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Abstract

The use of chemical fertilizers and pesticides led to a decline in the quality and yield
of Bupleurum chinense. The aim of this study was to determine the effects of Tricho-
derma harzianum biofertilizer on the growth, yield, and quality of radix bupleuri and
microbial responses. The results showed that T. harzianum biofertilizer promoted the
growth of B. chinense and increased the yield and quality of radix bupleuri. In addi-
tion, it increased the contents of NH4"-N, NO3; ™ -N, available K, and available P and
increased the activities of sucrase and catalase in the rhizosphere soil. High-
throughput analysis showed that the dominant bacteria in the rhizosphere were Pro-
teobacteria (28%), Acidobacteria (23%), and Actinobacteria (17%), whereas the domi-
nant fungi were Ascomycota (49%), Zygomycota (30%), and Basidiomycota (6%).
After the application of T. harzianum biofertilizer, the abundance of Proteobacteria
and Actinobacteria (relative to total bacteria) and Ascomycota and Basidiomycota
(relative to total fungi) increased, but the relative abundance of Acidobacteria
decreased. Canonical correlation analysis (CCA) showed that the relative abundance
of Pseudarthrobacter, Streptomyces, Rhizobium, Nocardioides, Minimedusa, and Chaeto-
mium were positively correlated with NOs =N, NH."-N, available K, available P,
sucrase, and catalase in microbial communities, whereas Aeromicrobium and Mortier-
ella were positively correlated with soil organic matter and urease. These results sug-
gest that T. harzianum biofertilizer could significantly improve the yield and quality of
radix bupleuri by changing the structure of soil microbial flora and soil enzyme activ-
ity. Therefore, it could be recommended for commercial scale production of

Bupleurum.
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1 | INTRODUCTION

Radix bupleuri is a commonly used Traditional Chinese medicine with
many important properties such as antidepressant, antitumor, anti-
inflammatory, and immunomodulatory activities (Yang et al., 2017).
The cultivation of Bupleurum chinense in China has a long history, and
the demand for radix bupleuri has increased rapidly during the last
decade, especially after the new coronavirus outbreak (Zhong
et al., 2020). However, the production of Bupleurum in China is still
restricted by many factors, such as long-term excessive application of
chemical fertilizers and pesticides and monoculture, which has caused
soil acidification, salinization, nutrient imbalance, and degradation of
other soil properties together with reduced crop yield and quality
(Yan et al., 2018; Zhang, 2020).

Therefore, the amounts of chemical fertilizers should be appropri-
ately reduced to improve the physical and chemical properties of soil
as well as eliminate environmental pollution (Wang et al., 2020). In
recent years, as society has paid more attention to protection of the
agricultural environment, the research on replacing chemical fertilizers
with biofertilizers has attracted widespread attention (Patel &
Minocheherhomiji, 2018).

Biofertilizer contains living microorganisms that can improve soil
nutrients and physical and chemical properties, promote plant growth,
and control pathogens (Kumar, 2016; Ren et al., 2020). Biofertilizers
are considered to be a promising and nontoxic alternative to synthetic
agrochemicals, making biofertilizers indispensable in improving the
soil environment and plant growth (Suhag, 2016).

Trichoderma species are effective biological control agents able
to inhibit soilborne pathogens and promote plant growth (Carro-
Huerga et al., 2020; Sallam et al., 2019). Trichoderma species directly
inhibit the growth of pathogenic bacteria by producing various sec-
ondary metabolites (Mironenka et al., 2021). On the other hand, they
indirectly improve plant disease resistance and promote plant growth
by changing soil microbial community structure and increasing the
number of beneficial soil microorganisms (Zafra & Cortés-
Espinosa, 2015). Therefore, Trichoderma strains have become a
research focus for biological control in recent years. Trichoderma har-
zianum is one of the most commonly used biocontrol strains, which
can antagonize pathogens and promote plant growth (Rubio
et al.,, 2017). Poveda et al. (2019) found that the simultaneous appli-
cation of T. harzianum strain and arbuscular mycorrhizal fungi inocu-
lum significantly increased the colonization rate in the roots of
arabidopsis and rapeseed and increased the yield of these two plants.
The application of T. harzianum strain to soil from continuous cucum-
ber culture effectively controlled cucumber Fusarium wilt, enriched
soil microbial community, and restored soil biological functions (Chen
et al,, 2012).

However, to our knowledge, very little is known on the effects of
T. harzianum on the soil environment and plant growth during the cul-
tivation of B. chinense. In this study, the effects of T. harzianum biofer-
tilizer on the growth, yield, quality of radix bupleuri, and microbial
responses were investigated, which provided essential information for

fertilizer management and sustainable development.

2 | MATERIALS AND METHODS

2.1 | Materials and reagents

T. harzianum biofertilizer was purchased from Shandong Tai'an Nong
Bole Biological Fertilizer Company (China). It was composed of T. har-
zianum T22 strain and organic additives. The biofertilizer contained
>10% CFU g~ . Organic fertilizer was provided by Shandong Kaoshan
Biotechnology Company (China).

Saikosaponins A (P15S11F124709), saikosaponins C
(M120115126866), and saikosaponins D (P15010F100354) (with a
purity of >98%) were purchased from Shanghai Yuanye Biotechnology
(China). Other chromatographic grade reagents were purchased from
Sinophenol Reagent Company (China).

2.2 | Field experiment design

The experimental work was conducted at Zhanggiu Planting Base in
Shandong province from June 2018 to October 2020 (117°22'54" E
36°35'27" N, altitude 524 m), where B. chinense was cultivated for
2 years. Plant and row spacings were 5 and 10 cm, respectively. The
predominant soil in this area was brown clayey soil.

Three treatments were tested: A, T. harzianum biofertilizer; B,
organic fertilizers; and C, control without fertilizer. Each treatment
consisted of three replicate blocks. The area of each block was 30 m?.
The fertilizer rate and application method were selected based on the
manufacturers’ instructions. Organic and biofertilizer were applied in
the early and full blooming periods of B. chinense. Each fertilizer was
applied weekly (four times). The first fertilization was conducted on
13th of July 2020. Samples of medicinal materials were collected on
15th of October 2020.

2.3 | Collection of soil samples

The five-point mixing method was used to collect and process B. chi-
nense radix and the corresponding rhizosphere soil in different fertili-
zation treatments (He et al., 2020). The rhizosphere soil samples were
collected into sterile bags, cooled in a portable refrigerator, and
brought back to the laboratory where they were screened (2 mm) and
stored at —20°C for microbial and soil analyses.

24 | Growth parameters and yield

At harvest, 10 healthy B. chinense plants were randomly collected
from each treatment and used to determine growth index by measur-
ing radix/stem length and diameter. Radix and whole plant weights
were determined by an electronic balance. The results were expressed
as means =+ standard deviation. The average value of bupleurum radix
from five quadrats was taken as the yield per treatment, which was

then scaled up to yield per hectare.
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2.5 | Quality analysis 2.9 | Processing and analysis of the sequencing
data

The radices of 10 plants were collected from each treatment, dried at
50°C, mixed, ground with a powder beater, and passed through an
80-mesh sieve. The contents of saponins A, saponins C, and saponins
D in B. chinense were determined by HPLC (National Pharmacopoeia
Commission et al., 2020).

2.6 | Soil physicochemical properties

After air-drying, the contents of soil organic matter (SOM), available
phosphorus (Ava-P), and available potassium (Ava-K) were determined
as described by Qu et al. (2019). The contents of NO3; -N and
NH,4*-N in soil were determined as described by Dang et al. (2021).

2.7 | Soil enzyme activities

The activities of sucrase, urease, and catalase were determined by
using colorimetric method, sodium phenol-sodium hypochlorite color-
imetric method, and potassium permanganate titration method,
respectively (Guan et al., 1986; Hu et al., 2014; Huang et al., 2016).

2.8 | DNA extraction, PCR amplification, and
lllumina MiSeq sequencing

Three replicates (0.5 g each) of soil samples were extracted using a
Soil DNA Kit (Mo Bio Laboratories, Carlsbad, CA, USA). The V4-V5
region of soil bacteria 16S rDNA and soil fungi ITS1 were amplified by
PCR(94°C for 2 min, followed by 22 cycles at 94°C for 30 s, 55°C for
30's, 72°C for 45 s, and a final extension at 72°C for 10 min), using
the primers 515F 5-GTGCCAGCMGCCGCGGTAA-3/, 926R 5'-
CCGTCAATTCMTTTGAGTTT-3, ITS1IF 5-CTTGGTCATTTAGAG-
GAAGTA, A-3/, and ITS1IR 5'-GCTGCGTTCTTCATCGATGC-3'. The
target bands were detected by running the PCR products on 2%
agarose gels and recovered by a QlAamp DNA Micro Kit (Qiagen,
Valencia, CA, USA). Finally, paired-end sequencing of the amplicon
library was performed on an lllumina MiSeq platform (TinyGene

Bio-Tech Co., Ltd., China), according to the standard protocol.

The raw fastq files were demultiplexed based on the barcodes.
Paired-end reads for all samples were run through Trimmomatic
(Version 0.35) to remove the low-quality base pairs. Flash (Version
1.2.11) software was used to splice the paired reads into a
sequence. Mothur soft (Version 1.33.3) was used to control the
sequence quality to obtain the optimized Then,
UPARSE software (usearch Version V8.1.1756, http://drive5.com/

uparse/) was used for OTU (the operational taxonomic unit)

sequences.

clustering. Based on taxonomic information, statistical analysis of
community structure was carried out at the phylum and genus
levels.

Diversity analyses were performed using Mothur soft (Version
1.33.3). On the basis of the above analyses, Venn, NMDS, commu-
nity structure histograms, canonical correlation analysis, and LDA
effect size were calculated and visualized by R software (Version
3.6.0).

3 | RESULTS
3.1 | Effect of T. harzianum biofertilizer on plant
growth

The results showed that application of T. harzianum biofertilizer and
organic fertilizer both improved the growth and yield of B. chinense
(Table 1). However, compared with the organic fertilizer, T. harzianum
biofertilizer significantly increased the stem length and thickness, root

thickness and whole plant weight.

3.2 | Effect of T. harzianum biofertilizer on main
active components

Compared with the control, T. harzianum biofertilizer significantly
increased the contents of saikosaponins A, C, and D in radix
bupleuri. However, in the treatment with organic fertilizer the
content of saikosaponins A and D were significantly increased

(Figure 1).

TABLE 1 Growth parameters and yield of Bupleurum chinense under different fertilization treatments

Root Whole plant
Treatment Stem length/cm length/cm weight/g
A 100.38 + 9.10? 12.21 £+ 2.48° 8.66 & 3.867
B 90.08 + 11.84° 12.94 + 3.29° 5.49 + 3.049°
C 83.29 + 8.30° 11.34 £+ 2.54° 3.82 4+ 2.37¢

Root Stem Root

weight/g diameter/cm diameter/cm Yield/kg

1.07 + .40° 1.34 4+ .34° 1.01 +.22° 27 £+ .07°

1.05 + .56 1.15 +.32° 76 + .20° .25 + 032
79 + 46° 1.10 + .23° 73+0.18° A7 +£.04°

Notes: A, Trichoderma harzianum biofertilizer. B, Organic fertilizer. C, Control. Different lowercase letters in a column indicate significant differences among

treatments (P < .05, n = 30).
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FIGURE 1 Determination of saikosaponins A,
saikosaponins C, and saikosaponins D in
Bupleurum chinense samples. A, Trichoderma
harzianum biofertilizer. B, organic fertilizer. C,
control. Different lowercase letters indicate
significant differences among treatments (P < .05,
n=3).

Saikosaponin A  Saikosaponin C

3.3 | Effect of T. harzianum biofertilizer on soil
physicochemical properties

Compared with the control, the contents of NHs"-N, NO3; -N,
Ava-K, and Ava-P, but not the soil organic matter content, signifi-
cantly increased after application of T. harzianum biofertilizer
(Figure 2).

3.4 | Effect of T. harzianum biofertilizer on soil
enzyme activities

Compared with the control, the activities of sucrase and catalase sig-
nificantly increased, but the activity of urease significantly decreased
after applying T. harzianum biofertilizer. After application of the
organic fertilizer, the activities of urease and catalase increased, but
the activity of sucrase decreased significantly (Figure 3).

3.5 | Analysis of sequencing data
The dilution curves of rhizosphere soil samples are shown in
Figure S1. The number of OTUs increased sharply and then gradually
leveled off, indicating that the sequencing library has reached satura-
tion. Therefore, the sequencing results can be used for subsequent
analysis.

Through classification analysis, the common or unique OTUs of

each sample were determined with 97% sequence identity and were

Saikosaponin D

displayed in the Venn diagram (Figure 4). The number of soil bacteria-
specific OTUs to which T. harzianum biofertilizer and organic fertilizer
were applied increased significantly (Figure 4). Similarly, the number
of soil fungi-specific OTUs with T. harzianum biofertilizer showed a
similar trend. However, the number of OTUs specific to soil fungi

decreased significantly after applying the organic fertilizer.

3.6 | Alpha diversity of bacterial and fungal
communities

The microbial richness (Ace) and community diversity (Shannon and
Simpson indices) were measured in different fertilization regimes. The
results (Table 2) showed that the bacterial richness in the rhizosphere
soil of B. chinense decreased after applying T. harzianum biofertilizer
and organic fertilizer. Bacterial diversity showed an upward trend
after application of T. harzianum biofertilizer and organic fertilizer.
After application of T. harzianum biofertilizer, the abundance of fungi
increased, but the diversity decreased. However, the abundance and

diversity of fungi decreased after application of organic fertilizer.

3.7 | Betadiversity of bacterial and fungal
communities

To further investigate the differences in microbial community struc-
ture, we performed NMDS analysis based on the weighted UniFrac

distance (Figure 5). The NMDS results showed that the soil samples
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FIGURE 4 Venn diagram of the similarity and overlap of microbiome operational taxonomic unit (OTU) from different fertilization regimes.

(a) Bacteria, (b) fungi

TABLE 2 a-Diversity index of microorganisms in the rhizosphere soil of Bupleurum chinense under different fertilization treatments
Bacteria Fungi
Treatment Ace Shannon Simpson Ace Shannon Simpson
A 3698.54 + 58.69 6.51 + .04 .0045 +.0002 544.88 + 70.60 327 £ .45 .10+ .05
B 3686.55 + 37.31 6.54 + .03 .0045 +.0001 494.48 + 18.58 3.07 + .34 14 + .04
C 372248 £ 70.72 6.51 £ .02 .0048 +.0001 519.40 + 28.40 346 £ .46 .09 + .03

Notes: A, Trichoderma harzianum biofertilizer. B, Organic fertilizer. C, Control. Ace represents the abundance of bacteria and fungi. Shannon and Simpson

indices represent the diversity of bacteria and fungi.

Proteobacteria (28%), followed by Acidobacteria (23%) and Actino-
bacteria (17%). The relative abundance of Proteobacteria and
Actinobacteria increased after application of T. harzianum biofertili-
zer. The relative abundance of Acidobacteria decreased after
organic fertilizer addition but increased when no fertilization was
applied.

Thirty bacterial genera (Figure 8a) were detected in the soil
from different fertilization treatments. The dominant genera were
Pseudarthrobacter (2%), Streptomyces (2%), Rhizobium (1%), Nocar-
dioides (1%), Aeromicrobium (1%), and Pirellula (1%). The relative
abundance of other dominant genera (except Aeromicrobium and
Opitutus) increased after application of T. harzianum biofertilizer.
The relative abundance of Aeromicrobium increased only after
application of organic fertilizer, whereas the relative abundance of
Opitutus T. harzianum

increased only after application of

biofertilizer.

3.9 | Composition and structure of the fungal
community

As shown in Figure 7b, eight fungal phyla were detected in the soil
samples from different fertilization treatments. The dominant fungal
phyla were Ascomycota (49%), Zygomycota (30%), and Basidiomy-
cota (6%). The relative abundance of Ascomycota and Basidiomy-
cota increased after application of T. harzianum biofertilizer,
whereas the relative abundance of Ascomycota and Basidiomycota
decreased after application of organic manure. The relative
abundance of Zygomycota increased after application of the
organic fertilizer but decreased after application of T. harzianum
biofertilizer.

Thirty-three fungal genera (Figure 8b) were detected in the soil
from different fertilization treatments. The dominant fungal genera in
the rhizosphere were Mortierella (30%), Gibberella (8%), Chaetomium
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FIGURE 5 The non-metric multidimensional scale (NMDS) map of the unweighted UniFrac distance represents the microbial community

structure. (a) Bacteria, (b) fungi

0.3
- 025

0.2

0.15

0.1

0.05

PR RO FPP S
()

PRI RIC
(b)

FIGURE 6 Based on the unweighted UniFrac distance, the heat map analysis of the microbiome community structure in the rhizosphere soil
of Bupleurum chinense from different fertilization regimes. (a) Bacteria, (b) fungi

(3%), Paraphoma (3%), Minimedusa (2%), Alternaria (2%), Tetracladium
(1%), and Cladosporium (1%). Among them, after the application of T.
harzianum biofertilizer, the relative abundance of Gibberella, Chaeto-
mium, and Paraphoma decreased, but that of Alternaria, Tetracladium,
and Cladosporium increased. Other fungi showed different responses
to fertilization treatments. For example, the relative abundance of
Mortierella increased when the organic fertilizer was applied but
decreased in response to T. harzianum biofertilizer. The relative abun-
dance of Minimedusa increased significantly when T. harzianum

biofertilizer was applied but decreased significantly in the organic fer-

tilizer treatment.

3.10 | Correlation analysis of dominant bacteria
and soil properties

To study the correlation between the B. chinense rhizosphere microor-

ganisms, soil nutrients, and enzyme activities under different
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FIGURE 8 Relative abundance of microbial genera with significant differences under different fertilization regimes. (a) Bacteria, (b) fungi

fertilization treatments, we used canonical correlation analysis (CCA). different fertilization treatments. The relative abundance of Pseudar-

As shown in (Figure 9), the correlations between rhizosphere microor- throbacter, Streptomyces, Rhizobium, and Nocardioides was positively

ganisms and soil nutrients and enzyme activities were different under correlated with NOz -N, NH,"-N, Ava-K, Ava-P, sucrase, and
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FIGURE 9 Canonical correlation analysis (CCA) of soil chemical properties and dominant bacterial (a) and fungal genera (b)

catalase, whereas the relative abundance of Aeromicrobium was posi-
tively correlated with SOM and urease. For fungi, the relative abun-
dance of Minimedusa and Chaetomium were positively correlated with
NO; -N, NH,"-N, Ava-K, Ava-P, sucrase, and catalase, whereas that
of Mortierella was positively correlated with SOM and urease. After
the application of T. harzianum biofertilizer, NOz; -N, NH4z"-N,
Ava-K, Ava-P, sucrase, and catalase had a large influence on the struc-
ture of rhizosphere microbial communities, whereas after the applica-
tion of organic fertilizer, the most influential factories were SOM and

urease.

3.11 | Biomarker analysis

To identify the dominant microbial biomarkers in the rhizosphere soil
of B. chinense under different fertilization treatments, LDA effect size
(LEfSe) was used for analysis (Figure 10). The LDA results identified
42, 26, and 25 bacterial biomarkers in the T. harzianum biofertilizer,
organic manure, and the unfertilized treatments, respectively
(Figure 10a). Alpha-Proteobacteria and Proteobacteria were the most
prevailing types of bacteria in the soil in the T. harzianum biofertilizer
treatment. Burkholderiales and Comamonadaceae were abundant in
the rhizosphere in the organic fertilizer treatment, and Acidobacteria
were significantly abundant in the rhizosphere in the control without
fertilization.

In the fungal community, 35, 20, and 34 fungal biomarkers were
identified in the T. harzianum biofertilizer, organic fertilizer, and unfer-
tilized treatments, respectively (Figure 10b). The relatively abundant
biomarker fungal groups included Mortierella fimbricystis and Pleospor-

ales in the T. harzianum biofertilizer treatment; Coprinopsis vermiculifer,

Myrothecium gramineum, Mortierella, and Zygomycota in the organic
fertilizer; and Coprinellus radians and Coprinellus sp. in the unfertilized

control.

4 | DISCUSSION

Reducing the use of chemical fertilizers and pesticides without loss of
productivity is feasible, but there are huge challenges. Numerous
studies have shown that application of biofertilizers can effectively
reduce the use of chemical fertilizers and pesticides. Jia et al. (2020)
found that biofertilizers can replace 25% of chemical fertilizers with-
out a detectable impact on the yield and quality of Chinese cabbage.
Other studies have shown that inoculation with T. harzianum strains
significantly increased the biomass and nutrient uptake of tomato
seedlings grown in low-nutrient soils (Li et al., 2015). Our study
showed that application of T. harzianum biofertilizer increased the
yield of B. chinense. However, application of organic fertilizer alone
reduced the yield of B. chinense, which is consistent with the results
of Ye et al. (2020).

The biofertilizer industry is developing rapidly in China. Biofertili-
zers are widely recognized by most crop growers for their ability to
improve crop growth parameters, increase yield, and control soilborne
diseases (Zhou et al., 2020). Our study showed that T. harzianum bio-
fertilizer could improve the growth parameters, quality, and yield of
radix bupleuri, mainly due to improvement of soil fertility and abun-
dance of beneficial bacteria (Wang et al., 2017).

Fertilization is one of the main factors affecting soil nutrient con-
tent and enzyme activity in the rhizosphere soil of B. chinense. The
contents of available nutrients reflect the dynamic balance between
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soil mineralization and plant absorption (Ling et al., 2014). Soil enzyme
activity can reflect the nutrient absorption, utilization, and growth of
crops to a certain extent and is also an important index of soil fertility,
soil quality, and soil health (Yu et al., 2019). This study showed that T.
harzianum biofertilizer significantly improved soil available nutrient
contents and sucrase and catalase activities, but did not increase the
activities of urease and organic matter in soil. However, an appropri-
ate amount of organic fertilizer can be used to increase the content of
soil organic matter (Liu et al., 2021).

Soil microbial diversity, abundance, and community structure are
related to the functions of microbial community and soil health (Ruiz
Gémez et al., 2019). Microbial communities participate in soil func-
tions including nutrient cycling, formation of soil aggregates, and sup-
pression of soilborne diseases. This study showed that T. harzianum
biofertilizer significantly improved the diversity of bacteria and the
abundance of fungi. The relative abundance of beneficial bacteria
increased significantly, which included Streptomyces (Heinsch
et al,, 2019), Rhizobium (Naamala et al., 2016), Steroidobacter (Alcaraz
et al., 2018), and Gaiella (Lazcano et al., 2021). By contrast, the abun-
dance of harmful fungi was significantly reduced, including Gibberella
(Zhao et al., 2021), Paraphoma (Marin-Felix et al., 2019), and Fusarium
(Tong et al., 2021). The microbial changes were more obvious in soil
bacteria than fungi, suggesting that soil bacterial communities are
more sensitive to planting systems (Zhao et al., 2017).

The dominant bacterial groups in rhizosphere mainly included
Proteobacteria, Acidobacteria, and Actinomycetes, most of which are
involved in decomposition of organic matter. This study showed that
the rhizosphere microbial community structure dominated by these
bacterial groups was significantly correlated with the contents of soil
available nutrients and the activities of urease, catalase, and invertase,
indicating that the rhizosphere environment had an important effect

on the bacterial and fungal community structures (Lauber et al., 2009).

5 | CONCLUSION

This study demonstrated that T. harzianum biofertilizer promoted the
growth of B. chinense, increased yield, improved its quality, and
increased the contents of NH4"-N, NO3 -N, Ava-K, and Ava-P and
the activities of sucrase and catalase in the rhizosphere soil.
Moreover, these parameters showed positive correlation with the
relative abundance of beneficial bacteria in soil, such as Pseudarthro-
bacter, Streptomyces, Rhizobia, and Nocardia. Therefore, T. harzianum
biofertilizer can be used in Bupleurum production. Further research
will be conducted to investigate the effects of T. harzianum biofertili-
zer on dynamics of various functional bacteria during bupleuri

production.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the Support-
ing Information section at the end of this article.
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