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	   Abstract: Protein-protein interactions (PPIs) are the physical connections between two or more pro-
teins via electrostatic forces or hydrophobic effects. Identification of the PPIs is pivotal, which con-
tributes to many biological processes including protein function, disease incidence, and therapy de-
sign. The experimental identification of PPIs via high-throughput technology is time-consuming and 
expensive. Bioinformatics approaches are expected to solve such restrictions. In this review, our main 
goal is to provide an inclusive view of the existing sequence-based computational prediction of PPIs. 
Initially, we briefly introduce the currently available PPI databases and then review the state-of-the-art 
bioinformatics approaches, working principles, and their performances. Finally, we discuss the caveats 
and future perspective of the next generation algorithms for the prediction of PPIs. 
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1. INTRODUCTION 

 Protein-protein interactions (PPIs) are the physical con-
nections between two or more proteins via electrostatic forc-
es or hydrophobic effects [1]. PPIs play a vital role in diverse 
biological developments, including immune response, DNA 
transcription and replication, metabolic cycles, and signal 
transduction pathways [2-4]. To identify the PPIs responsible 
for such concerted functions is needed [4-6]. Different stud-
ies have suggested that PPIs occur between two species such 
as human-bacteria, human-virus, and plant-pathogen [7-12]. 
As a result, an understanding of the molecular mechanisms 
involved in PPIs is very critical for the design of new medi-
cine and therapeutic targets. 

 Proteins often form complexes with other proteins to 
perform certain tasks [13-15]. PPIs occur at almost every 
level of cellular functions and provide a global picture of 
biological progressions [12, 15, 16]. Particularly, a protein 
complex with multiple subunits [4, 17-20] assists as an effi-
cient subnetwork inside the whole PPI networks [3, 21]. Due 
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to the development of high-throughput sequencing technolo-
gies, the identification of PPIs in specific species (PPIs of 
intraspecies), confirmed by extensive experiments, has en-
larged [3, 22-25]. On the other hand, the identification of 
PPIs between different species (PPIs of interspecies) is lim-
ited. While the identification of PPI in both the intra- and 
inter-species is required for understanding biological func-
tions, mechanisms by which PPI affects the functions of a 
cell remains to be revealed [26-32]. Many large-scale exper-
iments have been achieved to identify PPIs based on the mo-
lecular signature proteins [18, 32-39]. The experimental in-
vestigations are often laborious and time-consuming, making 
it difficult to perceive all potential PPIs. All these restrictions 
could be solved by bioinformatics approaches in the era of 
artificial intelligence. 
 Traditional computational algorithms of intraspecies PPIs 
are often used to deduce the possible associations of interro-
gating protein pairs [40-44]. These approaches are usually 
denoted as the interlog mapping [43, 45], the DDI-based 
method [41, 42] and the DMI-based method [40]. Mean-
while, in recent decades, machine learning (ML)-based ap-
proaches have been booming [10, 46-50] that use the amino 
acid sequence [51, 52], evolutionary profiles [53, 54], physi-
cochemical properties [47, 55], and structure information 
[56] of the protein pairs. The interspecies PPI prediction is a 
relatively earlier stage research topic and more challenging 
task than the intraspecies PPI prediction. Recently, some of 
the interspecies prediction models have been developed with 
increases in experimentally verified data [10, 21, 57]. 
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 In this review, we provide an inclusive assessment of the 
state-of-the-art ML approaches for sequence-based PPIs pre-
diction, as shown in Fig. (1), and discuss their benefits and 
shortcomings to aid readers select the best PPI predictor for 
their purpose. Moreover, we present the future perspectives 
of ML-based PPI predictions.  
 

 
Fig. (1). A general framework of ML-based PPI prediction. (A high-
er resolution / colour version of this figure is available in the electronic 
copy of the article). 

2. DATABASES OF PPIs 

 Many PPI databases are available, e.g., APID [58], TAIR 
[59], HIPPIE [60], PPIM [61], BioGrid [62, 63], and DIP 
[64] (Table 1). The APID is the most updated, available da-
tabase, which delivers an inclusive and curated assortment of 
PPIs for over 1100 organisms. It includes more than 500 
experimentally identified PPIs for each of 30 species. 

3. DATASET PREPROCESSING 

 To build a high-quality dataset is a crucial step for the 
sequence-based PPI prediction via ML algorithms. The da-

tasets are normally collected from the Swiss-Prot 
/UniProtKB. In particular, the experimentally identified PPI 
pairs were considered as positive samples. Sequentially, all 
the positive pairs of PPIs were randomly crossed to make 
negative samples, assuming that the randomly shuffled pro-
teins are very unlikely to be positive PPIs. The optimal num-
bers of negative samples were considered on training data 
through several statistical investigations [65]. Then the re-
dundancy of the curated sequence datasets was considered. If 
two sets of PPIs contain similar sequences, either of them is 
deleted. Recently, Sun et al. used different subcellular loca-
tions for generating the negative samples, while considering 
the experimentally verified PPIs as positive samples [49]. 
They used the non-interaction pairs as negative samples by 
pairing proteins in diverse subcellular locations. First, the 
Swiss-Prot database (version 57.3) was used. Second, the 
annotated sequences with uncertain or indeterminate subcel-
lular location terms, such as “possible”, “maybe”, “poten-
tial”, or “by similarity”, were accessed from the human pro-
tein. Finally, two or more locations were excluded from the 
annotated sequences. Due to the possibility of sequence 
homolog, 50% homology reduction was performed. This 
approach had a slight advantage over the random generation 
of negative samples.  
 To establish a computational tool for accurately predict-
ing PPIs, one of the major challenges is to handle imbalance 
positive and negative samples [46]. To solve the potentially 
imbalanced problem, the negative PPI samples are randomly 
pooled from the entire negative samples to keep a ratio of 
positive to negative samples [61]. However, exact solutions 
of dataset imbalance problems are still indispensable issues.  
 Overfitting and underfitting problems may exist in the 
datasets. When the datasets are highly homologous, they can 
cause overestimation in the prediction model. Generally, 
scientists cluster the composed protein sequences with an 
identity threshold of 60%, 50%, 40%, and 30% by using CD-
HIT [66] or BlasClust (http://nebc.nox.ac.uk/bioinformatics/ 
docs/blastclust.html) to solve the bias problems. However, 
the curated datasets may contain some correlated sequences 

Table 1. Currently available databases for PPIs. 

Database Description Year Database URL 

DIP Several species PPIs that are manually curated 2002 https://dip.doe-mbi.ucla.edu/dip/Main.cgi 

TAIR PPI annotations for Arabidopsis thaliana 2007 https://www.arabidopsis.org/portals/proteome/proteinInteract.
jsp 

PPIM PPI database for Maize 2016 comp-sysbio.org/ppim/ 

PPIM 2,762,560 interactions among 14,000 proteins 2016 https://dbaasp.org/home 

HIPPIE Human PPI references 2017 http://cbdm.uni-mainz.de/hippie/ 

BioGRID 400,000 PPIs collected from the experimentations and primary 
literatures 

2018 https://openwetware.org/wiki/Protein-
protein_interaction_databases#BioGRID 

APID Agile protein intercoms database for bacterial PPIs 2019 http://compsysbio.org/bacteriome/ 

APID It integrates the existing public resources and provides PPI 
information of more than 1100 organisms 

2019 http://apid.dep.usal.es 
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that the CD-HIT and BalstClust miss. Exact sequence homo-
log reduction methods are still an important issue. Another 
problem is data underfitting, when the prediction model uses 
a very small dataset as the input. Therefore, the dataset 
should not be too small.  

4. SEQUENCE ENCODING METHODS 

 Generally, PPI prediction methods created the input data 
by combining the two feature vectors of protein pairs in a 
row [67-69]. Feature encoding is one of the major phases for 
predicting PPIs that encodes protein pairs as numeric feature 
vectors. Appropriate feature descriptors enable to accurately 
predict PPIs. Recently, a number of computational ap-
proaches have been developed as an alternative to experi-
mental methods for identifying potential PPIs (Table 2). Due 
to the sequence diversity, some of the PPIs may be feeble 
[70-77]. To solve this issue, the PSI-BLAST [78, 79] can be 
used to produce an outline profile by using a position-
specific scoring matrix (PSSM). The given profiles repro-
duce the variation and conservation through the evolutionary 
information between protein sequences [80, 81]. These ap-
pearances may be suitable for a particular PPI classification 
problem. Khatun et al. have used autocorrelation and amino 
acid compositional features for analyzing Zea mays PPI se-
quences [46]. Recently, the DLPred used diverse sequence 
information including PSSM, Hydropathy index (HI), AA-
index, conservation scores and 3D-1D scores. Chou’s pseudo 
amino acid composition (PseAAC) is used to encode the 
positional-wide composition of PPIs [82]. 
 Several physicochemical features available for PPI pre-
diction are introduced, including hydropathy indexes, physi-
cal properties, physicochemical characteristics, pKa, conser-
vation score, and 3D-1D scores. The employed physicochem-
ical features are a pKa value of the amino acid residues, hy-
drophobicity/hydrophilicity, negatively/positively charged, 
and uncharged residues, a volume of amino acid side chains, 
and control of functional groups such as methyl, benzyl, and 
thioether groups. In the amino acid index (AAindex) data-
base, 544 physicochemical properties are stored as numerical 
indexes [83, 84]. Khatun et al. proposed a sequence-based 
algorithm using autocorrelation (AC) for PPIs prediction in 
Zea Mays [46]. One advantage of this method is that AC 
considers long-range interaction features of amino acids 
which are responsible for PPI identification. Recently, sever-
al structure-based prediction methods have employed the 
domain information, secondary structure states, polar surface 
locations, solvent accessibility and hydrophobicity [25].  
 Generally, the features are extracted by the two different 
structure-and sequence-based methods. In most cases of 
PPIs, the protein sequence data has been used more often 
than the structure data. There is an alarming limitation be-
cause proteins are essentially stated as sequences with un-
fixed length. In the PPI identification, it is necessary to fix 
the sequence size s (s is the static number with D dimensions 
of amino acids information). Thus, every PPI sequence is 
signified as a feature vector of size Dxs. When the length of 
a PPI sequence is shorter than s, zero is added to the remain-
ing elements of the feature vector. It requires a long compu-
tational time to generate the feature vectors. Furthermore, 
many ML algorithms classify the high-dimensional dataset 

very properly. Therefore, precise sequence encoding 
schemes are necessary for valuable perdition. 
 Furthermore, several domain-based approaches have 
been developed [85-90] that use the domain-domain interac-
tion scores evaluated by diverse ML algorithms including a 
relevance vector machine and SVM. These approaches con-
sider the proportion of an important domain or domain co-
occurrence relationships, but they do not employ the entire 
domain evidence [84], which is crucial to the understanding 
a global view of the PPI. 

5. MACHINE LEARNING ALGORITHM 

 To detect the potential PPIs via the sequence-based pre-
diction models, several ML algorithms are employed, such 
as deep learning (DL), support vector machines (SVM), and 
random forest (RF). Most of the existing predictors use three 
types of ML algorithms: DL, SVM, and RF. The description 
of these algorithms is as follows. 

5.1. Deep Learning 

 Deep learning (DL) consists of several approaches in-
cluding Recurrent Neural Networks (RNN), Deep Belief 
Networks (DBNs), and Deep Neural Networks (DNN). Dif-
ferent DL algorithms are suitable for different specific appli-
cations. For instance, to the analysis of sequential infor-
mation, RNNs are appropriate. The DBNs are decent at ex-
amining inside associations in high-dimensional data. To 
predict PPIs, DNN is one of the most suitable ML algorithms 
[49]. The DNN input should be the vectors with a fixed di-
mension. The main parts of the DNN component are to re-
move highly homologous samples and eliminate noise, and 
to decrease data dimensions. DNN architectures are assem-
bled layer-by-layer with a greedy algorithm. DNN helps to 
pick out unravel features to improve performance. 

5.2. Support Vector Machine 

 To classify the PPI datasets, SVM or kernel machines are 
used [89]. The SVM maximizes the margins that are related 
to the inevitability of its classification. The objective of this 
classifier is likely to have small margins [90] using a labeled 
of the training dataset. SVM is very influential and can clas-
sify problems with random density information, although it 
needs large memory requirements and complex format. The 
SVM is a little bit slow to train and assess the high dimen-
sional features via radial basis function kernel. Another dis-
advantage is that the parameters significantly alter the re-
sults. We refer to more details [90-92]. 

5.3. Random Forest 

 The RF algorithm involves numerous ensemble decision 
trees that categorizes the two-class prediction problem [93-
97]. On the training model, each decision tree is built using 
the casual feature vectors that are sampled from a dataset in 
every node in a tree independently. Then each classification 
tree is entirely grown via randomly selected variables. To 
categorize a new entity, the response vector keeps each of 
the trees in the forest. Allowing the majority voting, one 
class is allocated to the entity. The RF is an effective algo-
rithm when there exist a large number of features and 
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Table 2. Currently available tools for PPI prediction. 

Predictor ML  
Algorithms 

Encoding 
Methods 

Testing 
Methods 

Accuracy Year Predictor URL References 

Pred_PPI SVM  Auto co-
variance 

Jackknife 90.67% (human), 88.99% (yeast), 
90.09% (Drosophila), 92.73%  
(E. coli), 97.51% (C. eleganse) 

2010 http://cic.scu.edu.cn/bioinfor-
matics/predict_ppi/default.html 

[72] 

Hotpoint SVM PseAAC	 
and local 
alignment 

kernel 

5-fold 
CV 

70% 2010 http://prism.ccbb.ku.edu.tr/ho
tpoint/ 

[89] 

PSOPIA Domain-
based 

Sequence 
similarity 

10-fold 
CV 

70-85% 2014 http://mizuguchilab.org/PSO
PIA 

[80] 

NIP SVM G-gap 
dipeptide 
composi-

tions  

Jackknife 92.67% 2016 http://mlda.swu.edu.cn/codes.
php?name=NIP 

[70] 

SPRINT SVM k-mer 10-fold N/A 2017 https://github.com/lucian-
ilie/SPRINT/ 

[71] 

SIPMA RF Autocorre-
lation, 
AAC, 

PseAAC 

10-fold 
CV 

89.9% 2018 http://kurata14.bio.kyutech.a
c.jp/SIPMA/ 

[46] 

DPPI Deep learn-
ing 

Sequence 
features 

10-fold 
CV 

96% 2018 https://github.com/hashemifa
r/DPPI/  

[77] 

PPI-Detect SVM BPF and 
sequence 
features  

10-fold 
CV 

91.40% 2018 https://ppi-detect.zmb.uni-
due.de/ 

[47] 

DLPred Deep learn-
ing 

PSSM, HI, 
AAindex, 
sequence 
conserva-
tion score, 
and 3D-1D 

scores. 

10-fold 
CV 

73.68% 2019 http://qianglab.scst.suda.edu.
cn/dlp/ 

[75] 

GWORVM
BIG 

Optimizer-
Based Rel-

evance 
Vector 

Machine 

PSSM and 
evolution-
ary encod-

ing 

5-fold 
CV 

NA 2019 http://219.219.62.123:8888/G
WORVMBIG 

[76]  

DAMpred Neural-
Network 

Protein 
structure 
encoding 

10-fold 86% 2019 https://zhanglab.ccmb.med.u
mich.edu/DAMpred 

[73] 

FCTP-
WSRC 

SVM and 
Weighted 

sparse 
leraning 

Auto covar-
iance and 

KNN 

5-fold 
CV 

96.67%, 99.82%, and 98.09% for 
H. pylori, Human and Yeast 

2020 https://github.com/wowkieko
ng/PPI-prediction 

[74] 

 
datasets, and can rank important features for accurate classi-
fication [98, 99]. The RF is widely used in computational 
biology research [46, 90, 99-103].  

5.4. Combined Model 

 For a real-world prediction task, the feature sets are com-
bined to enhance the prediction performance [104-110]. The 
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feasibility of different feature sets is evaluated by diverse 
statistical learning algorithms. Then the evaluation scores are 
integrated by using various statistical strategies such as lo-
gistic regression [111], weight score [112] and multiple line-
ar regression [113]. Moreover, recently the meta-classifiers 
(e.g. combined different ML algorithms) have widely been 
used in bioinformatics research to enhance the prediction 
performance [100, 114].  

6. EVALUATION 

6.1. Measure 

 To examine the performance of different ML classifiers, 
many statistical measurements were used, including accura-
cy, specificity, sensitivity, and Matthew`s correlation coeffi-
cient (MCC). These assume a two-class binary classification 
problem, in which the outputs (PPI or non-PPI) are catego-
rized either as PPI (+) or non-PPI (-). Four consequences 
will be provided (Table 3). True positive (TP) signifies that 
the real value is ‘+’ and predicted class is ‘+’; false positive 
(FP) signifies that the real value is ‘-’ and predicted class is 
‘+’. False negative (FN) occurs when the real value is ‘+’ 
and outcome is ‘-’; true negative (TN) occurs when both the 
real and prediction results are ‘-’. 
The four measures are defined by: 

n(FN)n(TP)
n(TP)ySensitivit
+

=
      

n(FP)n(TN)
n(TN)ySpecificit

+
=

 

n(FN)n(FP)n(TN)n(TP)
n(TN)n(TP)Accuracy

+++
+=

     

( ) ( ) n(FN)]][n(TP)n(FPTN)][nn(FPTP)n(FN)][n[n(TN)
n(FN)n(FP)n(TN)n(TP)MCC

++++
×−×=

      The values of sensitivity, specificity, and accuracy lie 
between 0 and 1 and MCC between -1 and 1, a higher value 
signifies better estimate. 

6.2. Parameter Optimization 

 After applying ML algorithms, threshold value selection 
is an important step for the precise prediction of PPIs and 
non-PPIs. The performance of the prediction model by using 
the training samples was assessed with a stepwise change in 
specificity [46, 115, 116]. Typically, high specificity de-

creases sensitivity. Users need to set different threshold val-
ues in their algorithms to understand the exact level of per-
formance. However, existing methods did not set different 
threshold values, but used a fixed threshold value so that the 
specificity or sensitivity value was within a certain range. In 
this case, ordinary users cannot understand exact perfor-
mances. Therefore, developers should control specificity or 
sensitivity by changing the threshold of the ML scores via a 
cross-validation test. 

6.3. Training and Independent Datasets 

 Generally, the independent, test dataset used 10-30% 
samples randomly selected out of the whole PPI samples and 
the rest of the samples were considered as a training dataset. 
To evaluate the model performances, initially, a cross-
validation test was executed on the training data [117, 118]. 
In this process, the samples are separated into n sub-groups, 
and each group is consecutively evaluated n times after train-
ing with the other groups. For example, the training dataset 
is divided into 10 groups. It is an ordinarily accepted num-
ber. Among the 10 groups, one group was selected for a test 
and the other 9 groups were used for training. The predicted 
PPIs with maximal scores were set to positive samples and 
the PPIs with low scores were regarded as negative samples. 
Particularly, a jackknife or a 10-fold CV test was used to 
predict existing PPI prediction (Table 2) [119, 120]. 

7. CAVEATS OF THE EXITING BIOINFORMATICS 
ALGORITHMS 

 Even though much advancement has been done for the 
expansion of PPI prediction algorithms [121-129], some 
challenges and limitations need to be addressed. Firstly, the 
accuracy reported by CV tests is hard to reproduce, unless 
the source codes and ML parameters regarding sequence 
encoding methods are provided. However, if developers pro-
vide a standalone program or web application, the perfor-
mances could be evaluated based on independent datasets. 
Unfortunately, few reported methods provided their source 
codes or datasets (Table 2). Therefore, it is highly recom-
mended to provide the datasets and source codes while pub-
lishing a new methodology [119]. Secondly, most existing 
algorithms removed identical sequences and considered the 
remaining proteins as a dataset. A few studies have used the 
dataset including the proteins showing higher sequence iden-
tity (>30 %). Using such high sequence similarity dataset 
might cause overfitting problems and overestimate the pre-
diction accuracy. Hence, to develop a reliable prediction 

Table 3. Contingency table. 

Confusion Matrix or 2×2 Contingency Table 

 

 

Tested/Estimated/Predicted Results 

Total Samples True Condition 

Positive (+) Negative (-) 

Positive (+) n(TP) n(FP) 

Negative (-) n(FN) n(TN) 

n(TP) and n(FP) represent the numbers of correctly and incorrectly predicted positive samples, respectively. n(TN) and n(FN) represent the numbers of the correctly and incorrectly 
predicted negative samples, respectively. 
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model, it is highly recommended to utilize low sequence 
identity cut-off (<30%), which has been extensively used in 
various sequence-based predictions. Thirdly, most of the 
publicly available methods use their own independent da-
taset to assess prediction performances. To conduct a fair 
comparison, it is essential to build unique or independent 
dataset. It is necessary to check whether the prediction model 
identifies unseen PPIs. Finally, half of the existing PPI tools 
are not publicly available. To get reliable performances 
without any knowledge of mathematics and statistics, online 
services are particularly valuable. Therefore, state-of art ac-
cessible services or software should be freely accessible to 
the users.  

FUTURE PERSPECTIVES AND CONCLUSION 

 Due to the advancement in sequencing technology, it is 
essential to develop computational methods to enable fast 
and precise prediction of unseen PPIs from a large number of 
candidate proteins. Several ML-based methods have been 
proposed (Table 2). A future study requires the construction 
of unbiased datasets with larger size and independent dataset 
for validating the proposed models, and the development of 
new encoding schemes. Of note, it is arguable that the addi-
tion of structure-based, side-chain orientation of amino acids 
or evolutionary information can advance the prediction per-
formance. It is also important to integrate different feature 
encodings [129-133] such as chemical properties, multivari-
ate mutual information, K-nearest neighbors, and pseudo 
amino acid configuration and to explore ML algorithms 
[134-138] including light gradient boosting, extreme gradi-
ent boosting, and deep learning.  
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