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Abstract

Structural brain networks constructed from diffusion MRI are important biomarkers for 

understanding human brain structure and its relation to cognitive functioning. There is increasing 

interest in learning differences in structural brain networks between groups of subjects in 

neuroimaging studies, leading to a variable selection problem in network classification. Traditional 

methods often use independent edgewise tests or unstructured generalized linear model (GLM) 

with regularization on vectorized networks to select edges distinguishing the groups, which ignore 

the network structure and make the results hard to interpret. In this paper, we develop a symmetric 

bilinear logistic regression (SBLR) with elastic-net penalty to identify a set of small clique 

subgraphs in network classification. Clique subgraphs, consisting of all the interconnections 

among a subset of brain regions, have appealing neurological interpretations as they may 

correspond to some anatomical circuits in the brain related to the outcome. We apply this method 

to study differences in the structural connectome between adolescents with high and low 

crystallized cognitive ability, using the crystallized cognition composite score, picture vocabulary 

and oral reading recognition tests from NIH Toolbox. A few clique subgraphs containing several 
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small sets of brain regions are identified between different levels of functioning, indicating their 

importance in crystallized cognition.
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1. Introduction

Recent advances in magnetic resonance imaging (MRI) techniques enable us to 

noninvasively probe the human brain at higher resolutions than ever before (Glasser et al., 

2016) and reconstruct connectomes with distinct physiological meanings (Park and Friston, 

2013). Among them, the diffusion MRI (dMRI) infers the locations and directions of white 

matter (WM) fiber tracts via measuring the water molecular movement along major fiber 

bundles in WM. Diffusion MRI data are now collected in almost all major cohort-based 

neuroimaging studies, e.g., the Human Connectome Project (Van Essen et al., 2013), the UK 

Biobank (Miller et al., 2016) and the Adolescent Brain Cognitive Development (ABCD) 

Study (Casey et al., 2018). Structural connectivity (SC) analysis is among the most 

important applications of dMRI (Park and Friston, 2013; Yeh et al., 2016; Zhang et al., 

2018; Zhao et al., 2015), where individual-level microstructural brain networks are 

constructed to delineate anatomical connections between brain regions. Fig. 1 illustrates the 

pipeline we used for extracting SC (Zhang et al., 2018) (Fig. 1a) and an SC matrix extracted 

from one subject in the ABCD data (Fig. 1b).

Brain network classification and identification of predictive subnetworks are probably 

among the most important applications of SC into the mechanistic understanding of 

neuroscience phenomena. One typical approach to this network classification and variable 

selection problem is to treat all the connections of SC as a long feature vector, and apply 

existing classification methods for vectors, such as generalized linear models with L1 or 

elastic-net penalty (Zou and Hastie, 2005), support vector machines (Zhu et al., 2004) etc. 

Another popular approach in the neuroscience literature is to perform massive univariate 

tests at each edge with multiple testing correction to identify edges that are significantly 

different between two groups. While these methods may have good prediction, they ignore 

the network nature of the data and do not guarantee any structure among the selected 

individual edges, making the results hard to interpret.

Other feature extraction approaches often employ a two-step procedure, where some 

unsupervised dimension reduction is first applied on the networks, and then a regression 

model is fitted on the extracted low-dimensional features. Zhang et al. (2019) proposed to 

use tensor decomposition approach to map networks to low-dimensional vectors. Simpson et 

al. (2011) proposed to reduce the networks to some topological summary measures such as 

clustering coefficient, network density, etc. However, such connectome simplification leads 

to an enormous loss of information and brings troubles in truly understanding which part of 

the brain network is responsible for the group difference.
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There are a few advanced statistical methods considering the network structure when 

analyzing group differences in connectome. Vogelstein et al. (2012) proposed to search for a 

minimum set of vertices and edges distinguishing groups, but this method only applies to 

binary edges and involves solving a combinatorial optimization problem. Durante et al. 

(2018) developed a method for testing global and local changes in SC between groups, 

which gains power by accounting for dependence structure among edges through a Bayesian 

nonparametric modeling of the networks. Arroyo Relión et al. (2019) proposed a graph 

classification method that uses edge weights as predictors and incorporates L1 and group 

lasso penalty to penalize both the number of edges and the number of nodes selected.

We developed a symmetric bilinear logistic regression (SBLR) model with elastic-net 

penalty to select a set of small clique signal subgraphs in network classification. A clique 

subgraph in graph theory refers to a subset of nodes of an undirected graph such that every 

two different nodes in the clique are connected (Seidman and Foster, 1978). SBLR puts 

symmetry constraint on the coefficient matrix in the logistic regression, because the 

adjacency matrices of structural brain networks are symmetric. The novelties and 

significance of our approach reside on:

• The small clique subgraphs identified by our method have appealing 

interpretations in neuroscience field. Clique subgraphs (containing all the 

interconnections among a subset of nodes) potentially aligns with the 

physiological meaning of subgraphs that should be strongly interrelated in order 

to provide the most efficient neural support of a behavior (Bassett and Sporns, 

2017). Despite the clique structure imposed on the selected subgraphs, our model 

maintains the flexibility of identifying individual edges in network classification 

and good classification rate.

• The elastic-net penalty penalizes the size of each identified clique subgraph, 

producing a parsimonious representation of differences in brain connectome. We 

develop a coordinate descent algorithm for model estimation where analytical 

solutions are derived for a sequence of conditional convex optimizations. The 

code for implementing the algorithm is publicly available at https://github.com/

wangronglu/SBLR.

• The SBLR approach is applied to examine structural network classification for 

crystallized intelligence among 4213 right-handed adolescents aged 9-10 years in 

the ABCD study. Emerging literature suggests unique roles of white matter in 

supporting general cognition and differentiating crystallized and fluid 

intelligence (Góngora et al., 2020; Penke et al., 2012; Simpson-Kent et al., 

2020). Of note, age 9-10 represents a critical change point for the relationship 

between white matter and crystallized intelligence (Simpson-Kent et al., 2020). 

Thus far, however, no study has specified the role of SC in crystallized 

intelligence of adolescents. We extensively analyzed SCs of subjects in ABCD 

with high vs. low crystallized intelligence using our SBLR model, aiming at 

learning interpretable SC-based brain connectome maps that can differentiate the 

levels of crystallized intelligence.
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The rest of the paper is organized as follows. Section 2 introduces the data preprocessing 

steps, our method and the algorithm for model estimation. Section 3 presents simulation 

studies demonstrating good performance of SBLR in recovering true clique signal subgraphs 

compared with other methods. Application of this method to ABCD data in Section 4 shows 

coherent subgraphs of crystallized intelligence across composite score and individual 

domains. We conclude with a brief discussion in Section 5.

2. Methods

2.1. ABCD data preprocessing

We focus on the ABCD dataset downloaded from NIH Data Archive (https://nda.nih.gov) 

(Casey et al., 2018). The main goal of the ABCD study is to track the brain development 

from childhood through adolescence to understand biological and environmental factors that 

can affect the brain’s developmental trajectory. ABCD recruits approximately 10,000 9 – 10 

years old children. Longitudinal measures of the brain structure and function as well as rich 

behavior measures and genetic factors are collected across 21 sites in the United States 

(Auchter et al., 2018).

Imaging data and preprocessing: The ABCD imaging protocol is harmonized for 

three types of 3T scanners: Siemens Prisma, General Electric (GE) 750 and Philips. We 

downloaded the structural T1 MRI and diffusion MRI (dMRI) data for 5253 subjects from 

the ABCD 2.0 release. The structural T1 image was acquired with isotropic resolution of 1 

mm3. The diffusion MRI image was obtained based on imaging parameters: 1.7 mm3 

resolution, four different b-values (b = 500, 1000, 2000, 3000) and 96 diffusion directions. 

There are 6 directions at b = 500, 15 directions at b = 1000, 15 directions at b = 2000, 60 

directions at b = 3000, Multiband factor 3 is used for dMRI acceleration. See Casey et al. 

(2018) for more details about the data acquisition and preprocessing of the ABCD data.

To obtain structural connectome, we used a state-of-the art dMRI data preprocessing 

framework named population-based structural connectome (PSC) mapping (Zhang et al., 

2018). PSC uses a reproducible probabilistic tractography algorithm (Girard et al., 2014; 

Maier-Hein et al., 2017) to generate the whole-brain tractography. This tractography method 

borrows anatomical information from high-resolution T1-weighted imaging to reduce bias in 

reconstruction of tractography. On average, about 106 streamlines were generated for each 

subject. We used the popular Desikan–Killiany atlas (Desikan et al., 2006) to define the 

brain regions of interest (ROIs) corresponding to the nodes in the structural connectivity 

network. The Desikan–Killiany parcellation has 68 cortical surface regions with 34 nodes in 

each hemisphere. Freesurfer software (Dale et al., 1999; Fischl et al., 2004) is used to 

perform brain registration and parcellation. Next, for each pair of ROIs, we extracted the 

streamlines connecting them. In this process several procedures were used to increase the 

reproducibility: (1) each gray matter ROI is dilated to include a small portion of white 

matter region, (2) streamlines connecting multiple ROIs are cut into pieces so that we can 

extract the correct and complete pathway and (3) apparent outlier streamlines are removed. 

Extensive experiments have illustrated that these procedures can significantly improve the 

reproducibility of the extracted weighted networks, and readers can refer to Zhang et al. 
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(2018) for more details. To analyze the brain as a network, a scalar number is usually 

extracted to summarize each connection. Here we use fiber count, but other measures, such 

as mean fractional anisotropy or connected surface area (Zhang et al., 2018) can be easily 

extracted using PSC.

Applying PSC, we processed 5253 subjects downloaded from NIH Data Archive. To control 

for handedness, we only focused on the 4213 right-handed subjects in our analysis. The 

distributions of the age, crystallized cognition composite score, picture vocabulary score and 

reading score are shown in Fig. 2. For each composite or domain-specific crystallized 

intelligence score, subsets of subjects with age-adjusted scale scores 1 standard deviation 

above or below the national average are categorized into high vs. low crystallized 

intelligence group.

2.2. Symmetric bilinear logistic regression (SBLR)

Our data can be summarized as {(yi, xi, Wi) : i = 1, …, n}, where yi is a binary response; 

xi ∈ ℝm contains the regular covariates of subject i (age, gender, etc.) with the first entry 

being 1; Wi denotes the structural brain network measured for subject i, which is a V × V 
symmetric matrix with zero diagonal entries. Our goal is to learn a set of small clique 

subgraphs from the brain network that are relevant to the outcome.

With this aim in mind, we propose the following symmetric bilinear logistic regression 

(SBLR):

yi W i, xi ∼ind Bern pi , i = 1, …, n,
logit pi = xi

⊺α + ℎ = 1
K λℎβℎ

⊺W iβℎ
(1)

where α ∈ ℝm with the first entry being the intercept; βℎ ∈ ℝV  and λℎ ∈ ℝ, h = 1, …, K. We 

do not restrict the component vectors βh’s to be orthogonal because such constraint may 

discourage the sparsity of these vectors. Model (1) assumes that the binary outcome yi of 

each individual follows an independent Bernoulli distribution given the network observation 

Wi and other covariates xi.

The coefficients of the network predictor in model (1) are assumed to have K components, 

where each component matrix λℎβℎβℎ
T  selects a signal subgraph. For ease of interpretation, 

the logit link of (1) can be written in the matrix dot product form:

logit pi = xi
⊺α +

ℎ = 1

K
λℎβℎβℎ

⊺, W i (2)

where 〈B, W〉 = trace(B⊺W) = vec(B)⊺ vec(W). The parameters λh’s in (2) are necessary to 

avoid constraining the coefficient matrix of Wi to be positive semi-definite. From (2), we can 

see that the nonzero entries in each component matrix λℎβℎβℎ
⊺ locate an outcome-relevant 

clique subgraph in the network predictor. If βh only contains two nonzero entries, the 

corresponding subgraph comes down to a single edge.
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To ensure both identifiability of model (2) and sparsity of coefficient matrices 

{λℎβℎβℎ
⊺ :ℎ = 1, …, K}, we penalize the magnitude of the lower-triangular entries in these 

coefficient matrices with the following elastic-net penalty:

ℎ = 1

K

u = 1

V

v < u
δ η λℎ βℎu βℎv + 1 − η λℎ

2βℎu
2 βℎv

2 /2 (3)

where the overall penalty factor δ > 0 and η ∈ [0, 1] controlling the fraction of L1 

regularization.

2.3. Estimation

The parameters in SBLR model (1) are estimated by minimizing the loss function below:

Loss function = − 1
n i = 1

n
lli +

ℎ = 1

K

u = 1

V

v < u
δ η λℎ βℎu βℎv + 1 − η λℎ

2βℎu
2 βℎv

2 /2
(4)

where lli is the log-likelihood of subject i. Plugging in the logit link of (1), we have

lli = yilog pi + 1 − yi log 1 − pi
= yi xi

⊺α + ℎ = 1
K λℎβℎ

⊺W iβℎ + log 1 − pi
(5)

where W i represents the normalized network observation with mean 0 and variance 1 for 

each edge.

The algorithm of block updating each component vector βh in tensor regression (Zhou et al., 

2013) is not applicable to minimizing the loss function (4), because lli is not a concave 

function of βh when fixing the other parameters. Notice that

∂2lli
∂βℎ∂βℎ

⊺ = 2 yi − pi λℎW i − 4pi 1 − pi λℎ
2W iβℎβℎ

⊺W i,

which may not be negative semi-definite. However, since the diagonal entries of each 

adjacency matrix W i are zero, the loss function (4) is actually a convex function of each 

entry βhu in βh when fixing the others, making the coordinate descent algorithm very 

appealing (Wang et al., 2019). The technical details of deriving the analytic form update for 

each parameter are discussed in Appendix A. The coordinate descent algorithm for 

minimizing (4) is summarized in Algorithm 1, where all the parameters are iteratively 

updated until the relative change of the loss function (4) is smaller than a tolerance number 

ϵ. Typical value for ϵ is 10−5 or 10−6. Since the loss function (4) is lower bounded by 0 and 

each update always decreases the function value, Algorithm 1 is guaranteed to converge.

Wang et al. Page 6

Neuroimage. Author manuscript; available in PMC 2021 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 1

Coordinate descent for SBLR model with elastic-net penalty.

1: Input: Normalized V × V symmetric matrix observations {W i: i = 1, …, n}, n × m design matrix X = (x1, …, 

xn)⊺, binary outcome {yi : i = 1, …, n}; rank K, overall penalty factor δ > 0, L1 fractional penalty factor η ∈ [0, 
1], tolerance ϵ > 0.

2: Output: Estimates of α, {(λh, βh) : h = 1, …, K}.

3: Initialize: α = 0 and each parameter of {{λh, βh) : h = 1, …, K} ~ U(−0.1, 0.1).

4: repeat

5:  for h = 1 : K do

6:   for u = 1 : V do

7:    update βhu by (A.11)

8:   end for

9:  end for

10:  for h = 1 : K do

11:   update λh by (A.15)

12:  end for

13:  update α by (A.16)

14: until relative change of loss function (??) < ϵ.

In general, the algorithm should be run from multiple initializations to locate a good local 

solution. Although the estimates for {(λh, βh) : h = 1, …, K} will all be zero under 

sufficiently large penalty factor δ, we cannot initialize them at zero because the results will 

then get stuck at zero. The updating rules (A.11) and (A.15) imply that each parameter will 

be set to 0 given others being zero. In fact, we recommend to initialize all the parameters in 

{(λh, βh) : h = 1, …, K} to be nonzero in case some components get degenerated 

unexpectedly at the beginning. In practice, we initialize each parameter in {(λh, βh) : h = 1, 

…, K} from the uniform distribution U(−0.1, 0.1) as discussed at the end of Section A.1.

2.4. Model selection

The penalty factor δ in the regularization (3) can be tuned on a validation set over a grid of 

values on [δmin, δmax] for a fixed η, where δmax is a roughly smallest value for which all the 

parameters {(λℎ, βℎ)}ℎ = 1
K  become zero, and δmin = εδmax (e.g. ε = 0.01). The optimal δ 

produces the smallest deviance (minus twice the log-likelihood) on validation set. The 

fractional parameter of L1 penalty, η ∈ [0, 1], can also be selected by validation.

Our proposed model (1) assumes a known number of components K. In practice, we choose 

a large enough number for K and allow the elastic-net penalty (3) to discard unnecessary 

components, leading to a data-driven estimate for the number of signal subgraphs. We assess 

the performance of the procedure and verify its lack of sensitivity to the chosen upper bound 

K in simulations.
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3. Simulation study

We use simulations to compare the performance of recovering true signal subgraphs and 

predictive performance among SBLR and the following methods:

1. Logistic regression with elastic-net penalty on vectorized networks, where the 

upper triangular entries of each adjacency matrix Wi are entered into a 

regularized logistic regression. The grid of values for the L1 fractional penalty 

factor α is picked as {0.1, 0.2, …, 1}. For each α, the optimal penalty factor λ is 

chosen from a sequence of 100 equally spaced λ values on the logarithmic scale. 

This method is fitted with glmnet toolbox in Matlab (http://www.stanford.edu/

~hastie/glmnet_matlab).

2. Penalized graph classification (GC) approach (Arroyo Relión et al., 2019), which 

also uses edge weights as predictors, but incorporates L1 and group lasso penalty 

to promote sparsity in selection of edges and nodes. Their penalty factor pair (λ, 
ρ) is tuned over a 5 × 11 grid, where λ ∈ {10−4, 10−3, …, 1} × λmax and ρ ∈ {1, 

10, 20, …, 100}, with (λmax, ρ = 100) ensuring that all the coefficients are 

penalized to zero. As Arroyo Relión et al. (2019) suggest, values of ρ < 1 do not 

result in node selection. This method is fitted with graphclass package in R.

3. Screening method based on multiple testing with false discovery rate control 

(MT-FDR), where a two-sample t-test is performed on each edge in the network 

between the two groups. Multiple comparisons are adjusted by rejecting all local 

nulls having a p-value below the Benjamini-Yekutieli threshold (Benjamini et al., 

2001) under arbitrary dependence assumptions on the multiple tests. The false 

discovery rate is controlled at level α = 0.05. A logistic regression is then fitted 

on the significant edge weights.

4. Tensor network factorization analysis (TNFA) (Zhang et al., 2019), which 

embeds the V × V symmetric adjacency matrices {Wi : i = 1, …, n} into a low 

dimensional n × K matrix U (K ≤ V). Each row i of U contains the K principal 

component scores of subject i, and each column of U corresponds to a basis 

network. A logistic regression is then fitted on the low embedding matrix U. The 

basis networks corresponding to the significant coefficients are selected as signal 

subnetworks. We use full rank K = V for TNFA in simulations, which explains 

around 99% variation in the generated networks on average.

In the data generating process, each adjacency matrix Wi is a 20 × 20 symmetric matrix 

generated from a set of 15 basis subgraphs with individual loading vectors

W i =
ℎ = 1

15
λiℎqℎqℎ

⊺ + Δi, (6)

where qh ∈ {0, 1}20 is a random binary vector with ‖qh‖0 = h + 1, h = 1, 2, …, 15. The 

loadings {λih} in (6) are generated independently from U(0, 1). Δi is a symmetric 20 × 20 

noise matrix that adds 5% noise to each edge in Wi. Specifically, the (u, v)-th entry in Δi 

(denoted as Δi[uv]) is sampled from a normal distribution with mean zero and standard 
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deviation 0.05 * sd (∑ℎ = 1
15 λiℎqℎqℎ

⊺)[uv] . The generating process (6) produces dense networks 

with complex correlation structure. These generated adjacency matrices {Wi : i = 1, …, n} 

are further standardized for each edge across subjects and the diagonals are set to zero.

3.1. Clique signal subgraphs

In this setting, the binary response yi is associated with 3 clique signal subgraphs in the 

network. Specifically, yi is generated from Bernoull(pi) with

logit pi = 0.1q1
⊺W iq1 + 0.1q2

⊺W iq2 + 0.1q3
⊺W iq3, i = 1, …, n . (7)

The generating process (7) indicates that the true signal subgraphs relevant to y correspond 

to the first three basis subgraphs {qℎqℎ
⊺ :ℎ = 1, 2, 3} as displayed in Fig. 3.

We consider two sample sizes in this simulation: n = 500 and n = 1000. For each sample size 

n, a dataset {(Wi, yi) : i = 1, …, n} is drawn from the generating process (6),(7). The dataset 

is then divided into two parts: training set (70%) and validation set (30%). Each method 

(SBLR, glmnet, GC) is fitted with training set and the optimal penalty pair is selected 

corresponding to the lowest deviance on validation set. We then refit the model with full 

dataset under the optimal penalty pair. For each dataset, we additionally generate 200 pairs 

{(Wi, yi)} as test data and measure the predictive performance of each method by computing 

the area under an ROC curve (AUC) (DeLong et al., 1988) for test data.

Some input parameters of Algorithm 1 for SBLR model are set as follows. The tolerance ϵ = 

10−6. The L1 fractional penalty factor η is tuned over 5 fixed values {0.6, 0.7, …, 1}. For 

each value of η, we set δmin = 0.01δmax and choose a sequence of 11 equally spaced δ 
values on the logarithmic scale. 5 initializations are used in Algorithm 1. Performances 

under two different choices of K are compared for SBLR: K = 5 and K = 10.

The estimated results under optimal penalty pair from glmnet are displayed in Fig. 4. As can 

be seen, the accuracy of glmnet improves as the sample size n increases, in terms of 

selecting more true signal edges and fewer non-signal edges. But it is difficult to identify 

meaningful structure among the selected edges. Fig. 5 displays the estimated results under 

optimal penalty pair for the GC approach (Arroyo Relión et al., 2019). Although this 

approach identifies all the true signal edges under larger sample size, it also selects a larger 

number of false edges. As with glmnet, this approach does not guarantee any structure 

among the selected edges.

Multiple t-test screening method (MT-FDR) deems many more edges to be significant in this 

case, taking up about 86% and 95% of the total number of edges in the network under n = 

500 and n = 1000. respectively. Tensor factorization approach (TNFA) on the contrary 

selects no basis networks under each sample size, because none of the 20 components are 

significant in the logistic regression at the significance level of 0.05.

The estimated results under the optimal penalty pair of SBLR with K = 5 and K = 10 are 

displayed in Fig. 6. The performance of SBLR improves with larger sample size. Compared 
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to Fig. 3, Fig. 6 shows that SBLR recovers all the true signal subgraphs under n = 1000 with 

fewer wrong edges compared to n = 500. The cliques identified by SBLR may change under 

different K due to random initialization for component vectors. As can be seen in Fig. 6, the 

selected subgraphs are different yet with many overlaps under the sample size n = 500 

between K = 5 and K = 10. The results become more stable under the larger sample size n = 

1000. where the node memberships of the selected cliques are identical between K = 5 and K 
= 10 with very slight differences in the estimated coefficients.

The procedure above is repeated 100 times. For either sample size n, 100 datasets are 

generated based on the generating process (6),(7). We record for each method the true 

positive rate (TPR) representing the proportion of true signal edges that are correctly 

identified, the false positive rate (FPR) representing the proportion of non-signal edges that 

are falsely identified, and the false discovery rate (FDR) describing the proportion of 

selected edges that are false, as well as AUC for test data. Fig. 7 displays the mean and 

standard deviation (SD) of the TPR, FPR, FDR and AUC for each method across 100 

datasets. Note that higher values for TPR and AUC are better, and lower scores of FPR and 

FDR are better.

Fig. 7 shows that the mean and SD of the four measures are very similar for SBLR under K 
= 5 and K = 10. with the same type of penalty (L1 or elastic-net) and the same sample size. 

This implies that the performance of SBLR is robust to the chosen upper bound for the rank. 

In addition, Fig. 7 shows that the mean TPR and AUC improve with larger sample size for 

all the methods. But with increasing sample size, the mean FPR and FDR of GC, multiple 

testing (MT-FDR) and tensor factorization (TNFA) increase considerably. The mean FPR of 

GC and MT-FDR are also much higher than that of the other methods. The FDR of all the 

methods excluding TNFA are around or above 0.5 on average, while the mean FDR of 

glmlasso, glmnet and SBLR models decrease as the sample size increases. The high FDR is 

probably due to the complex correlations among edge weights in the simulated networks, 

which is often the case for structural brain networks. The correlations among edges add 

difficulty to variable selection as false edges correlated with true signal edges are likely to be 

selected. It is a challenging problem to further control the FDR here, as the MT-FDR, which 

is supposed to keep the FDR below 0.05, turns out to have a FDR around 0.9. All the 

methods except for MT-FDR have competitive predictive performance in terms of similar 

AUC for test data. Glmlasso has the lowest mean FPR but also low mean TPR. SBLR 

models with either L1 or elastic-net penalty achieve higher TPR and lower FPR on average 

than glmnet does under either sample size.

All the numerical experiments are conducted on a machine with six Intel Core i7 3.2 GHz 

processors and 64 GB of RAM. Algorithm 1 of SBLR method is implemented in Matlab 

(R2018a). Under the sample size n = 1000, SBLR with K = 10 takes 99.6 s on average to run 

a validation instance over the 5 × 11 grid under 5 initializations, glmnet takes 21 seconds 

and GC approach takes 130.4 s on average.

3.2. Non-clique signal subgraphs

Clique subgraphs have appealing interpretations but could be a restrictive assumption. We 

evaluate the performance of SBLR when such assumption is not true by associating the 
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outcome yi with non-clique signal subgraphs. Specifically, yi is related to a 4-node ring 

graph and a 7-node star graph as displayed in Fig. 8. The nodes in the two subgraphs 

correspond to the basis vectors q3 and q6 in (6), respectively. In this setting, the total number 

of signal edges and their coefficients are the same as in Section 3.1. The sample size is set at 

n = 1000 and SBLR is estimated under K = 10. The tuning method and other settings are 

maintained the same for SBLR, MT-FDR and TNFA as in Section 3.1. Of note, we use 10-

fold cross validation combined with the “one-standard-error” rule (Hastie et al., 2009) for 

glmlasso, glmnet and GC to further encourage sparsity for these methods. Under the one-

standard-error rule, the optimal tuning parameters are selected corresponding to the most 

parsimonious model whose mean cross-validated deviance is within one standard-error of 

the minimum.

For a dataset simulated based on the signal subgraphs in Fig. 8, the estimated results of 

glmnet and GC under the optimal penalty factors are displayed in Fig. 9. Glmnet and GC 

select fewer edges under the finer tuning approach, but the results can still be difficult to 

interpret. MT-FDR declares 92.11% of the total number of edges significant in this case, 

while TNFA selects no signal networks.

SBLR selects 5 subgraphs under the optimal penalty pair as shown in Fig. 10. The first 

subgraph corresponding to λ1β1β1
⊺ in Fig. 10 partially recovers the star graph in Fig. 8, where 

the hub structure with Node 1 as the central node is evident. In specific, the first entry of β1 

has much larger magnitude than the other nonzero entries corresponding to the other 4 nodes 

in this subgraph. Therefore the edges from Node 1 to the other 4 nodes have much larger 

coefficients than other edges do in this subgraph, as shown in the estimated coefficient 

matrix λ1β1β1
⊺ in Fig. 10. The second subgraph corresponding to λ3β3β3

⊺ in Fig. 10 contains 

the ring graph in Fig. 8 with two wrong edges due to the clique constraint. But SBLR is still 

useful for detecting the set of nodes for this signal subgraph.

Fig. 11 displays the mean and SD of the TPR, FPR, FDR in edge selection and AUC on test 

data for each method across 100 datasets simulated under n = 1000 in this setting. Compared 

to Fig. 7, the performance of SBLR decreases as expected when the clique assumption is not 

true, in terms of lower TPR, higher FPR and higher FDR on average under the same sample 

size with either L1 or elastic-net penalty. The mean FPR and FDR of glmlasso, glmnet and 

GC decrease considerably under the one-standard-error rule compared to Fig. 7, but their 

mean TPRs also decrease, especially for glmlasso and GC. In addition, the 10-fold cross 

validation is more time-consuming than the validation tuning in Section 3.1. The glmnet 

now takes 204 seconds on average to run a cross-validation instance and GC takes about 25 

minutes on average, while SBLR takes 106.2 seconds on average to run a validation instance 

in this case.

4. Application: SC subgraphs distinguishing high and low crystallized 

intelligence of adolescents

We apply our method to the ABCD dataset described in Section 2.1 to examine the 

associations between structural brain network and crystallized intelligence for adolecents 
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aged 9–10 years. NIH toolbox measures crystallized intelligence through two core tests: 

Picture Vocabulary test and Oral Reading Recognition test. They also provide a composite 

score, Crystallized Cognition Composite, to allow for evaluation of overall crystallized 

intelligence.

SBLR model is applied to differentiate high from low crystallized intelligence for each 

composite or domain-specific score, as well as identifying signal subgraphs contributing to 

the classification. Some input parameters of Algorithm 1 for SBLR are set below in this 

section. The L1 fractional penalty factor η is set to 1 to encourage sparsity in the results, as 

the AUC on test data is not sensitive to different values of η in this case. We set K = 20, 

which is larger than the number of selected subgraphs. The tolerance ϵ = 10−5 and 5 

initializations are used in Algorithm 1. SBLR is trained over a sequence of 11 equally 

spaced δ values on the logarithmic scale with δmin = 0.1δmax. We also compare to glmlasso, 

penalized graph classification (GC), multiple testing screening (MT-FDR) and tensor 

factorization analysis (TNFA) on variable selection and predictive performance. Full rank K 
= 68 is set in TNFA, which explains around 75% of the variation in the brain networks.

We employ stability selection (Meinshausen and Bühlmann, 2010; Shah and Samworth, 

2013) to enhance significance of the selected variables (subgraphs or individual edges) for 

each method, which involves many rounds of random data splitting and keeping the 

variables with high selection probability. This approach reduces the variations in the results 

caused by single data split and random initialization. Specifically, the dataset for each 

cognitive measure is divided into 3 parts: training (60%), validation (20%) and test set 

(20%). SBLR, glmlasso and GC are fitted with training set and the optimal penalty factor(s) 

is tuned by validation set. The grid settings for tuning glmlasso and GC are the same as in 

the simulation study. MT-FDR and TNFA are fitted with training and validation sets. We 

record the selected variables for each method (under the optimal penalty factor) as well as 

AUC for test data across 30 rounds of random data splitting, and calculate the probability of 

each variable being selected. Directly counting the frequency of each identified subgraph of 

SBLR across multiple data splitting involves massive permutations. We actually took 

advantage of the special structure in the extracted subgraphs when counting their frequencies 

in the stability selection. Since the identified subgraphs of SBLR from ABCD data often 

display hub structure, we labeled each selected subgraph with the central node whose entry 

has the largest magnitude in the corresponding component vector βh. Then we aligned the 

identified subgraphs (component vectors) with the same central node across 30 data splits to 

find the largest common intersection of these subgraphs that appear frequently, for example 

more than 50% of the time, which is still a clique.

4.1. Picture vocabulary

The Picture Vocabulary test uses an audio recording of words, presented with four 

photographic images on the computer screen. The participants are asked to select the picture 

that best matches the meaning of the word. Using the 1 standard deviation rule proposed in 

Section 2.1, we obtain a dataset containing 1034 kids with high picture vocabulary scores 

and 282 low scores.
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SBLR on average selects 9.6 nonzero subgraphs {λℎβℎβℎ
⊺} across 30 data splits with a 

standard deviation of 4.0. Summarizing the results from stability selection, the subgraphs 

with more than two ROIs and selection probabilities greater than 0.5 are displayed in Fig. 

12. Fig. 12 also displays individual connections selected by glmlasso, GC and MT-FDR with 

probabilities greater than 0.5. As can be seen, the nonzero coefficients estimated by glmlasso 

and GC are quite similar while GC selects more predictive connections. But the results of 

these methods generally lack meaningful structure and are difficult to interpret 

neurologically. 12 components remain significant in TNFA more than 50% of the time, 

while their corresponding basis networks involve all the connections in the brain network. 

The average AUCs on test data across 30 splits of the data are all around 0.78 for SBLR, 

glmlasso and TNFA with a standard deviation around 0.03. GC achieves a bit higher AUC of 

0.79 ± 0.03, while that of MT-FDR is 0.72 ± 0.04.

The three subgraphs identified by SBLR in Fig. 12 all seem to have hub structure, with the 

hub nodes being 26r (right rostral middle frontal), 34r (right insula) and 28r (right superior 

parietal) respectively. Plot (d) of Fig. 12 implies that right-handed children with stronger 

neural connections among 26r (right rostral middle frontal), 27r (right superior frontal) and 

2r (right caudal anterior cingulate), and weaker connections among 26r, 29r (right superior 

temporal) and 30r (right supramarginal) are more likely to get high scores on Picture 

Vocabulary test. Plot (e) of Fig. 12 implies that right-handed children with stronger neural 

connections among 34r (right insula), 21r (right postcentral) and 1r (right bankssts), and 

weaker connections among 34r, 14r (right middle temporal) and 8r (right inferior temporal) 

are more likely to get high scores in Picture Vocabulary test. Plot (f) of Fig. 12 implies that 

right-handed children with stronger neural connection between 28r (right superior parietal) 

and 30r (right supramarginal), and weaker connection between 28r (right superior parietal) 

and 34l (left insula) are more likely to achieve high ability of this cognition measure. Some 

of these brain regions agree with the findings in neuroscience literature, for example, right 

superior parietal gyrus, right supramarginal gyrus and left insula are among the activated 

regions in auditory language processing tasks for children (Oh et al., 2014; Sugiura et al., 

2011; Vogan et al., 2016).

4.2. Reading recognition

Participants on this test are asked to read and pronounce letters and words as accurately as 

possible. Applying the 1 standard deviation rule proposed in Section 2.1, we construct a 

dataset containing 918 subjects with high Reading Recognition scores and 477 subjects with 

low scores.

SBLR on average selects 9.3 ± 4.2 nonzero subgraphs across 30 splits of the dataset. Fig. 13 

displays the subgraphs identified by SBLR with selection probabilities > 0.5. along with 

connections selected by glmlasso, GC and MT-FDR with probabilities > 0.5. The estimated 

nonzero coefficients of glmlasso and GC still look similar, but GC on average selects almost 

double the connections as that of glmlasso. Four components remain significant in TNFA 

more than 50% of the time, which correspond to all the connections in the brain network. 

GC on average achieves the highest AUC for test data of 0.73 ± 0.02 across 30 splits. The 

AUCs of the rest methods are all around 0.70 ± 0.03 in this case.
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The subgraphs in Fig. 13 located by SBLR display hub structure again and share many 

similarities to those associated with Picture Vocabulary. Compared to Fig. 12, Reading 

Recognition measure has two hub nodes in common with Picture Vocabulary: 26r (right 

rostral middle frontal) and 28r (right superior parietal). And Plot (f) of Fig. 12 is a subgraph 

of Plot (f) in Fig. 13. The latter has two extra ROIs: 21r (right postcentral) and 27l (left 

superior frontal), and stronger connections among the two nodes and the hub node (28r) 
have positive effect on the cognitive functioning of Reading Recognition. Plot (d) of Fig. 

13implies that right-handed children with stronger neural connections among 17r (right pars 

opercularis), 26r (right rostral middle frontal) and 31r (right frontal pole) are more likely to 

get high scores on Reading Recognition test, while the connection strengths among 26r, 32r 
(right temporal pole) and 34r (right insula) may have negative effect on this cognitive 

functioning. Plot (e) of Fig. 13 implies that stronger neural connections among 17l (left pars 

opercularis), 27r (right superior frontal) and 2r (right caudal anterior cingulate) have positive 

effect on this cognitive functioning, while the connection strength between 27r and 9r (right 

isthmus cingulate) may have a slight negative effect.

4.3. Crystallized cognition composite

Crystallized Cognition Composite can be interpreted as a global assessment of verbal 

reasoning. This composite score is derived by averaging the normalized scores of Picture 

Vocabulary and Reading Recognition test, and the age-adjusted scale scores are calculated 

based on this new distribution (Weintraub et al., 2013). Under the 1 standard deviation rule, 

we identify 1084 high crystallized cognitive cases and 536 low crystallized cognitive cases.

SBLR on average selects 12.3 ± 3.5 nonzero subgraphs across 30 splits of the data. Fig. 14 

displays the subgraphs identified by SBLR with selection probabilities > 0.5, along with 

individual connections selected by glmlasso and MT-FDR with probabilities > 0.5. GC 

selects far more connections on average than glmlasso or MT-FDR does in this case, with 

almost two times that of MT-FDR, and hence its results are not displayed. 9 components 

maintain significant in TNFA more than 50% of the time, which again corresponds to all the 

connections in the brain network. The AUCs on test data across 30 splits are around 0.76 ± 

0.02 for SBLR, glmlasso and TNFA, 0.78 ± 0.02 for GC, and 0.71 ± 0.03 for MT-FDR.

The subgraphs identified by SBLR in Fig. 14 predictive of high and low crystallized 

cognitive ability have many overlaps with the selected subgraphs associated with Picture 

Vocabulary and Reading Recognition. The subgraph in Plot (c) of Fig. 14 seems like a 

“composite” of the subgraphs in Plot (d)’s of both Figs. 12 and 13. Plot (f) of Fig. 14 echoes 

Plot (f)’s in both Figs. 12 and 13. The subgraph in Plot (e) of Fig. 14 overlaps with that in 

Plot (e) of Fig. 13. Plot (e) of Fig. 14 implies that righthanded children with stronger neural 

connections among 17l (left pars opercularis), 13r (right medial orbitofrontal), 27r (right 

superior frontal) and 2r (right caudal anterior cingulate) are more likely to have high level of 

functioning on crystallized cognition. Plot (d) of Fig. 14 implies that stronger connection 

between 31r (right frontal pole) and 23r (right precentral) has positive effect on crystallized 

cognitive functioning, while the connection strength between 31r and 20l (left pericalcarine) 

may have negative effect.
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5. Discussion

We have presented a useful tool for studying differences in brain connectivity patterns 

between groups, which produces more interpretable results than unstructured classifiers do, 

while maintaining competitive predictive performance. Simulation studies show that SBLR 

can successfully identify true signal subgraphs with high TPR and low FPR when the model 

assumption is true, and its selection accuracy could generally be improved by increasing the 

number of subjects in the data. In applications to crystallized cognition data, although 

penalized graph classification method (Arroyo Relión et al., 2019) obtains a bit higher 

predictive performance than SBLR, our method contributes to a more insightful 

understanding of the sub-structure of brain connectome related to crystallized intelligence, 

with discovery of a sequence of sub-networks with hub structure as well as the leading brain 

regions in these subgraphs.

SBLR is theoretically able to represent any coefficients in a generalized linear regression 

with sufficient number of components (one edge per component). But the regularization 

terms encourage small and fewer cliques. Simulation study shows that SBLR tends to 

introduce redundant edges when true signal subgraphs have sparse structure. But SBLR is 

still useful for capturing the hub structure of a star signal subgraph and detecting the sets of 

nodes for predictive subgraphs. In practice, we can evaluate the out-of-sample predictive 

performance of SBLR to determine whether the model assumption is reasonable. High 

prediction accuracy could justify the model assumption to the extent that putting the 

structured constraints on the coefficients makes the unstructured model less overfitting. We 

suggest to use the proposed model when the number of selected subgraphs is small and the 

out-of-sample predictive performance is comparable to or better than glmnet or GC. Ideally, 

we could have statistical tests for each coefficient in the subgraphs, but testing the 

significance of the coefficients in SBLR is a challenging open problem due to the bilinear 

framework and inclusion of the penalty terms (Xia et al., 2020).

There are other ways to define subgraphs, for example, Vogelstein et al. (2012) defined a 

subgraph as a minimum set of vertices and edges distinguishing groups; Khambhati et al. 

(2018) constructed subgraphs based an unsupervised non-negative matrix factorization, 

which is similar to Zhang et al. (2019); Chen et al. (2020) detected and tested altered brain 

connectivity networks with k-partite graph topological structure; mutually exclusive 

subgraphs may capture the modular structure of brain connectome. More flexible ways of 

defining subgraphs with more interesting network topological properties can be explored in 

the future.

Although SBLR is motivated from structural connectivity analysis, the method can certainly 

be used in functional brain connectivity analysis to identify signal subgraphs in the 

functional brain network related to a binary outcome, after constructing the functional 

connectivity matrices based on correlations of BOLD time series data of pairwise brain 

regions. In addition, it is an interesting future direction to consider how to aggregate 

community-level or lobe-level information into SBLR to improve the selection accuracy of 

signal subgraphs. For example, Xia et al. (2020) exploited both edge- and community-level 
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information in modeling brain networks. Xie et al. (2013) compared different algorithms in 

overlapping community detection.

Very few studies have focused on WM’s contribution to cognition. Specific to crystallized 

cognition, there have only been a handful of studies examining major WM tracts’ roles. For 

example, higher FA in superior longitudinal fasciculus was related to higher crystallized 

cognition in children (Simpson-Kent et al., 2020), higher FA in forceps minor was related to 

higher crystallized cognition in adults (Góngora et al., 2020). Both tracts contain numerous 

inter-hemisphere connections across several brain regions (e.g., superior longitudinal 

fasciculus) or within frontal region (e.g., forceps minor). Our study represents the very first 

effort in the literature specifying clique subgraphs of SC related to crystallized cognition. 

Importantly, across composite score and individual domains of crystallized cognition, we 

identified consistent brain regions and subgraphs (refer to Figure 12, 13 and 14) 

predominantly in right-hemisphere frontal-parietal regions. The finding is consistent to 

cumulative functional subgraph literature on frontal-parietal driven executive network during 

neuro-development (Chai et al., 2017), and flexible periphery of the language network 

(Fedorenko and Thompson-Schill, 2014).

We also noticed that the classification accuracy with AUC around 0.78 for crystallized 

cognition is very high. From our previous study, SC is robust and reproducible and more 

predictive of cognition compared with functional connectivity (FC) derived from functional 

MRI (Zhang et al., 2019; 2018). We hypothesize that SC is a better biomarker for 

understanding the cognition development in adolescents. To verify this hypothesis, analyses 

and comparisons with FC seem to be a natural next step.

The frontal-parietal driven subgraphs among those aged 9-10 years represent a set of critical 

biomarkers for overall neuro-development. However, these subgraphs’ physiological 

meaning can be transient across ages. Comparisons across a broader age range should be 

conducted to further confirm the role of these subgraphs in crystallized cognition and its 

development. With more data being recorded in the ABCD study, we hope to further analyze 

SC and cognition development.
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Appendix A.: Coordinate descent algorithm for model estimation

A1. Updates for entries in {βℎ}ℎ = 1
K

Minimizing the loss function (4) with respect to βhu, the uth entry of βh given all the other 

parameters becomes:

min
βℎu

L βℎu = − 1
n i = 1

n
lli βℎu + dℎu βℎu + eℎuβℎu

2 /2 (A.1)

where

dℎu = δη λℎ
v ≠ u

βℎv (A.2)

eℎu = δ 1 − η λℎ
2

v ≠ u
βℎv

2 . (A.3)

Eqs. (A.2),(A.3) imply that the penalty factors dhu and ehu in (A.1) for |βhu| are related to the 

nonzero entries in βh excluding βhu. Hence βhu is more likely to be shrunk to zero if the 

current number of nonzero entries in βh is large. This adaptive penalty will lead to a set of 

sparse vectors {βℎ}ℎ = 1
K  and hence a set of small signal subgraphs.

Note that

∂lli
∂βℎu

= 2 yi − pi λℎW i u ⋅ βℎ (A.4)

∂2lli
∂βℎu

2 = − pi 1 − pi 2λℎW i u ⋅ βℎ
2 ≤ 0. (A.5)

Therefore each log-likelihood lli is a concave function of βhu when fixing the others, and 

(A.1) is a convex optimization for βhu.

Suppose the current estimate for βhu at iteration t is βℎu
(t) and fix the other parameters at their 

current estimates. The Newton algorithm for minimizing − 1
n∑i = 1

n lli(βℎu) in (A.1) is 

equivalent to minimizing the following second-order Taylor expansion at the current 

estimate βℎu
(t):

L1
t βℎu ≜ cℎu

t + bℎu
t βℎu − βℎu

t +
aℎu

t

2 βℎu − βℎu
t 2

(A.6)
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where

cℎu
t = − 1

n i = 1

n
lli βℎu

t
(A.7)

bℎu
t = − 1

n i = 1

n ∂lli βℎu
t

∂βℎu
(A.8)

aℎu
t = − 1

n i = 1

n ∂2lli βℎu
t

∂βℎu
2 . (A.9)

Similar to Friedman et al. (2010), βhu is then updated by minimizing

L1
t βℎu + dℎu

t βℎu + eℎu
t βℎu

2 /2 (A.10)

which has a closed form solution

βℎu
t + 1 =

sign aℎu
t βℎu

t − bℎu
t

aℎu
t + eℎu

t ⋅ aℎu
t βℎu

t − bℎu
t − dℎu

t
+

(A.11)

if aℎu
(t) + eℎu

(t) > 0. From (A.3), (A.5) and (A.9) we know that aℎu
(t) ≥ 0 and eℎu

(t) ≥ 0.

The case aℎu
(t) + eℎu

(t) = 0 implies that (i) λℎ
(t) = 0 (ii) βℎv

(t) = 0 for v ≠ u or (iii) η = 1 and pi
(t) = 0

or 1, ∀i. For the former two cases, the lower triangular part of the component matrix 

λℎ
(t)βℎ

(t)βℎ
(t) ⊺  becomes zero no matter what value βhu takes. So we set βℎu

(t + 1) = 0 in these 

cases. Regarding (iii), if pi
(t) ≡ yi, ∀i, (A.10) is minimized at βhu = 0 because bℎu

(t) = 0 at this 

time according to (A.4) and (A.8) together with aℎu
(t) = eℎu

(t) = 0. Then the first derivative of 

(A.10) becomes dℎu
(t)( > 0) when βhu > 0 and −dℎu

(t)( < 0) when βhu < 0. Otherwise, pi
(t) = 0 or 1 

∀i may be due to bad initialization. For example, a large magnitude of initial values of the 

parameters could easily make pi become 1 or 0, ∀ i through the logit link in (1). In this case, 

setting βhu = 0 could prevent the divergence of the solution. In practice, we always 

normalize the entries in {Wi} before applying SBLR. We also recommend to initialize each 

parameter from U(−0.1, 0.1) to avoid the explosion in the logit scale.

The computational complexity of updating each entry βhu is O(nV) per iteration and thus 

that of updating {βℎ}ℎ = 1
K  is O(nKV2).

A2. Updates for {λh : h = 1, …, K}

Minimizing the loss function (4) with respect to λh when fixing the others amounts to:
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min
λℎ

L λℎ = − 1
n i = 1

n
lli λℎ + dℎ λℎ + eℎ

λℎ
2

2 (A.12)

where dℎ = δη∑u = 1
V ∑v < u |βℎu | |βℎv| and eℎ = δ(1 − η)∑u = 1

V ∑v < uβℎu
2 βℎv

2 .

Since λh is linear in the logit link (1) given the others, the log-likelihood is a concave 

function of λh. Suppose the current estimate for λh is λℎ
(t). Similar to Section A.1, λh is 

updated by minimizing the following quadratic approximation to (A.12):

cλ, ℎ
t + bλ, ℎ

t λℎ − λℎ
t +

aλ, ℎ
t

2 λℎ − λℎ
t 2

+ dℎ
t λℎ + eℎ

t λℎ
2

2
(A.13)

where

cλ, ℎ
t = − 1

n
i = 1

n

lli λℎ
t

bλ, ℎ
t = − 1

n
i = 1

n
∂lli λℎ

t

∂λℎ
= − 1

n
i = 1

n

yi − pi
t βℎ

t ⊺W iβℎ
t

aλ, ℎ
t = − 1

n
i = 1

n
∂2lli λℎ

t

∂λℎ
2 = 1

n i = 1
n

pi
t 1 − pi

t βℎ
t ⊺W iβℎ

t 2
.

(A.14)

Note that aλ, ℎ
(t) ≥ 0 and eℎ

(t) ≥ 0. If aλ, ℎ
(t) + eℎ

(t) > 0, λh is updated to the argmin of (A.13):

λℎ
t + 1 =

sign aλ, ℎ
t λℎ

t − bλ, ℎ
t

aλ, ℎ
t + eℎ

t aλ, ℎ
t λℎ

t − bλ, ℎ
t − dℎ

t
+

. (A.15)

If aλ, ℎ
(t) + eℎ

(t) = 0, then either the component matrix βℎ
(t)βℎ

(t) ⊺  is a zero matrix or pi
(t) = 0 or 1, 

∀i. In either case, λℎ
(t + 1) is set to 0 following a similar discussion in Section A.1.

The computational complexity for updating each λh is O(nV2) per iteration and hence that 

of updating {λℎ}ℎ = 1
K  is O(nKV2).

A3. Update for α

α ∈ ℝm is also updated by minimizing the quadratic approximation to − 1
n∑i = 1

n lli at the 

current estimate α(t) with the updating rule
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α t + 1 = α t − A t −1b t ifA t is nonsingular
0 otherwise

(A.16)

where

b t = − 1
n

i = 1

n ∂lli α t

∂α = − 1
n

i = 1

n
yi − pi

t xi

A t = − 1
n

i = 1

n ∂2lli
∂α∂α⊺ = 1

n
i = 1

n
pi

t 1 − pi
t xixi

⊺ .
(A.17)

The computational complexity of this step is O(m2n).
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Fig. 1. 
(a) shows the pipeline we used to extract the network and (b) shows a structural brain 

network extracted from the ABCD data.
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Fig. 2. 
Histograms of ages, age-corrected crystallized cognition composite scores, picture 

vocabulary scores and reading scores of the 4213 subjects involved in this study.
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Fig. 3. 

True signal subgraphs (lower panel) corresponding to {0.1qℎqℎ
⊺ :ℎ = 1, 2, 3} (upper panel) in 

one simulation.
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Fig. 4. 
Estimated results of glmnet under n = 500 and n = 1000. In each panel, the left plot shows 

estimated coefficients (lower triangular) versus true values (upper triangular); the right plot 

shows the selected edges in the network, where black edges denote true signal edges and red 

ones falsely identified edges; the thickness of each edge is proportional to the magnitude of 

its estimated coefficient.
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Fig. 5. 
Estimated results of penalized graph classification (GC) approach under n = 500 and n = 

1000. In each panel, the left plot shows estimated coefficients (lower triangular) versus true 

values (upper triangular); the right plot shows the selected edges in the network, where black 

edges denote true signal edges and red ones falsely identified edges; the thickness of each 

edge is proportional to the magnitude of its estimated coefficient.
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Fig. 6. 

Estimated nonzero coefficient components {λℎβℎβℎ
⊺} (left) of SBLR and their selected 

subgraphs (right) under K = 5 and K = 10 for different sample sizes n = 500 and n = 1000, 

respectively. Black edges denote true signal edges and red ones falsely identified edges; the 

thickness of each edge is proportional to the magnitude of its estimated coefficient.
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Fig. 7. 
Mean (bar labels) and standard deviation (error bars) of TPR, FPR, FDR and AUC across 

100 simulations under two sample sizes (n = 500 and n = 1000). Glmlasso is logistic 

regression with L1 penalty; SBLR-L1 indicates that only L1 penalty (η = 1) is applied for 

SBLR.
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Fig. 8. 
True signal subgraphs in one simulation: a 4-node ring graph and a 7-node star graph.
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Fig. 9. 
Estimated results of glmnet (left) and GC (right) under the optimal penalty factors. In each 

panel, the left plot shows estimated coefficients (lower triangular) versus true values (upper 

triangular); the right plot shows the selected edges in the network, where black edges denote 

true signal edges and red ones falsely identified edges; the thickness of each edge is 

proportional to the magnitude of its estimated coefficient.
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Fig. 10. 

Estimated nonzero coefficient matrices {λℎβℎβℎ
⊺} (upper) of SBLR and their selected 

subgraphs (bottom). Black edges denote true signal edges and red ones falsely identified 

edges; the thickness of each edge is proportional to the magnitude of its estimated 

coefficient.
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Fig. 11. 
Mean (bar labels) and standard deviation (error bars) of TPR, FPR, FDR and AUC across 

100 simulations under n = 1000. Glmlassois logistic regression with L1 penalty; SBLR-L1 
indicates that only L1 penalty (η = 1) is applied for SBLR (K = 10).
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Fig. 12. 
Results of Picture Vocabulary: (a) connections selected by glmlasso with selection 

probabilities > 0.5 across 30 rounds of random data splitting; (b) connections selected by GC 

with selection probabilities > 0.5; (c) connections selected by MT-FDR with selection 

probabilities > 0.5; (d) - (f) subgraphs (≥ 3 ROIs) selected by SBLR with selection 

probabilities > 0.5. The subgraphs are arranged in the descending order of selection 

frequency. The thickness of each edge is proportional to the magnitude of its mean estimated 

coefficient; the color goes from blue to red as the coefficient goes from negative to positive.
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Fig. 13. 
Results of Reading Recognition: (a) connections selected by glmlasso with selection 

probabilities > 0.5 across 30 splits of the dataset; (b) connections selected by GC with 

selection probabilities > 0.5; (c) connections selected by MT-FDR with selection 

probabilities > 0.5; (d) - (f) subgraphs (≥ 3 ROIs) selected by SBLR with selection 

probabilities > 0.5. The subgraphs are arranged in the descending order of selection 

frequency. The thickness of each edge is proportional to the magnitude of its mean estimated 

coefficient; the color goes from blue to red as the coefficient goes from negative to positive.
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Fig. 14. 
Results of Crystallized Cognition Composite: (a) connections selected by glmlasso with 

selection probabilities > 0.5 across 30 splits of the data; (b) connections selected by MT-

FDR with probabilities > 0.5; (c) - (f) subgraphs (≥ 3 ROIs) selected by SBLR with 

probabilities > 0.5. The subgraphs are arranged in the descending order of selection 

frequency. The thickness of each edge is proportional to the magnitude of its mean estimated 

coefficient; the color goes from blue to red as the coefficient goes from negative to positive.
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