer learning approach in the real
world, the following two questions need to be addressed. The
first issue is to explain transferred models. Many jurisdictions
require credit decisions to be explained for anti-discrimination
and human rights purposes. For example, the European
Union’s General Data Protection Regulation (GDPR) requires
“meaningful information about the logic involved” in automated
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decisions, providing an explanation that enables a data subject
to exercise their rights under the GDPR and human rights
law (Selbst and Powles, 2017). SHAP (Lundberg and Lee, 2017),
based on Shapley values, is one of the most popular methods
for explaining machine learned models. In this article, we apply
SHAP to analyze the contribution of features and the impact of
the transfer.

The second question is how to handle the difference between
features from source and target domains. For instance, a source
domain could be for a small short-term alternative loan, but the
target domain may be for large and long-term installment loans.
Key features, such as loan amount, loan terms, and interest cover.
can differ between these domains. We could use the progressive
shifting contribution network proposed in Suryanto et al. (2019)
which combines source and target domain feature learning to
improve model accuracy, but a key question that remains is:
Can we adapt the features before transfer learning to get more
accurate models?

We develop an approach to this question in this article based
on three perspectives. First, we use a Kolmogorov Smirnov (KS)
test to quantify the difference between source and target domains
and use domain adaptation to treat only features that differ
substantially between the domains before training. Second, after
we find candidate features to be adapted, based on their KS
differences, we include other features that are highly correlated
with the candidate features and test the accuracy of models
adapting these feature combinations. Finally, we exclude from
adaptation those features related to a borrower’s credit history
where the adaptation would incorrectly impact the classification.

The remainder of the article is structured as follows. We cover
related research in Section 2 and key aspects of the problem in
Section 3. We describe our transfer learning approach in detail
in Section 4, and in Section 5, we address two critical issues:
domain adaptation and explainability. Discussion and conclusion
are contained in the final two sections ( 6 and 7).

2. RELATED STUDIES

Transfer learning pre-dates deep learning (DL). Given the
difficulty of defining features in image processing, many
approaches were pioneered in that area. For example, the transfer
of parameters from a trained SVM model was proposed by Yang
et al. (2007). This can also be applied to unsupervised learning
— a domain adaptation technique known as transfer component
analysis was given by Pan et al. (2011). In their survey article,
Pan et al. (2010) suggested four categories for transfer learning:
transfer of instances, transfer of feature representations, transfer
of parameter values, and transfer of relational knowledge.

Transfer learning requires training on a source domain and
(re)training on a target domain, on which the class labels are
to be predicted (for classification tasks). In this article, we are
mainly concerned with the transfer of feature representations.
The work on transductive transfer learning (Pan et al., 2011)
has some similarities with our approach, but in that work,
both the source and target classification tasks must be the
same. A further difference in our approach is that we aim to

progressively optimize for the right hyperparameter setting to
balance the relative weight of the source to target the transfer of
feature representations.

A central issue in transfer learning is the relation of the source
to the target domain. This relationship can be affected by the
relative heterogeneity of the data in the domain, and issues such
as symmetry in the transfer of features, which can also impact
the transfer of parameter values and relational knowledge, and
the selection of the source domain, as discussed in Weiss et al.
(2016). It is also important to be aware of and mitigate the
potential for transfer learning to decrease performance on the
target domain (which is known as “negative transfer”). Several
approaches have been proposed to address this (Gao et al., 2008;
Chattopadhyay et al., 2011; Sun et al., 2013; Xiao et al., 2014).
However, in this study, we instead focussed on optimizing the
architecture of target network models to enable the successful
transfer of features. Addressing the risk of negative transfer in
our approach is left for future study.

While the terms “transfer learning” and “domain adaptation”
have been used interchangeably, we use transfer learning when
the focus is the modeling configuration, and domain adaptation
when the focus is on transforming the data. There are only
a few published studies on domain adaptation for credit risk,
e.g., Huang and Chen (2018) proposed domain adaptation for
transforming the data distribution. In other domains, approaches
such as BalancedDistribution Adaptation (Wang et al., 2017) and
adapting without target labels have been used (Huang and Chen,
2018; Zhang et al., 2018; Kouw and Loog, 2019).

In this article, we use a method of Progressive Network
configuration for transfer learning, similar to Rusu et al. (2016).
The contribution of this article is a strategy to apply domain
adaptation to the source data when target data with labels
is limited and to apply both domain adaptation and transfer
learning to credit risk. Neyshabur et al. (2020) investigated what
is being transferred, which are general features in the lower layers
and more specific features in the higher layers. Our Progressive
Network configuration facilitates the search to find from which
layers we retrain the network. In credit risk, where the data labels
are scarce, the approach such as transferring learned knowledge
from self-supervised tasks to downstream tasks could improve
the performance of the network (Han et al., 2021).

3. CREDIT RISK

Across their loan portfolios, lenders strive to maximize the
risk-return ratio. The cornerstone of this optimization is
the accurate and consistent measurement of credit risk.
Expected Loss (EL) is a standard metric used by lenders to
assess credit risk. EL is mostly governed by the Probability
of Default (PD) in an unsecured loan scenario. PD is
calculated using credit scoring models. The characteristics
of the loan applicant and their application are usually
inputs to a credit rating algorithm. To demonstrate our
techniques, we use attributes from lendingclub.com data.
The most often used metrics in credit risk assessment
include the Gini Index, KS statistics, Lift, Mahalanobis
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distance, and information statistics (Řezáč and Řezáč, 2011).
The Gini Index (abbreviated as "Gini") is used in this study.

A score ranging from 0 to 1 is generated by the scoring model.
It is a likelihood of default that has been calculated. Typically, a
portion of the data is pre-allocated for score calibration. With the
resulting PD and loan application data as inputs, lenders utilize
a set of decision processes and rules to make the best conclusion
possible. An eligibility test is usually the first step in the decision-
making process. The PD is calculated for all potential candidates
and then used to divide them into decision groups. The interest
rate, e.g., may differ depending on the decision group, as could
the loan amount as a proportion of net income.

The focus of this study is on credit rating for unsecured
loans. The Area Under Receiver Operating Curve (AUC) or
GiniROC, which is 2AUC−1 (Flach, 2003), is used to evaluate the
performance of our credit scoring model. The Gini Index, which
is employed as the splitting criteria in CART (Breiman, 1996), is
based on the same principle as GiniROC. Gini and GiniROC, on
the other hand, serve distinct purposes. The measure GiniROC
is used to assess model quality based on PD without the
requirement to transform PD into binary classifications because
the threshold for doing such classifications is established in the
credit decisioning.

3.1. Credit Scoring
Credit scoring generates a PD value that is used to estimate
whether a loan will be repaid or defaulted. There are other
possible consequences in real-world settings, such as late or
incomplete payment. We need a measure to assess the model’s
quality without setting a threshold to transform the PD into a
classification in credit scoring. We can use a statistic like Fscore
after we have these classifications. This judgment is delayed
in credit risk to the credit-decisioning process when expert
rules/guidelines are used to determine whether or not the loan
is accepted.

3.2. Credit Decisioning
Credit decisioning uses PD to accept or deny a loan application.
A mapping table is used to map ranges of PD to decisions when
converting from PD to decisions. It may also change the loan
amount, interest rate, and period, in addition to approving or
declining the loan. Because the data is typically scarce and/or the
search space is too big for supervised learning models to be built,
this model is typically based on expert rules.

4. TRANSFER LEARNING

In this section, we first outline our transfer learning framework
and then summarize the experimental results (derived from those
of Suryanto et al., 2019). The key idea of this part of our study
is the notion of Progressive Shift Contribution (PSC) where
a combination of network architecture operators and training
methods enable a number of variants of transfer learning to be
implemented and evaluated. Essentially, the idea behind PSC is
to generate different transfer learning models in which the target
domain contribution gradually grows while the source domain
contribution drops. We first describe a base model network

architecture, explained in Section 4.2, then how to create a variety
of network topologies from this in Section 4.3.1. We empirically
evaluate the effectiveness of this approach to transfer learning
algorithms by testing each variant model on different source and
target domain datasets, with the results shown in Section 4.4.

4.1. Model Development
A total of six different network architectures were developed,
which we refer to in the following as Models 1–6.

Only source data is used to train Model No. 1. We
progressively shifted the domain contribution from source to
target domain in Model Nos. 2–5. Only target domain data
is used to train Model No. 6, the last model. The ratio
of trained layers using the target domain to trained layers
using the source domain indicates the contribution variations
between the source and target domains. This approach can
be generalized to a network configuration of any size. The
algorithm’s specifics will be explored in further depth in Section
4.3.1. All experiments’ source code and data are accessible in Data
Availability Statement.

To find the optimum network configuration, we transferred
the PSC from the source domain to the target domain and
evaluated Gini performance using test data from the target
domain. The performance of the model is primarily determined
by the following factors:

a) methodologies used for modeling (e.g., generalized linear
model, gradient boosting machine, deep learning), hyper
parameters2, b) data signal strength, and c) feature engineering.
We can express the link betweenGini, which we denote byG, and
the above factors as follows:

G = g(T(Me, se) (1)

where se represents the source domain’s test data,Me represents
the model trained on the source domain’s training data, T()
represents th activity of testing a model on the test data that
produces the test results, and g() represents a function to
compute the Gini coefficient of the results. The variable Me is
defined as follows:

Me = TN(M0,Pe, te,Fe) (2)

whereM0 is a configuration of a deep neural network with initial
random weights, Pe is a set of hyper parameters for training
Me, te is the source domain’s training data, Fe is a collection of
features obtained from te. TN() is an activity to train amodel with
these four factors. The outcome of TN() is a model that has been
trained using the above four factors.

We now describe how PSC is performed. To begin, we define
a function S() that partitions Me into two segments: MXe and
MFe . MXe denotes the segment in which the layers were trained
using te and the layers are not re-trainable.MFe is the segment in
which the layers were also trained using te, however, these layers
can be re-trained using the target domain’s training data tn.

(MXe ,MFe ) = S(Me) (3)

2The hyper parameters optimization has been done before this step.
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S()’s inverse function is C(), which combines MXe and MFe to
formMe.

Me = C(MXe ,MFe ) (4)

For the target domain Mtransfer, we developed a model, that
incorporates data from both the source and target domains, by
transferring the structure and weights of the MXe layers and
retraining theMFe layers.

MFn = TN(MFe ,Pn, tn,Fn) (5)

In the end, we put together the target model MFn and the
model MXe . The result is the transferred model, which is called
Mtransfer.

Mtransfer = C(MXe ,MFn ) (6)

The overarching objective is to maximize GT by tracking GT as
the PSC moves from source to target domain data. We evaluate
the performance of all six network topologies in Section 4.1 to get
the highestGT. In the following equation, sn represents the target
domain’s test data.

GT = g(T(Mtransfer, sn)) (7)

4.2. The Base Model
Figure 1 illustrates the initial basic model. It contains 16 input
nodes on the input layer, three hidden layers with 32 nodes
on each, and one output node on the output layer. The
configuration of the network is chosen using a hyper parameter
search to get a configuration that is close to optimal. By and
large, the base models were constructed in accordance with
network architectures.

4.3. The Comparison Model (Model u)
Figure 1 illustrates the network configuration u on which the
comparison model is based. Only the target domain data is
used to train this model, no data from the source domain
is utilized. The model developed using target domain data is
defined similarly to Equation 2:

M(u)n = TN(M(u)0,Pn, tn,Fn) (8)

where M(u)n is a model based on network configuration u that
was built using data from the target domain. The starting model
M(u)0 is based on network configuration u with all weights
randomly initialized, and the parameters, training data, and
features required to build the modelM(u)n arePn, tn, and Fn.

G = g(T(M(u)n, sn)) (9)

In the above equation, sn denotes the target domain’s test data.

4.3.1. PSC Models
Six models were introduced in Section 4.1, where the PSC
changes between the source and target domain data. We added
an extra parameter to the split function provided in Equation 3

to determine the fraction of PSC. This parameter’s value is one
of the following: v, N1, N1N2, N1N2N3, or N1N2N3N4. Based on
the varied PSC from the source to the target domain, each value
results in a distinct network configuration. For each of these five
values, we created five PSC models. In addition, we include the
baseline ComparisonModelmentioned in Section 4.3. In the next
sections, we go over Models 2 through 6.

4.3.2. Model v
Model v is exclusively constructed from the source domain data
only. To generate Model v, we first trained model M(v)e using
Equation 10 and the network configuration shown in Figure 2.

M(v)e = TN(M(v)0,Pe, te,Fe) (10)

On target domain data, the model was evaluated, and a Gini
coefficient was computed.

G = g(T(M(v)e, sn)) (11)

4.3.3. Model N1N2N3N4

Four parallel networks were used to develop thismodel, each with
three hidden layers connected to the input and output layers. To
begin, we replicated the hidden layers of network v into networks
N1, N2, N3, and N4. We explain the transformation conceptually
using Equation 12.

M(N1N2N3N4)e = TRANSFORM(M(v)e) (12)

The networks N1, N2, N3, and N4 were configured in the manner
depicted in Figure 3.

After the structure and weights were set (as shown in
Figure 3), we then set the following as trainable, using the target
domain data: The 3rd hidden layer of Network N2, the 2nd
and 3rd hidden layers of Network N3, and all hidden layers of
Network N4. The next three steps are indicated in numbers 1, 2,
3 within ellipses in Figure 3:

Following the establishment of the structure and weights (as
seen in Figure 3), we designated the following hidden layers as
trainable using the target domain data: N2HL3, N3HL2, N3HL3,
N4HL1, N4HL2, and N4HL3. The next three steps are as below:

1. The source domain’s training data (te) is used to derive weights
for all four networks (N1, N2, N3, and N4). Depending on the
configuration, some hidden layers in networksN1,N2,N3, and
N4 and the output layer are configured to be re-trainable, using
the target domain’s training data (tn).

2. Train re-trainable layers using the target domain’s training
data (tn).

3. Evaluate the whole parallel network (N1,N2,N3, andN4) using
the target domain’s test data (sn), and then compute the Gini
coefficient from the result.

The following three equations can describe the evolution of
Model N1N2N3N4:

(MX(N1N2N3N4)e,MF(N1N2N3N4)e) = S(M(N1N2N3N4)e)
(13)
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FIGURE 1 | Network u: the base model.

MF(N1N2N3N4)n = TN(MF(N1N2N3N4)e,Pn, tn,Fn) (14)

M(N1N2N3N4)transfer = C(MX(N1N2N3N4)e,MF(N1N2N3N4)n)
(15)

Model N1N2N3N4 was trained using the source domain data and
six hidden layers and the output layer was retrained using the
target domain data.

4.3.4. Model N1

After deleting Networks N2, N3, and N4 from the model
N1N2N3N4, we deriveModelN1. Figure 4 illustrates this network
configuration. All hidden layers were trained on source domain
data and only the output layer was retrained on target domain
data inModelN1. Equations 16, 17, and 18 illustrate the evolution
of Model N1.

(MX(N1)e,MF(N1)e) = S(M(N1)e) (16)

MF(N1)n = TN(MF(N1)e,Pn, tn,Fn) (17)

M(N1)transfer = C(MX(N1)e,MF(N1)n) (18)

4.3.5. Model N1N2

Model N1N2 is derived from Model N1N2N3N4 by excluding
Networks N3 and N4. Figure 4 illustrates this network

configuration. All hidden layers were trained on the source
domain data in Model N1N2. The target domain data was used
to retrain one hidden layer (N2HL3) and the output layer. The
evolution of the model N1N2 is illustrated in Equations 19, 20,
and 21.

(MX(N1N2)e,MF(N1N2)e) = S(M(N1N2)e) (19)

MF(N1N2)n = TN(MF(N1N2)e,Pn, tn,Fn) (20)

M(N1N2)transfer = C(MX(N1N2)e,MF(N1N2)n) (21)

4.3.6. Model N1N2N3

Model N1N2N3 is derived from Model N1N2N3N4, excluding
Network N4. Figure 5 illustrates this network configuration.
All hidden layers were trained in Model N1N2N3 using source
domain data. The target domain data was used to retrain three
hidden layers (N2HL3, N3HL2, and N3HL3) and the output layer.
Equations 22, 23, and 24 illustrate the evolution of the model
N1N2N3.

(MX(N1N2N3)e,MF(N1N2N3)e) = S(M(N1N2N3)e) (22)

MF(N1N2N3)n = TN(MF(N1N2N3)e,Pn, tn,Fn) (23)

M(N1N2N3)transfer = C(MX(N1N2N3)e,MF(N1N2N3)n) (24)
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FIGURE 2 | Network v.

4.4. Experiments
We utilized data from lendingclub.com in our studies, which
is similar to our original client’s (confidential) data, and spans
the years 2007–2018 (refer to Data Availability Statement). We
began by developing base models and training them without
using transfer learning. A grid search was then used to identify a
close-to-optimal set of hyper-parameters for each neural network
architecture. To evaluate our transfer learning approach, we
selected data on CD as the source domain and Small Business
(SB) as the target domain. Our objective is to evaluate the
implementation of transfer learning from CD to SB, to exemplify
a real-world situation where data in the target domain (here
SB) is scarce, but data in the source domain (here CD) is more
readily available.

To validate the performance of DL on the CD and SB datasets,
we also compared it to that of Gradient Boosting Machines
(GBM). The Gini coefficients on the CD data were equal (0.43,
with a s.d. of 0.01). On the SB data, they were almost identical, at
0.30 with 0.05 s.d. for GBM compared to 0.31 with 0.02 s.d. for
DL, indicating that there is no statistically significant difference
in performance between the two methods. Consequently, in
the following sections, our experiments concentrate exclusively
on DL.

4.4.1. Datasets
From the data acquired from lendingclub.com, ten datasets
were generated. For the first source domain dataset, CD4,
we randomly selected 1,00,000 records from 9,40,948 records
on loans for the purpose of paying off credit cards and
consolidating debt. The rate of bad debt in this sample was
21%. The first target domain dataset, SB4, had 13,794 records
pertaining to loans made for the purpose of investing in small
businesses. This is a more risky loan type, where the default
rate is 30%. These two datasets were not subjected to any
outlier screening.

We then constructed the source domain datasets CD1, CD2,
and CD3 as subsets of the dataset CD4, with different time range
filters applied. Target domain datasets SB1, SB2, and SB3 were
also constructed as subsets of SB4 similarly to those for the source
domain. These restrictions allow investigation of any effects due
to changes in the time range of the datasets used.

Additionally, we identified a further pair of source and target
domain datasets, as follows. The source domain CCD is a subset
of the CD4 dataset that was filtered to extract Credit Card Loans.
Similarly, the Car Loan data target domain dataset was a set
of car loans extracted from Lending Club datasets. Both these
datasets both spanned the time range 2007–2018, as in CD4

Frontiers in Artificial Intelligence | www.frontiersin.org 7 May 2022 | Volume 5 | Article 868232

https://www.lendingclub.com
https://www.lendingclub.com
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Suryanto et al. Credit Risk Modeling

FIGURE 3 | Network N1N2N3N4.

and SB4 (for further details refer to the link provided in Data
Availability Statement).

The data in Table 1 was used in all of the experiments. They
were performed using a 10-fold cross-validation procedure that
was done five times. The basic model for the transfer learning
was created using the datasets CD1, CD2, CD3, CD4, and CCD,
and the network configuration u, as illustrated in Figure 1 and
specified in Equation 2. The intensity of the signal associated with
the result being predicted from the data was one element that
affected model performance.

As seen in Table 1, there is an effect of both dataset size (on
the target domain, the larger the dataset, and the higher the Gini)
and the date range (on the source domain, the more time covered
by the dataset, the higher the Gini) on the baseline performance.

As in Equation 9, the Gini values for SB1, SB2, SB3, SB4, and
CAR (as shown in Tables 1, 2) are computed from the test result
of model M(u)n by applying the function g() to the test results
(for source domain datasets we use model v).

4.4.2. Results
The experimental findings are reported in Table 2, in which
we applied Progressive Shifted Contributions (PSC), moving
from the source domain to the target domain data. All of these
experiments were carried out using a 10-fold cross-validation
procedure that was repeated five times. In other words, each
experiment was performed 50 times, and the mean of the
Gini scores and the standard deviation (denoted s.d. in tables)
were recorded.

For the experiment over source/target CD1/SB1, we see that
M(N1)transfer had the greatest Gini of 0.301, an improvement
of 10.7% over M(u)n. As the CD2/SB2 target data covers
a wider time range and has more examples, M(N1)transfer
retained the highest Gini of 0.287, but the improvement
was just 4.7 percent. As CD3/SB3 target domain time range
increased further along with further increases in dataset size,
the contribution moved toward the target domain; model
M(N1N2)transfer had the greatest Gini of 0.337, however, with
just a minor improvement of 1.8% above M(u)n. Finally, the
contribution was totally moved toward the target domain in
CD4/SB4, resulting in the highest Gini coefficient of 0.351
forM(u)n.

From the experiments conducted on the datasets CCD
and CAR, M(N1)transfer produced the highest Gini score
of 0.447, representing a slight improvement (2.5%) over
the previous experiment, M(u)n. This may be due to
a greater similarity between source and target domains
for CCD/CAR than that for CD/SB, which could be
investigated as part of further study. However, it also
demonstrates that the progression from the source to
target data finding the best balance improves the quality of
transfer learning.

From the experimental results, it is evident that the effect of

progression from source to target has more impact as data is

selectedfrom a wider time range in both the source and target

domains. The contribution was dependent on the number of
re-trainable layers.

Frontiers in Artificial Intelligence | www.frontiersin.org 8 May 2022 | Volume 5 | Article 868232

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Suryanto et al. Credit Risk Modeling

FIGURE 4 | Network N1 and Network N1N2.

4.4.3. Additional Experiments
We explored the possibility that the Gini improvement was
attributable to the complexity of the network’s structure. We
ran experiments in accordance with Equations 25 and 26. On
source domain data, the model with network configuration
N1N2N3N4 was trained and retrained. This model’s performance
was 0.39 (0.01), which was lower than the base model Gini
of 0.43 (0.01). This demonstrates that the added complexity of
M(N1N2N3N4)transfer has no effect on Gini performance. As a
result, the improvement must be attributable to the diversity of
the source data, which supplements the target data.

MF(N1N2N3N4)e = TN(MF(N1N2N3N4)e,Pe, te,Fe) (25)

M(N1N2N3N4)retrain = C(MX(N1N2N3N4)e,MF(N1N2N3N4)e)
(26)

4.4.4. Transfer Learning: Summary
We have presented an algorithm for gradually shifting the
contribution from the source domain to the target domain. We
can assess incremental complements of target domain data with
source domain data using the PSC algorithm. While certain
tasks were done manually, the overarching purpose was to create
a framework that can automatically search for the optimum

balance of source and target domain data, resulting in the highest
Gini score for that combination. Models ranging from Model v
(using just source domain data) to Model u (using only target
domain data) were created. These empirical results have shown
that the method of transfer learning developed in this article
can be applied in the area of model-based credit risk assessment.
Furthermore, the results demonstrate that our method is capable
of optimizing over a structured series of network architectures
to find the best balance between the contribution of source and
target domains.

5. DOMAIN ADAPTATION AND
EXPLAINABILITY

In this section, we address the two important questions of domain
adaptation and explainability.

5.1. Explainability
We use SHapley Additive exPlanations (SHAP)3 to calculate
the feature contributions for source models, target models, and
transferred models. Source models are trained and tested on
source domain data, using the same neural network configuration
as the target models. The sole purpose of the source models is

3See https://github.com/slundberg/shap
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FIGURE 5 | Network N1N2N3.

TABLE 1 | The datasets used in the transfer learning studies are listed below.

ID Dataset Period Size Type Gini (s.d.)

CD1 CreditCard/DebtConsolidation 2007–2011 23,813 Source 0.364 (0.023)

SB1 SmallBusinessLoan 2007–2011 1,831 Target 0.272 (0.067)

CD2 CreditCard/DebtConsolidation 2007–2014 100,000 Source 0.417 (0.016)

SB2 SmallBusinessLoan 2007–2014 6,686 Target 0.274 (0.040)

CD3 CreditCard/DebtConsolidation 2007–2016 100,000 Source 0.447 (0.013)

SB3 SmallBusinessLoan 2007–2016 12,114 Target 0.331 (0.032)

CD4 CreditCard/DebtConsolidation 2007–2018 100,000 Source 0.448 (0.012)

SB4 SmallBusinessLoan 2007–2018 13,794 Target 0.351 (0.024)

CCD CreditCard 2007–2018 100,000 Source 0.463 (0.014)

CAR CarLoan 2007–2018 12,734 Target 0.436 (0.036)

The “Type” column shows whether the dataset is used as the source or target for the

transfer learning process; the results given are cross-validation runs’ means and standard

deviations (s.d.).

to investigate the feature contributions of the source domain to
compare with transferred models.

We start by constructing a neural network model using
training data, then feed this model and the training data into
SHAP to create a SHAP-explainer model. We then run test

data through the SHAP-explainer model to generate a SHAP
contribution value for each input feature.We run this experiment
with a 10-fold cross-validation setup and calculate the average
SHAP contribution value. The average contribution value of each
feature, for all features and models, was recorded (due to space
limitations, only one summary of these is shown here, as a stacked
bar chart in Figure 6).

5.2. Domain Differences
To understand the differences between source and target
domains, we use KS tests to quantify the difference for each
feature. The KS test can be used to compare two samples without
making an assumption about the distribution of data. The null
hypothesis is that the two samples, source and target data, come
from the same distribution. The KS test produces a KS-statistic
and p-value. The KS-statistic represents the maximum distance
between the source data and the target data distributions.
The p-value represents the significance level, e.g., less than
0.05. We used the maximum distance between the source
data and the target data distribution curves (KS-statistic) to
provide insights into the differences in features between these
two domains.
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TABLE 2 | Experimental Results for six models with progressively shifted contribution, built on the source and target datasets described in Table 1 (all of the

source:Credit Card/Debt Consolidation (CD), target:Small Business (SB) Loan datasets, plus the source:Credit Card, target:Car Loan datasets); results shown as means

(s.d.); models with the highest performance in each column are denoted by the symbol *.

Source/Target

Model CD1/SB1 CD2/SB2 CD3/SB3 CD4/SB4 CCD/CAR

M(v)e 0.157 (0.022) 0.236 (0.051) −0.191 (0.260) 0.196 (0.026) 0.262 (0.355)

M(N1)transfer *0.301 (0.097) *0.287 (0.051) 0.334 (0.029) 0.350 (0.029) *0.447 (0.037)

M(N1N2 )transfer 0.292 (0.091) 0.272 (0.054) *0.337 (0.030) 0.350 (0.028) 0.434 (0.035)

M(N1N2N3 )transfer 0.230 (0.087) 0.217 (0.057) 0.300 (0.032) 0.310 (0.030) 0.376 (0.040)

M(N1N2N3N4 )transfer 0.174 (0.010) 0.172 (0.051) 0.254 (0.029) 0.273 (0.030) 0.310 (0.050)

M(u)n 0.272 (0.067) 0.274 (0.040) 0.331 (0.032) *0.351 (0.024) 0.436 (0.036)

% improvement 10.7% 4.7% 1.8% 0.0% 2.5%

TABLE 3 | Target model vs. transferred model.

Domain Experiment AUC Improvement p-value

CD to MD Training using Target only 0.5971 (0.0823)

CD to MD Training using Source then retraining the last layer using Target 0.6391 (0.0856) 0.0420 (7.0%) <0.01

CD to SB Training using Target only 0.6194 (0.0456)

CD to SB Training using Source then retraining the last layer using Target 0.6419 (0.0509) 0.0224 (3.6%) <0.01

5.3. Domain Adaptation
Domain adaptation aims to transform the source data
distribution to be similar to the target data distribution.
The intention is to use latent features constructed using source
data to complement the target data. We propose the following
approach to adapt the feature distribution of the source data to
mimic the feature distribution of target data. For each feature,
the adaptation steps are:

1. Group the source data and the target data in N quantiles,
where N should be selected to ensure that we have sufficient
data for each quantile, e.g., more than 50 samples. In this
study, we selected N = 10, after experimenting with various
N values.

2. For each corresponding source and target quantiles, we
calculate scale and then adapt/adjust the source feature values:

scale =
(max(target_value)−min(target_value))

(max(source_value)−min(source_value))
(27)

offset = (source_value−min(source_value)) ∗ scale (28)

adapted_source_value = min(target_value)+ offset (29)

The adapted source feature values are used to initially train the
neural network before the last layers are retrained using the
target features.

Based on observations of explainer models and feature
differences, we adapted different sets of features before training,
and then trained and tested using the method described
in Section 4 on transfer learning. We then compared the
performance of models (using AUC) with different adaptation
sets, and transferred models without adaptation. We found that

adapting all features significantly reduces accuracy, so we tried
different combinations of features to adapt to find the most
accurate adapted models.

5.4. Experiments and Results
5.4.1. Transfer Learning and Explainability
Table 3 shows the AUC comparison for the target and the
transferred models. The accuracy of the transferred models
was better than the target models; AUC improved by 0.042
or 7% for the MD domain, and 0.0224 or 3.6% for the
SB domain, respectively. This is in line with the results
of Suryanto et al. (2019).

More interestingly, Figure 6 shows a comparison of feature
contributions from source, target, and transferred models. For
the MD (and SB, not shown) domains, “cover” becomes the top
contributing feature of the more accurate transferred models.
However, it was the least contributing feature for both the target
and source models for CD toMD transfer and a weak contributor
in the SB target model. All other features contributed less in the
transferred model than in the target model, no matter how much
they contributed in the source model for CD to MD transfer.
It was similar for CD to SB transfer except for interest rate,
which was one of the top contributors in the source model (CD
domain). These explainer models indicate that transfer learning
improves accuracy by boosting the contribution of weak features
in the target domain.

To understand the contribution of “cover,” we investigated
the difference in the value distribution for “cover” between
source and target domains. Comparing the difference in value
distribution between source and target with KS statistics we
observed that source CD compared to target MD has a larger
(and significant) difference than between source CD and target
SB. This difference is larger for small values of cover (< 20) in
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FIGURE 6 | Feature contribution comparison for transferred, target, and source models using SHAP-transferring from CD to MD.

both distribution comparisons but is more obvious for the CD
toMD source–target difference where the source distribution has
over twice as many loans as the target for the smallest value of
cover. This difference is much less for the CD to SB source–target
difference, particularly for larger values of cover. Further results
are presented in the following section.

5.4.2. Domain Difference
Table 4 lists the KS statistics for CD vs. MD as well as CD vs. SB.
It shows that some features were very different between source
and target domains but some were similar. It also shows that
different pairings of source and target domains had different
patterns in feature differences. For example, “cover” was very
different between CD and MD with a KS-statistic of 0.2729, but
similar between CD and SB with a KS-statistic of 0.0502.

5.4.3. Domain Adaptation
To further understand the contribution of cover, we applied
our proposed domain adaptation function. Before we trained
the transfer model on the source data, we adapted the cover
on the source data to make it similar to the target data,
and then applied the transfer learning technique to produce
an “adapted” and transferred model. The AUC tests for these
adapted and transferred models are listed in Table 5 where they
are compared to the transferred model without adaptation. We
ran paired t-tests to test the “improvements” (AUC increase
or decrease) shown in Tables 5–7; all improvements were

TABLE 4 | Kolmogorov-Smirnov (KS) of input features.

CD vs. MD CD vs. SB

No Short name KS stats KS p-value KS stats KS p-value

1 term_36m 0.0407 <0.24 0.0357 <0.20

2 term_60m 0.0407 <0.24 0.0357 <0.20

3 grade_n 0.0792 <0.01 0.0984 <0.01

4 sub_grade_n 0.0884 <0.01 0.1069 <0.01

5 int_rate_n 0.0941 <0.01 0.1033 <0.01

6 revol_util_n 0.2248 <0.01 0.2292 <0.01

7 emp_length_n 0.0242 <0.85 0.0749 <0.01

8 dti_n 0.1502 <0.01 0.2295 <0.01

9 installment_n 0.3005 <0.01 0.0671 <0.01

10 annual_inc_n 0.0670 <0.01 0.0906 <0.01

11 loan_amnt_n 0.2899 <0.01 0.0813 <0.01

12 cover 0.2736 <0.01 0.0585 <0.01

Values in bold represent large differences that are statistically significant.

statistically significant with p<0.01. Since this data was normally
distributed t-tests were appropriate. Adapting cover works for
CD to MD transfer with an AUC 0.01 (1.6%) higher than the
transfer-only model, but AUC decreases for a CD to SB transfer.

We also examined SHAP changes with the improved model.
After adapting cover, it became the fourth highest contributing
feature, and the top three contributing features (int_rate_n,
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TABLE 5 | Adapted model vs. transferred model.

Domain Experiment AUC (s.d.) Improvement p-value

CD to MD Transfer only 0.6391 (0.0856)

CD to MD Transfer with cover adapted 0.6491 (0.0824) 0.0100 (1.6%) <0.01

CD to SB Transfer only 0.6419 (0.0509)

CD to SB Transfer with cover adapted 0.6361 (0.0502) –0.0058 (–0.9%) <0.01

TABLE 6 | Adapted model vs. transferred model in CD to MD transfer.

Experiment AUC (s.d.) Improvement p-value

Transfer only 0.6391 (0.0856)

Adapt all features 0.4620 (0.3048) –0.1771 (–27.7%) <0.01

Adapt credit grade and

related features, i.e., grade,

sub-grade, interest rate

0.4635 (0.3052) –0.1756 (–27.5%) <0.01

Adapt features with high KS,

i.e., revolving utility, debt to

income ratio, installment,

loan amount and cover

0.6563 (0.0806) 0.0172 (2.7%) <0.01

Adapt features with high KS

and related features, i.e.,

revolving utility, debt to

income ratio, installment,

loan amount, cover and

annual income

0.6600 (0.07417) 0.0209 (3.3%) <0.01

Adapt features with high KS

and related features less

credit history features, i.e.,

installment, loan amount,

cover and annual income

0.6649 (0.0731) 0.0257 (4.0%) <0.01

term_36m, and annual_inc_n) were the top contributing features
of the target and source models.

We tested various permutations of features to adapt to find the
most accurate model for the CD to MD transfer and to establish
an optimal strategy for seeking the most accurate adapted model.
The experiments on the CD to MD transfer are listed in Table 6.
When adapting all features, or adapting credit grade and related
features, model accuracy was significantly reduced, with AUC
0.1771 (27.7%) or 0.1756 (27.5%) lower than the transfer-only
model. Adapting only features with a high KS-statistic (over
0.15), i.e., revolving utility, debt to income ratio, installment, loan
amount, and cover, improved accuracy with AUC 0.0172 (2.7%)
higher than the transfer-only model. Adding related features,
i.e., annual income (annual_inc_n)—which is used to derive
cover (a high KS feature), further improved accuracy, with AUC
0.0209 (3.3%) higher than the transfer-only model. Removing
credit history features that are intrinsic to the borrower, i.e.,
revolving utility and debt to income ratio, produced an even
more accurate model, with AUC 0.0257 (4.0%) higher than the
transfer-only model.

Grade, sub-grade, revolving utility (revol_util_n), and debt
to income ratio (dti_n) are features derived from credit history,
which are intrinsic to the borrower and are usually highly
correlated with the lending outcome, i.e., default or not. The
interest rate in the lending club data is derived directly from grade

and sub-grade, so we consider it as a credit history feature in
our experiment.

We use a similar strategy for the CD to SB transfer. The
AUC comparison with the transfer-only model is shown in
Table 7. Adapting all features, or credit grade related features,
significantly reduced model accuracy, with AUC 0.123 (19.3%) or
0.1106 (17.2%) lower than the transfer-only model, respectively.
We tested adaptation of the features that we adapted for the
most accurate model for the CD to MD transfer, which has a low
KS-statistic from CD and SB comparisons. This adapted model
was slightly less accurate, with an AUC 0.0015 (0.2%) lower
than the transfer-only model. Adapting features with a high KS-
statistic, i.e., revolving utility and debt to income ratio, improved
model accuracy slightly, with AUC 0.0018 (0.3%) higher than
the transfer-only model. These two features do not have related
features, and both were credit history features, so we could not
improve accuracy further as we did with the CD to MD transfer.

Additionally, we investigated the explainability of the most
accurate models using SHAP to assess the feature contributions
of the most accurate adapted models compared to the source and
target models. Through domain adaptation, the contribution of
weak features increased in the most accurate adapted models.
For the CD to MD transfer, the contribution of annual income,
cover, installment, and loan amount increased. For the CD to
SB transfer, the contribution of annual income, term 36 months
or 60 months, cover, employment length, installment, and loan
amount increased.

To evaluate the effectiveness of our adaptation approach, we
compared KS values before and after adaptation for the most
accurate models, as shown in Table 8. The reduction in KS-
statistics was between 44.8 and 90.3%, and for features, with high
KS-statistics (over 0.15) the reductions were all above 67.4%.
Our adaptation approach successfully reduced the differences
between the distribution of the source data and the target data.

6. DISCUSSION

Transfer learning improves model accuracy by generating
intermediate features from the source domain to be selected
for retraining on the target domain. This intermediate-feature-
generation concept is similar to “self taught learning” proposed
by Raina et al. (2007), which constructed higher-level features
using unlabeled data, except that in this article, we used labeled
data from the source domain.

The contribution of a weak feature from the target domain
increased because it was complemented by new intermediate
features from the source domain. We tested an adaptation
approach taking the outcome label into consideration. But this
did not improve model accuracy. The reason was that the
population of positive (outcome=1) cases was too small in the
already small target dataset.

Adapting strong credit history features, such as grade
and sub-grade, significantly reduced model accuracy, while
removing features related to credit history from the adaptation
list improved model accuracy. Adapting credit history related
features without consideration of the outcome label generates
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TABLE 7 | Adapted model vs. transferred model in CD to SB transfer.

Experiment AUC (s.d.) Improvement p-value

Transfer only 0.6419 (0.0509)

Adapt all features 0.5189 (0.1666) –0.123 (–19.2%) <0.01

Adapt credit grade and related features, i.e., grade, sub-grade, interest rate 0.5313 (0.1624) –0.1106 (–17.2%) <0.01

Adapt features used in CD to MD transfer, i.e., installment, loan amount, cover, annual income 0.6404 (0.0475) –0.0015 (–0.2%) <0.01

Adapt features with high KS, i.e., revolving utility and debt to income ratio 0.6437 (0.0495) 0.0018 (0.3%) <0.01

TABLE 8 | Kolmogorov-Smirnov test to compare source data and target data, before and after the source data is adapted, ACD is the abbreviation for Adapted Credit

card and Debt consolidation data.

Feature
Without adaptation With adaptation

Reduction
Domain KS-stats p-value Domain KS-stats p-value

installment CD to MD 0.3005 <0.01 ACD to MD 0.0293 <0.64 90.3%

annual_inc CD to MD 0.0670 <0.01 ACD to MD 0.0369 <0.34 44.8%

loan_amnt CD to MD 0.2899 <0.01 ACD to MD 0.0681 <0.01 76.5%

cover CD to MD 0.2736 <0.01 ACD to MD 0.0892 <0.01 67.4%

revol_util CD to SB 0.2292 <0.01 ACD to SB 0.0536 <0.01 76.6%

dti CD to SB 0.2295 <0.01 ACD to SB 0.0301 <0.39 86.9%

unrealistic instances, e.g., changing a borrower’s credit grade
from high to low without adjusting the outcome from not default
to default. These unrealistic instances can negatively impact
model accuracy.

7. CONCLUSION AND FUTURE STUDY

In this article, we have proposed and evaluated a method
of gradually shifting the contribution from the source
to the target domain during transfer learning. The PSC
method in a structured way varies network architecture
and hyperparameters to find the best balance to learn from
source and target domains. While in this article, certain
design choices were made manually, the overarching aim
was to create a framework within which such changes could
be optimized automatically, in our setting to find the best
Gini score.

In terms of interpretability of models for credit assessment, we
found that SHAP is an effective tool in explaining why transfer
learning improves the accuracy of credit scoring models. In our
experiments transfer learning lifted the contribution of weak
features, thereby improving overall prediction accuracy.

Domain adaptation with the right set of features further
improved the accuracy of transfer learning models. However,
adapting all features normally reduces model accuracy
significantly. Reasons to select features to adapt include:
differences in feature distribution between source and target
domain, quantified by KS-statistics; relationships to already
selected features; and domain specific knowledge, e.g., the credit
history features intrinsic to the borrowers.

Through domain adaptation, the contribution of weaker
features increased in the most accurate adapted models.

An adaptation approach that significantly reduces KS-
statistics has been critical in producing a successful domain
adaptation algorithm.

If a model constructed by a machine learning approach may
affect capital requirements, then suchmodels need to be reviewed
by a regulatory institution. However, business cases where our
approach is applicable are in many domains that do not fall in
these categories.

For future study, the proposed strategy to select features
for domain adaptation produces more accurate credit scoring
models, but the execution of the strategy requires human
intervention in observing and applying domain knowledge. We
will further explore methods to automate this selection strategy,
so it can be a pre-processing step for fully automated transfer
learning. Although in this article we have focused on transfer
learning based on deep networks, other model architectures
could be used. For example, Goussies et al. (2014) and Segev
et al. (2016) have used ensembles of tree learners as the basis
for transfer learning. Comparison of deep networks with such
approaches could be investigated as part of further study.

The use of alternatives to KS statistics to estimate the
distance between distributions, such as KL-divergence, should
be investigated. SHAP is an indirect method to understand the
impact of latent intermediate features. A further study exploring
and explaining latent intermediate features could improve our
understanding of transfer learning and domain adaptation, and
better meet transparency and compliance requirements.

Finally, we note that although the significant improvements
in accuracy demonstrated are small in terms of percentage
improvements, such improvements in real world lending could
be of substantial economic importance in reducing lenders’ losses
due to loan defaults.

Frontiers in Artificial Intelligence | www.frontiersin.org 14 May 2022 | Volume 5 | Article 868232

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Suryanto et al. Credit Risk Modeling

DATA AVAILABILITY STATEMENT

The software and instructions for downloading and pre-
processing the data are provided at the following link to help
Reproducible Research URL: https://gitlab.com/research-study/
ecmlpkdd2020.

AUTHOR CONTRIBUTIONS

HS, CG, and AG contributed to conception and design of the
study, wrote the first draft of the manuscript. HS contributed
to implementations and statistical analysis. HS, AM, and MB
contributed to research and analysis and wrote sections of the
manuscript. All authors contributed tomanuscript revision, read,
and approved the submitted version.

FUNDING

This study received funding from Rich Data Corporation,
Sydney, Australia. The funder was not involved in the
study design, collection, analysis, interpretation of data, the
writing of this article or the decision to submit it for
publication.

ACKNOWLEDGMENTS

The content of this manuscript has been presented in part at
The European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (2019),
Suryanto et al. (2019).

REFERENCES

BankRate (2019). 58% of millennials have been denied at least one financial

product because of their credit score. Available online at: https://www.bankrate.

com/credit-cards/credit-denial-survey/

Breiman, L. (1996). Some properties of splitting criteria. Mach. Learn. 24, 41–47.

doi: 10.1007/BF00117831

Chattopadhyay, R., Ye, J., Panchanathan, S., Fan, W., and Davidson, I. (2011).

“Multi-source domain adaptation and its application to early detection of

fatigue,” in KDD (San Diego, CA).

Flach, P. A. (2003). “The geometry of roc space: understanding machine learning

metrics through roc isometrics,” in Proceedings of the 20th International

Conference on Machine Learning (ICML-03) (Washington, DC), 194–201.

Forum, S. F. (2019). Msme finance gap. Available online at: https://www.

smefinanceforum.org/data-sites/msme-finance-gap/

Gao, J., Fan, W., Jiang, J., and Han, J. (2008). “Knowledge transfer via multiple

model local structure mapping,” in KDD.

Goussies, N. A., Ubalde, S., and Mejail, M. (2014). Transfer learning decision

forests for gesture recognition. J. Mach. Learn. Res. 15, 3667–3690.

doi: 10.5555/2627435.2750362

Han, X., Huang, Z., An, B., and Bai, J. (2021). “Adaptive transfer learning on

graph neural networks,” in Proceedings of the 27th ACM SIGKDDConference on

Knowledge Discovery and Data Mining, KDD ’21 (New York, NY: Association

for Computing Machinery), 565–574.

Huang, J., and Chen, M. (2018). “Domain adaptation approach

for credit risk analysis,” in Proceedings of the 2018 International

Conference on Software Engineering and Information Management,

ICSIM2018 (New York, NY: Association for Computing Machinery),

104–107.

Kouw, W. M., and Loog, M. (2019). A review of domain adaptation

without target labels. IEEE Trans. Pattern Anal. Mach. Intell. 43, 766–785.

doi: 10.1109/TPAMI.2019.2945942

Lundberg, S., and Lee, S. (2017). “A unified approach to interpreting model

predictions,” in Advances in Neural Information Processing Systems (Long

Beach, CA), 4765–4774.

Neyshabur, B., Sedghi, H., and Zhang, C. (2020). “What is being transferred in

transfer learning?,” in NeurIPS (Vancouver, BC).

Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q. (2011).

Domain adaptation via transfer component analysis. IEEE

Trans. Neural Netw. 22, 199–210. doi: 10.1109/TNN.2010.20

91281

Pan, S. J., Yang, Q., et al. (2010). A survey on transfer learning. IEEE Trans, Knowl,

Data Eng. 22, 1345–1359. doi: 10.1109/TKDE.2009.191

Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A. Y. (2007). “Self-taught learning:

transfer learning from unlabeled data,” in Proceedings of the 24th International

Conference on Machine Learning, ICML 9207 (New York, NY: Association for

Computing Machinery), 759–766.

Řezáč, M. and Řezáč, F. (2011). How to measure the quality of credit scoring
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