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While information is ubiquitously generated, shared, and analyzed in a modern-day life, there is still some controversy around the
ways to assess the amount and quality of information inside a noisy optical channel. A number of theoretical approaches based on,
e.g., conditional Shannon entropy and Fisher information have been developed, along with some experimental validations. Some
of these approaches are limited to a certain alphabet, while others tend to fall short when considering optical beams with a
nontrivial structure, such as Hermite-Gauss, Laguerre-Gauss, and other modes with a nontrivial structure. Here, we propose a
new definition of the classical Shannon information via the Wigner distribution function, while respecting the Heisenberg
inequality. Following this definition, we calculate the amount of information in Gaussian, Hermite-Gaussian, and Laguerre-
Gaussian laser modes in juxtaposition and experimentally validate it by reconstruction of the Wigner distribution function
from the intensity distribution of structured laser beams. We experimentally demonstrate the technique that allows to infer
field structure of the laser beams in singular optics to assess the amount of contained information. Given the generality, this
approach of defining information via analyzing the beam complexity is applicable to laser modes of any topology that can be
described by well-behaved functions. Classical Shannon information, defined in this way, is detached from a particular
alphabet, i.e., communication scheme, and scales with the structural complexity of the system. Such a synergy between the
Wigner distribution function encompassing the information in both real and reciprocal space and information being a measure
of disorder can contribute into future coherent detection algorithms and remote sensing.

1. Introduction

An electromagnetic field is a fundamental physical carrier of
information. It is capable of reliably transmitting a modu-
lated signal and collecting information about the propaga-
tion channel itself. With relevance to this IT-driven age,
the two longstanding goals in information processing are
(i) achieving higher channel capacity (i.e., throughput) and
(ii) (pre)processing of collected information. However, the
fundamental challenge of rigorous qualification and quanti-
fication of information in EM waves still remains a topic of
debate including both physical and even semi-
philosophical notions. Information theory stands out from
most of other approaches in physics. Being a higher level
of abstraction, it focuses on a configuration of a system

under consideration in the context of its prehistory, similarly
to thermodynamics, without attachment to a particular class
of objects under study in its axiomatics. Out of the broad
scope of studies where information theory has a potential
to contribute, at this point, we exemplary explore its applica-
tions to electrical engineering and signal processing.

One way of defining information is associating it with
the presence of distinctive features. For instance, human
speech can carry up to 214 distinctive sounds (due to 14
binary distinctive features, e.g., [1]), only a small subset of
which is realized in any particular known language. The
amount of information a human can transmit per unit sen-
tence containing a fixed number of words is indirectly corre-
lated with the amount of distinctive features the language
can handle (i.e., language capacity). Translating this into
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optics, it has been understood that a monochromatic plane-
wave photon in free space can carry a rather limited amount
of distinctive features (i.e., polarization and wavelength),
providing up to one bit of information per photon. Natu-
rally, if one generates photons with up to one bit of informa-
tion, one is also able to detect only 1-bit information per unit
carrier. To use an analogy, consider “a marine biologist cast-
ing a fishing net with two inches wide meshes for exploring
the life on the ocean, naturally one should not be surprised
finding only sea-creature larger than two inches long” [2].
This stumbling block has been shifted with the seminal work
by Allen et al. [3] where it was experimentally confirmed
that laser beams are capable of carrying a well-defined
orbital angular momentum (OAM). An ability of such laser
modes to carry theoretically unbounded amount of informa-
tion per photon, e.g., [4], dramatically expands the EM-
field’s “language capacity.”

There are several approaches to assess a signal’s informa-
tion capacity developed in modern information theory, e.g.,
[5, 6]. In many cases, information is defined with respect
to a particular alphabet, giving up the generality offered by
statistics in the foundation of information theory. Several
groups used conditional information approach to quantify
the signal capacity [7]. Here, we introduce the concept of
expressing information as a measure of structure in a phys-
ical system by applying the Shannon information theory to
singular optical beams. We discuss how the Wigner distribu-
tion function (WDF) can be taken as a corresponding prob-
ability distribution function accounting for partial
quantumness of a shaped photon source. The important syn-
ergy between a comprehensive description of physical sys-
tems in their phase space, delivered by the WDF, and the
generalized axiomatics of the information theory has the
potential to conduce a cumulative approach to high-
information-density telecommunications and adaptive sig-
nal processing techniques. We validate this theoretical
framework by experimentally showing how increased struc-
tural complexity of wavefront-shaped optical beams, such as
Hermite-Gauss (HG) modes and optical vortices [8, 9], can
be analyzed using wavefront sensors.

2. Results

2.1. The WDF and Classical Information in Optics. The WDF
belongs to the generalized Cohen’s class of dual-domain dis-
tributions. It is simultaneously the most complete analytical
description of an optical beam, and an observable that can
be experimentally measured. It provides access to the spatial
beam profile and its Fourier transform. The WDF in one
spatial dimension can be defined as

W x, kxð Þ = 1
2π

ð
dy u x + y

2
� �

u∗ x −
y
2

� �
e−ikxy, ð1Þ

where x is the variable in the coordinate space and k is the
corresponding coordinate in reciprocal space. The following
integrals have a probabilistic interpretation:

u kð Þj j2 =
ð
dxW x, kð Þ,

u xð Þj j2 =
ð
dkW x, kð Þ,

U tot =
ð
dxdkW x, kð Þ,

ð2Þ

where juðkÞj2 is the momentum distribution, juðxÞj2 is the
intensity distribution, and U tot is the total energy of the
incoming signal. For a fully coherent light source, the WDF’s
Fourier-transformed function ΓðxÞ = uðx + aÞu∗ðx − aÞ is
known as the mutual intensity used in wavefront sensing
for turbulence analysis and adaptive detection techniques.
For brevity, a list of useful optical properties of the WDF
can be found elsewhere, e.g., [10, 11].

Now, let us consider a Gaussian beam, expressed in the
following form [8]:

uG ρð Þ = A
w e− ρ2/w2ð Þ ei~kρ2/2R, ð3Þ

where ρ > 0 is the position vector in the beam profile ρ =ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
, w = wðzÞ is a beam waist, R = RðzÞ is the radius

of curvature of the beam’s wavefront, and A is the normali-
zation constant. The wave-number ~k = f~kx, ~ky , ~kzg is distinc-
tive from the Fourier transform parameter k = fkx, ky, kzg in
(1). The corresponding 1D WDF is [12]

W Gð Þ ~x, κxð Þ = Affiffiffiffiffiffi
2π
p e−~x

2−κ2x , ð4Þ

which is plotted in position-momentum space fx, kxg in
Figure 1(a). Here, �x =

ffiffiffi
2
p

x/w and κx is the redefined
momentum:

κx =
wffiffiffi
2
p kx −

~kx x
R

 !
: ð5Þ

This Wigner distribution is properly normalized, deliv-
ering the beam intensity distribution when integrated over
the entire momentum space.

Classical Shannon information, see [13], represents the
amount of structure in the corresponding system. Its analog
for an optical mode, characterised by its WDF, is

S = −∬
R2dr dkW r, kð Þ · ln W r, kð Þ½ �, ð6Þ

where the WDF is a scalar function of position r and momen-
tum k vectors. Similar definitions of information applied to
characterizing optical fields, while having been suggested in
the field of optics earlier, e.g., [12, 14], have not been explicitly
applied to topological optical beams in the way introduced
here, to the best of the authors’ knowledge. The main problem
with this definition, Equation (6), is that the WDF is not a
positive-semidefinite function and, hence, does not represent
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a proper distribution. Negativity of the WDF can be inter-
preted as a marker of a phase-space interference and nonclas-
sicality [15, 16]. However, in quantum description,
interference is associated with a local violation of Heisenberg
inequality, e.g., [17]. For these reasons, we seek a definition that
would comply with the quantum nature of light.

Here, we propose to replace the regular product in the
definition of information (6) with the Groenewold associa-
tive product [18].

⋆ = e
iℏ ∂x
 
∂p
!

−∂p
 
∂x
!� �

/2
, ð7Þ

and hereby call it Shannon-Groenewold information:

~S = −
1

πℏð Þ2 ∬ℝ2dr dkW r, kð Þ⋆ln W r, kð Þ½ �, ð8Þ

whereWðr, kÞ is the four-dimensional (4D) WDF (see [19]).
A manifestation of this definition is the Weyl quantization of
a classical observable in phase space [20]. It respects the Hei-
senberg uncertainty principle and is normalized to the phase
space volume, which is one of the main advantages of this
definition of information over Shannon information Equa-
tion (6), defined via the WDF. As an entropic observable,
it measures the structure present in the optical field analo-
gous to [21], as opposed to the earlier attempts to utilize
the conditional information [7], that is, by design, less fun-
damental due to being alphabet specific. In the context of

Information Theory, it may be interpreted as a measure of
the amount of classical information that can be extracted
from the laser mode if all the quantum uncertainty is
removed by an appropriate experiment.

Using the Shannon-Groenewold information (8), we
obtain the following expression for the information in the
Gaussian beam:

~S1D ≃ −U tot ln U tot
π

� �
− 1

� �
, ð9Þ

~S2D ≃ −U2
tot ln U2

tot
π2

� �
− 2

� �
, ð10Þ

where U tot = A
ffiffiffiffiffiffiffi
π/2
p

is the total EM energy of the beam per
spatial degree of freedom. We assume that the radius of cur-
vature of the beam wavefront is always larger than the phys-
ical dimensions of the beam spot size: R≫ fx, yg. It is
important to note that for the Gaussian mode, both defini-
tions (6) and (8) produce the same result. This is what one
would expect since the WDF of pure Gaussian sources is
positive-semidefinite and can be interpreted as a classical
proper distribution function [22]. The fact that information
is energy-dependent comes as no surprise if one remembers
the important synergy between information and entropy in
classical Shannon theory of information (see [13]). Even
though entropy in information theory and thermodynamic
entropy are not exactly identical, one would expect similar
behavior when it comes to the fundamental laws of physics
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Figure 1: The Wigner distribution functions (WDFs) of one-dimensional (1D) Hermite-Gauss (HG) mode of zero-order HG0 (Gaussian)
and first-order HG1 as functions of κx-wave vector (5), and �x-coordinate in the beam’s transverse plane. One can see that in the case of the
Gaussian mode, the WDF is positive, while for the first-order HG mode, there is a negative contribution in the near-zero region of the phase
space.
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[23, 24]. In this context, total energy of a laser mode is in
equivalence with total internal energy of a thermodynamic
system.

2.2. Higher-Order Modes and Shannon-Groenewold
Information. The HG mode is a higher-order solution of
the Gaussian family of beam-like solutions of the paraxial
equation. It carries a nontrivial beam geometry with singu-
larities, stable on propagation [25] due to being topologically
protected. Hence, it is only logical to expect that the amount
of information for this family of modes is higher than for the
zero-order Gauss modes ~SG ≲ ~SHG [26]. Let us investigate
this statement next.

The general solution of the 1D paraxial wave equation in
cylindrical coordinates is given by

uHG x, zð Þ =
ffiffiffiffi
A
w

r
Hm

ffiffiffi
2
p

x
w

 !
e− x2/w2ð Þei~kxx2/2R: ð11Þ

The normalization is consistent with the one in Equation
(3). The WDF for this mode is known, e.g., [27]. In our case,
to keep the normalization consistent, we obtain

W HGð Þ
m x, kxð Þ = A

ffiffiffi
π
p

2πð Þ3/2 e
−�x2
ð∞
−∞

d�y e−iκx ~y− �y2/4ð ÞHm �x + �y
2

� �
Hm �x −

�y
2

� �
:

ð12Þ

As expected, for m = 0, the WDF of HG mode is exactly
equal to the Gaussian WDF (Equation (4)) and so is the cor-
responding information in Equation (9). Then, the first two
higher-order WDFs have “elegant” analytical expressions:

W HGð Þ
1 x, kxð Þ = 2Affiffiffiffiffiffi

2π
p e−�x

2−κ2xH1 �x2 + κ2x −
1
2

� �
, ð13Þ

W HGð Þ
2 x, kxð Þ = 4Affiffiffiffiffiffi

2π
p e−�x

2−κ2xH2 �x2 + κ2x − 1
	 


: ð14Þ

The WDFWðHGÞ
1 ðx, kxÞ is plotted in Figure 1(b). One can

see explicitly the negative contributions, in the 2nd-order
mode in opposition to the positive-definite 0th-order Gauss
beam. In a similar manner, one can work out higher-order
modes using the integral form in Equation (12).

Next, we explore these WDF expressions further. We
find that these WDFs take negative values in the central
region of the phase space (Figure 1). The fundamental state-
ment of classical information theory that “the more we know
about a system’s parameter space, the less is its uncertainty”
is inevitably broken in the quantum context when consider-
ing correlated (conjugate) variables, such as position x and
momentum p. If such “quantumness” is present in the corre-
sponding PDF, it pushes the distribution into the negative
domain [16] (Figure 1(b)). By respecting Weyl-Wigner
quantization in the definition of information (8), we work
around the WDF not being a well-defined PDF from the sta-
tistics point of view. Groenewold’s product, introduced
instead of conventional multiplication, enforces the negative
regions to be integrated out, in compliance with the Heisen-

berg uncertainty relation. These lead to real and positive-val-
ued, monotonously increasing with energy information:

~S
HGð Þ
1 1Dð Þ ≃ −2U tot ln 2U tot

π

� �
− 3

� �
, ð15Þ

~S
HGð Þ
2 1Dð Þ ≃ −8U tot ln 4U tot

π

� �
− 5

� �
: ð16Þ

As HG modes form a complete orthonormal set, they
can be used as an expansion basis [28]. Hence, this approach
can be straightforwardly applied to OAM modes, such as
Laguerre-Gauss (LG), e.g., [8]. Let us express the LG mode
as follows:

uLG ρ, zð Þ = A
w

ffiffiffi
2
p

ρ

w

 ! ℓj j
L ℓj j
p

2ρ2
w2

� �
e− ρ2/w2ð Þeikρ2/2Reiℓϕ, ð17Þ

where ℓ is the vorticity of the twisted mode and ϕ is the azi-
muthal angle in cylindrical coordinates, where the remaining
parameters follow the definitions of Gauss (3) and HG (11)
modes. Supplying the results from (12), we can express LG
modes in terms of HG modes with a straightforward calcu-
lation; for instance, for the WDF of the 2D LG mode with
p = 0 and ℓ = 1,

W LGð Þ
1 2Dð Þ �ρ ; κð Þ = A2

2π e−�ρ
2−κ2 �ρ2 + κ2 − 1
	 


, ð18Þ

where p and ℓ are correspondingly the order and degree
numbers of the generalized Laguerre polynomial Lℓpð·Þ; �ρ =ffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 + �y2

p
. The corresponding entropy can be calculated in

a similar manner:

~S
LGð Þ
1 2Dð Þ ≃ −2U2

tot ln U2
tot
π2

� �
− 4

� �
: ð19Þ

The classical assessment of the amount of order in the
optical mode is clearly increasing with the increasing com-
plexity of the beam profile (see Figure 2), as one would
expect from general considerations. It is important to recall
that in the context of physical meaning of Shannon uncon-
ditional information, the WDF is normalised to U tot—total
energy. Consequently, constant A is bounded from above
by

ffiffiffiffiffiffiffi
2/π
p

.
The similarity sign in the expressions for information

(structural complexity) of the considered above modes (9),
(15), (16), and (19) is due to the presence of terms contain-
ing an odd logarithmic integral of the form:

ð∞
0
dr r ln 2r2 − 1

	 

I0 αrð Þ⟶ 0, ð20Þ

where I0 is a modified Bessel function of the first kind.
Numerical estimations show a tendency for these terms to
go to zero; however, mathematically rigorous study of their
absolute convergence has not been performed.
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With this theoretical framework, we performed an
experiment to explore the possibility of obtaining the
amount of information by measuring the structure in optical
laser beams of various topology. Provided the wavefront
reading was obtained from an off-the-shelf Shack-
Hartmann sensor, we assessed the amount of information
in several fundamental laser modes (see Figure 3).

3. Materials and Methods

Among the tools of adaptive optics, Shack-Hartman sensors
(SHS) [29] occupy a unique place as a fast, affordable, and
compact off-the-shelf tool for simultaneous intensity and
angular distribution measurements. Advanced techniques for
SHS state tomography [30] and WDF reconstruction [31]
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Figure 2: The Shannon-Groenewold information SWG as a function of total energy U tot (8) for one-dimensional (a) HG0/Gauss mode
(black), HG1 (dashed-yellow), and HG2 (dotted-green), and two-dimensional (b) theoretically predicted (black) and experimental
(dashed-blue) Gauss mode, experimentally measured (long-dashed-green) and theoretically predicted (dot-dashed-red) LG1 with the
corresponding error bands resulting from the errors on fit parameters shown in light-red; see Section 3 for details. One notices the
overall tendency for the amount of information to increase with the growth of the overall complexity of the corresponding optical signal.
Also, the drop in the amount of information inferred from the experiment as compared to the theoretical curve is attributed to the
SLM’s beam conversion efficiency and expected information loss during the propagation in free space.
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Figure 3: On the way to measuring the amount of information in optical beams. The intensity distributions of the EM beams are captured
by a SHS. The algorithm for simulated data sets and the fits is based on Equations (21) and (22). The experimental data are averaged over 4
Laguerre-Gaussian LG1 samples (left) and 10 Gaussian samples (right) with the SHS’s sampling rate of 18 fps (black-starred scatter plot) and
over the four quadrants in the beam intensity profile. In 2D color maps, measurement data is shown in gray scale, simulation is depicted in
orange-red scale, and shaded regions are symmetry-based extrapolations. The measurement fits are shown in solid-red curves with the
Gaussian model (right) using the WDF in Equation (4), and Laguerre-Gauss (LG) model (left) in Equation (18). The measured data are
shown as black stars with the corresponding error bars. All the presented plots depict normalized intensity I ∈ ½0, 1�.
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have been suggested alongside with conventional aberration
correction techniques. Measurements of the wavefront distor-
tions in EM beams with nontrivial topology are also of interest
for both communication and sensing purposes, e.g., [32].

For the aim of this work, we use the SHS to reconstruct
the WDF for the purpose of discriminating between the
modes, assessing the beam quality and ultimately the
amount of information in a beam. While a SHS is utilized
generally to facilitate beam alignment and assess distortions
within an optical channel by calculating the higher-order
Zernike moments, here, we omit the SHS’s wavefront data
output and only consider the raw data of the intensity distri-
bution in the superpixel array of the SHS’s camera
(Figure 4). We compare the results to the modelled intensity
distribution based on the theoretical WDF calculation,
whose approximation can be modelled as [31]

I rð Þ = 1
λf

〠
L,M

ℓ=−L
m=−M

SWDF Wb,Wa½ � rℓ,m′ , uℓ,m′
� �

rect rℓ,m′
� �

:

ð21Þ

The smooth WDF is defined as follows [33]:

SWDF Wb,Wa½ � rℓ,m′ , kℓ,m′
� �

=∬d2R d2UWb R,Uð ÞWa R − rℓ,m′ ,U − uℓ,m′
� �

,

ð22Þ

where the coordinate shift is defined as

r′ℓ,m = Rx − ℓw, Ry −mw
� �

,

u′ℓ,m = Ux −
x − ℓw
λf

,Uy −
y −mw
λf


 �
:

ð23Þ

The functionsWb andWa are the WDF of the incoming
signal, e.g., (4), (13), (14) or (18), and the transmission func-
tion of a single lens aperture correspondingly. The parame-
ters f (focal length) and w(width of a single lens in a
lenslet array) are the parameters specific to the detector
and define the angles in the local wavefront of the field.

Using this model, we first simulated the synthetic data
sets for Gauss, HG, and LG modes. In the model, we consid-
ered the WDF Wb in the following general form:

W ~x, κxð Þ = Affiffiffiffiffiffi
2π
p e−~x

2−κ2x P ~x2 + k2x
	 


, ð24Þ

where PðαÞ is the polynomial of α. We started by testing two
cases, namely, a Gauss mode (4) and a LG of order 1 (18).
The polynomial fit in Equation (24) was taken to be

P ~x2 + k2x
	 


= a + b ~x2 + κ2x
	 


, ð25Þ

with a and b being the fitting parameters (Figure 3). One can
see that when a = const and b = 0, the fit corresponds to a
Gaussian profile (4), and when a/b = 2, the model includes
LG1-like distributions (18).

To assess the quality of the model, besides estimating the
χ2 per each fit, we run a simulation with 1000 fits to syn-
thetic data with Equation (21), obtaining a histogram of
the deviation between the supplied fitting parameters and
those from the best fit (Figure 5(b)). The resulting data show
that the parameters are centered near the “true” values,
showing the satisfactory quality of the fit.

The inferred fundamental amount of information car-
ried in an experimentally measured photon beam appears
to be lower than the theoretically predicted for the ideal
LG1 mode (see Figure 2). The resulting entropy as a function
of beam energy is extremely sensitive to the fit parameters a
and b (25).

Since we did not consider the wavefront readings of the
SHS, this model does not harvest the information stored in
the reciprocal domain at this point, but rather infers it from
the intensity distribution. This capability is to be explored
and utilized in our future research. However, even at this
conceptual level, the fit already can discriminate between
the two modes. Hence, it provides an experimental estimate
for the WDF (Figure 5(a)) supplied, however a “good” guess
about the possible wavefront shape of the incoming signal.
Due to intensity-only detection, the central region of the
LG beam, generated in the experiment, is left out. Hence,
the setup is inherently classical, in compliance with the def-
inition of information, used here.

The quality of the fit, alongside with the accuracy of the
numerical integration algorithm, also depends on the

(a) (b)

M1

P3 LT

LT

M2

NDF P1 L1 L2 P2

Laser

SLM (a)

SHS (b)

Figure 4: The schematic of the experimental setup, where a
spatially filtered Gauss-like 635 nm, 4mW (Thorlabs LDM635)
laser beam is reflected off the spatial light modulator (SLM) onto
the mirror M1, into the boxing of the Shack-Hartmann sensor
(SHS) (Thorlabs: WFS20-7AR). The device is optimized to
operate with ordinary Gauss-like signals. The SLM can be set to a
mirror regime or to generate an orbital angular momentum
(OAM) beam of Laguerre-Gauss-like profile. The OAM beam
generation is accomplished by an SLM loaded with a computer-
generated diffraction pattern with a fork dislocation (i). In that
case, the measured intensity distribution of an OAM beam (ii)
has a typical doughnut-like structure. L1 and L2 are the lenses of
the beam expander; P1, P2, and P3 are the pinholes; M1 and M2
are the directing mirrors; and LT are the boxing elements of the
SHS.
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detector modelling scheme, (21) and (22), which in this case
has been fairly generic. One of the crucial assumptions that
has been made is the plane-wave approximation. This
approximation, generally speaking, is too brave for the case
of topological beams. Another unaccounted source of dis-
crepancies is the optical cross-talk due to SHS’s architecture
that has been extensively discussed before on the level of
mathematical modelling [31]. Hence, this model, thought
already fruitful, has a great potential for improvement.

These results were used to assess the information stored in
a physical channel and to compare them to theoretical curves
(Figure 2). As for applications, the full 2Dmodel can also pro-
vide information about the medium the beam interacted with
that can be useful in remote sensing. Based on the results of
Section 2.2, in the course of future research, we expect topo-
logical beams to outperform the modes with planar phase
structure for twomain reasons: (1) greater library of nontrivial
signatures in the original beam profile; (2) reported robustness
and self-healing properties of vortex modes.

4. Discussion

Interestingly, while information technologies have seen out-
standing progress over the last century, which lead to the
digital revolution and created flourishing businesses, the
field of information theory has remained in a shade. We
believe that a universal technique to assess both the quality
and quantity of information in a received signal, if provided,
could become a conceptually novel tool to physicists and
engineers alike. The approach described in this work is by

far not the first attempt, neither is it the most general. How-
ever, in this approach, classical information does not require
an early choice of a communication scheme (i.e., alphabet).
It is rather based on a fundamental assessment of an optical
system’s capability to carry information, based on its overall
complexity. The WDF is uniquely used here as a probability
density function for Shannon information in optics. The
constraints of probability theory on the definition of infor-
mation and of quantum mechanics on conjugate observables
are satisfied working around the properties of the WDF—a
pseudo-probability distribution. We foresee the relevance of
this formalism in the context of recent developments for
(i) free-space information-processing optics [34]; (ii) inte-
grated photonics-based information processing [35] such
as neural network-based accelerators [36] and photonic ten-
sor cores [37]; (iii) adaptive sensing [38]; and (iv) analog
optical and photonic processors [39–41]. As the data com-
pression coefficient is naturally bounded by Shannon infor-
mation, carried by the beam [42], this work indirectly points
towards higher information capacity in beams with a nontriv-
ial structure, like HG, LG, and Bessel-Gauss modes [43, 44].

Due to the WDF’s relation to the EM-field correlation
function, we foresee our approach to be extremely useful in
adaptive optics. The reconstruction algorithm, when fully
developed, has the potential to characterize the effects of
decoherence in turbulent media, the 2D ambiguity function,
and time-resolved frequency distribution, alongside with
commonly available corrections for aberration, astigmatism,
peak valley, and rms deformation provided by the SHS mea-
surements. The WDF formalism uniquely gives access to
such characteristics as mutual intensity of stochastic wave
fields, which is of high importance when describing partially
coherent sources.

In perspective, as the demand on high-speed data trans-
fer and streaming grows exponentially, ADSL and fiber-to-
home technologies are less and less likely to satisfy even an
average consumer’s data hunger, not to mention business
and government agency calls. These, together with the recent
advents in optical processing [34], micro- and nanofabrica-
tion [45], and OAM communications [46] put forward the
mid-20th century’s excitement around free-space communi-
cations in a new light. The new-generation free-space links
will require coherent detection techniques to realise their
potential to the fullest. For instance, the idea of using classical
information as a quantifier for the amount of information
processing that can be done on a given metasurface has
already been implemented [47]. This approach elegantly
gauges a specific pattern on the surface of a metastructure
(lens) with the corresponding distribution of electromagnetic
radiation in the far field [48]. With this progress, we believe
that our approach may result in a better understanding of
which types of measurements and device architectures are
needed to efficiently mine information from a free-space link.

Data Availability

The data used in this research have been acquired manually
in the OPEN Lab facility, the George Washington Univer-
sity, and can be shared by request.
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Figure 5: Comparing the experiment and the theoretical prediction
for the WDF of the LG mode of order ℓ = 1: (a) the WDF of the
ideal LG1 mode (solid black) and of the measured in an
experiment laser beam (dashed yellow) with the corresponding
error band; the frequency histogram of the deviation of the fitting
parameters a (yellow) and b (blue) in the inset at the right-
bottom, Equation (25), supplied to the model (21), and resulted
from the fitting procedure: 1000 synthetic data sets have been
generated and fitted with the model, mentioned above; for each
run, the deviation between the supplied and fitted parameters has
been calculated.
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