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Abstract

Oligodendrocyte precursor cells (OPCs) are a unique type of glial cells that function as oligodendrocyte progenitors while
constantly proliferating in the normal condition from rodents to humans. However, the functional roles they play in the
adult brain are largely unknown. In this study, we focus on the manner of OPC proliferation in the hippocampus of the
young adult mice. Here we report that there are oscillatory dynamics in OPC proliferation that differ from neurogenesis in
the subgranular zone (SGZ); the former showed S-phase and M-phase peaks in the resting and active periods, respectively,
while the latter only exhibited M-phase peak in the active period. There is coincidence between different modes of
proliferation and expression of cyclin proteins that are crucial for cell cycle; cyclin D1 is expressed in OPCs, while cyclin D2 is
observed in neural stem cells. Similar to neurogenesis, the proliferation of hippocampal OPCs was enhanced by voluntary
exercise that leads to an increase in neuronal activity in the hippocampus. These data suggest an intriguing control of OPC
proliferation in the hippocampus.
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Introduction

In the mammalian hippocampus, persistent neurogenesis is

prominent exclusively in the subgranular zone (SGZ) of the

dentate gyrus (DG), which is important for hippocampus-

dependent memory consolidation [1,2]. Oligodendrocyte precur-

sor cells (OPCs) are another persistent cycling cells that distributed

throughout the adult rodent brains [3,4,5]. OPCs comprise ,5%

of all cells in the adult rodent brain [3,6] and have been thought as

a constitutive reservoir of oligodendrocytes that replace damaged

myelin [5] or add de novo myelination [7]. However, they

themselves appear to have potential to be constituents of neural

circuits [8,9], receiving synaptic inputs in the hippocampus [10]. A

further mechanism involving communication between neurons

and OPCs can be envisaged by observing their proliferating

manner. During division OPCs maintain their morphological and

physiological features, such as radial branched processes and

synaptic responses in the hippocampus [11,12].

Rhythmicity in biological activities is a common trait in a

diverse range of organisms from prokaryotes to humans [13]. In a

variety of mammalian organs, cell-cycle progression is under the

control of circadian oscillatory mechanisms [14,15], and disrup-

tion of clock-associated genes significantly affects genomic

replication and cell division in regenerated tissues and tumors

[16]. The division of neural stem/progenitor cells in the

hippocampal neurogenic area is controlled by time-of-day-

regulated mechanisms which may dictate daily modifications of

dentate gyrus physiology [17]. The production of cells at proper

timing would be essential for sustaining the housekeeping functions

of tissues and organs.

In the adult hippocampus, the biological property of neurogen-

esis, including its rhythmicity, has been well studied [17,18,19],

but the proliferation characteristics of OPCs remain uncertain.

Here we explore features of OPC proliferation in the normal

healthy condition of the hippocampus as compared with

neurogenesis.

Results

Identification of proliferating cells in the hippocampus
We characterized the types of proliferating cells in the

hippocampus by the immunohistochemical analyses using BrdU,

a thymidine analog that labels S-phase cells. In the neurogenic

area (Figure S1), i.e., the subgranular zone (SGZ) of the
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hippocampal dentate gyrus (DG), a large number of cells

expressing nestin, a neural stem/progenitor marker and DCX,

an immature neuronal marker were observed in BrdU-positive

cells (Figure 1A, B). There were no BrdU-labeled cells that were

positive for PDGFRa, an OPC marker in the SGZ. In the non-

neurogenic area of the hippocampal gray matter (Figure S1),

however, the majority of BrdU-labeled cells were positive for

markers of OPCs such as Olig2 (95.2%, Figure 1C, J), PDGFRa
(90.6%, Figure 1D, J) and NG2 (88.6%, Figure 1E, J). With regard

to markers for other cell types, an astrocyte marker GFAP and a

microglia marker Iba1 were not observed in the BrdU-positive

cells (Figure 1F, G, J). Neither nestin nor DCX was observed in

BrdU-positive cells localized in the non-neurogenic area

(Figure 1H, I, J). These results suggest that OPCs are the major

proliferating cell type in the non-neurogenic hippocampal area.

OPCs show synchronized proliferation in the
hippocampus

To evaluate the proliferation at distinct daily times, we injected

BrdU into mice exhibiting a regular oscillatory pattern of

locomotor activity (Figure 2A) under constant light-dark cycles

(L-D; 12-hour light and 12-hour dark), at various zeitgeber times

(ZT), and examined BrdU-positive cells that had passed through

S-phase. To know the number of mitotic cells, the expression of

phosphorylated histone H3 (PH3) was examined every 3 hours.

The neurogenic area showed daily variations in the number of

PH3-positive cells, i.e., a peak during nighttime (the active period),

whereas the number of BrdU-positive cells seemed to be uniform

(Figure 2B, C), as indicated in a previous report [17]. By contrast,

we observed daily changes in the total numbers of BrdU-positive

cells colocalized with NG2 (Figure 2D) in non-neurogenic area

(Figure 2E). The number of BrdU-positive cells was significantly

higher during daytime (the resting period) (ZT6: 18206120 cells,

n = 8) than during nighttime (ZT21: 1316696 cells, n = 8;

p = 0.040; Figure 2E), while the number of PH3-positive cells

colocalized with NG2 (Figure 2F) was significantly higher during

the nighttime (564652 cells at ZT15, n = 8) than during the

daytime (267645 cells at ZT6, n = 8; p = 0.002; Figure 2G). Thus,

within the non-neurogenic area, the daily changes in the number

of PH3-positive cells showed an inverse correlation with the

Figure 1. Analyses of cell-type specific markers in BrdU-positive cells in the hippocampal neurogenic area and non-neurogenic area.
(A, B) Immunostaining with anti-BrdU, anti-nestin (A), and anti-DCX (B) antibodies in the neurogenic area. White arrows indicate BrdU-positive cells
labeled with neural stem/progenitor cell markers. (C to E) Double immunostaining with anti-BrdU and anti-Olig2 (C), anti-PDGFRa (D), or anti-NG2 (E)
antibodies in the non-neurogenic area. White arrows indicate BrdU-positive cells labeled with each OPC marker (C to E). Note that the dividing OPCs
extend processes. (F to I) Double immunostaining with anti-BrdU and anti-GFAP (F), anti-Iba1 (G), anti-nestin (H) and anti-DCX (I) antibodies in the
non-neurogenic area. White arrowheads indicate BrdU-positive cells that are negative for GFAP (F), Iba1 (G), nestin (H), and DCX (I). Yellow arrows
indicate Iba1-positive cells (G). (J) The percentage of cells positive for each marker among all BrdU-positive cells. Scale bars: 20 mm (A to I).
doi:10.1371/journal.pone.0027628.g001
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variation in the number of BrdU-labeled cells. Therefore, cells

undergoing S-phase in the daytime are likely to progress through

the cell cycle to M-phase in the nighttime. Collectively, these

results suggest that OPCs show synchronized proliferation in the

hippocampus and the proliferation peaks during nighttime.

Differential regulation of cell-cycle progression in the neurogenic

and non-neurogenic areas might be attributed to distinct styles of

proliferation.

Cyclin D1 is expressed in OPCs in the hippocampus
Cyclin D family are cell-cycle regulatory proteins that control

cell cycle progression from G1 to S-phase. A previous study

revealed that proliferation of neural progenitor cells is controlled

by cyclin D2 in SGZ [20]. We reproducibly observed that cyclin

D2 positive cells were located along the SGZ of the DG

(Figure 3A). Contrastingly, cyclin D1 positive cells showed a

different distribution pattern with scattered expression in CA1 to

CA3 regions in the hippocampus (Figure 3B). We performed

double immunostaining with cyclin D1 or cyclin D2 along with

PDGFRa, and observed that cyclin D1 was expressed in

PDGFRa-positive cells in the entire hippocampus (97.1%: n = 4,

Figure 3C, D, E), while cyclin D2 only showed a negligible level of

expression in the PDGFRa-positive cells (Figure 3E). It is thus

speculated that OPC proliferation might be regulated by cyclin

D1, while cyclin D2 controls neurogenesis.

OPCs enhance their proliferation by voluntary exercise
Several studies have shown that voluntary exercise increases cell

proliferation in the hippocampal neurogenic area [21,22,23].

Therefore, we tested whether the exercise could similarly affect

OPC proliferation. Mice were maintained under L-D cycles for one

week and then allowed to exercise by voluntary wheel-running for

an additional week. The actogram shows a representative wheel-

running activity of a mouse reared under L-D cycles (Figure S2A).

Wheel-running was observed mostly during the nighttime, in

accordance with nocturnal activity. We analyzed the number of

proliferating cells by injecting BrdU at eight-hour intervals for one

day at the final day. As previously reported, increase of the number

of BrdU-positive cells was seen in the neurogenic area of the

running mice (12,4536976 cells in runners, 6,9566345 cells in non-

runners, n = 8 in each group; p,0.001; Figure S2B). In the non-

neurogenic area, the majority of BrdU-positive cells were labeled

with PDGFRa in runners (90.1%, n = 4, Figure S2C, D), a result

comparable to that in non-runners (90.8%, n = 4, Figure S2D). In

this area, there was also a significant increase in the total number of

BrdU-positive cells in the runners (4,0156179 cells, n = 8, Figure

S2E) compared with the non-runners (2,750659 cells, n = 8,

p,0.001, Figure S2E). It is reported that voluntary wheel-running

exercises can increase neuronal activity in the hippocampus

[24].We indeed found a significant increase in the number of cells

positive for c-Fos protein, an immediate early gene product up-

regulated by neural activity [25], in the hippocampus of the running

mice (9,98361,003 cells, n = 4, Figure S3A, C), compared with the

non-running mice (3,7626202 cells, n = 4, p = 0.005, Figure S3B,

C). Taken together, voluntary exercise enhanced neuronal activity

and increased the proliferation of OPCs in the hippocampus.

Discussion

In the present study, we revealed for the first time that the

majority of proliferating cells in the hippocampal non-neurogenic

area are OPCs. The OPC is defined by its special morphology and

associated molecular profiles [26]. Either Olig2, PDGFRa or NG2

is commonly used to identify OPCs, although each molecule is

known to be expressed in other types of cells in the brain as well.

For instance, Olig2 is expressed in neural stem cells and

myelinating oligodendrocytes [9], PDGFRa in endothelial cells

and mural cells [27], and NG2 in pericytes [28]. Thus, in this

study, a combination of cell-type specific markers, Olig2,

PDGFRa and NG2, was used to identify the proliferation

characteristic of OPCs. Approximately 90% of BrdU-positive cells

were positive for Olig2, PDGFRa and NG2, thus being defined as

OPCs. This is consistent with previous studies showing that

continuous proliferation of OPCs is evident throughout an adult

mammalian brain [3,5,29,30].

A previous study has shown that the day/night variations in the

kinetics of S-phase cells in the hilus of the DG [31], a part of the

non-neurogenic area. We elucidated these variations further by

showing that peaks of S-phase and M-phase numbers of OPCs in

the hippocampal non-neurogenic area were inversely correlated in

a time-dependent manner. This may imply that the population

undergoing S-phase during the daytime undergoes M-phase

during the nighttime. By contrast, in the SGZ we showed a daily

variation in the number of M-phase cells, but not in the number of

S-phase cells, consistent with the previous study [17]. Thus

proliferating cells in the neurogenic area proceeded with S-phase

irrespective of the time of day, whereas cell cycle progression into

M-phase could be suppressed until nighttime [17].

The difference in the mode of proliferation between OPCs and

neural stem/progenitor cells in adult hippocampus is our novel

finding and very intriguing. In this regard, it is of note that cyclin

D1 was expressed in PDGFRa-positive OPCs in the hippocampus,

while neural stem/progenitor cells in the SGZ did not express

cyclin D1, but they expressed cyclin D2 as previously reported

[20]. To our knowledge, OPC cultures showed that cyclin D1

plays a part in proceeding cell cycle in OPCs [32,33,34], and in

cyclin D2 knockout mice, hippocampal neurogenesis is dramatically

reduced [20]. Differential regulation of cell-cycle progression of

the neural stem cells and OPCs might be attributed to distinct

types of cell-cycle regulatory proteins resided in proliferating cells.

Since cyclin D1 is regulated by period 2 gene, one of the key

circadian rhythm regulators [35], we thus assume that OPC

proliferation might be regulated by clock gene(s). It would be

interesting to know whether proliferation of OPCs is disturbed in

mice deficient with clock genes.

Various stimuli can influence progenitor proliferation in adult

rodent brains. Voluntary wheel-running exercise and learning

tasks are reproducibly reported to increase neurogenesis in the

rodent hippocampal DG [21,36]. Here we show that voluntary

wheel-running also enhances OPC proliferation in the mouse

hippocampus. Another study has recently reported that in the grey

matter of the cerebral cortex, voluntary physical exercise for 14

days decreased the number of active proliferating cells with

increased exit of the cell cycle followed by enhanced differentiation

into mature oligodendrocytes [37]. Discrepancies between our

finding and this previous one might be attributed to the different

areas or the different time course of the experiments. We focused

on the hippocampus that shows the unique structure and function

different from those of the cortex, and counted the BrdU-positive

cells on the 7th day of the running course so that we might be

seeing halfway along the path of their destiny. Considering that

increased expression of c-Fos in the hippocampus of the exercised

mice reflects neuronal activity, it is possible that OPC proliferation

is dependent on neuronal activity. We further assume that daily

neural activity may influence on the proliferation of OPCs and/or

that daily oscillation of OPC proliferation may directly or

indirectly modulate neuronal functions in the hippocampus (see

below).

Oscillatory Proliferation of Hippocampal OPCs
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Recent studies have shown that OPCs give rise to mature

oligodendrocytes, which contribute to axonal myelination [38,39],

and to mature neurons in the piriform cortex in the adult rodent

brain [39]. We observed existence of OPCs within the terminal

fields of the mossy fibers, i.e., unmyelinated axons in the

hippocampus [40] (Figure S4). It is thus curious what these OPCs

in the non-neurogenic area of the hippocampus are doing

homeostatically. OPC may serve dual roles, one as a source of

myelinating oligodendrocytes and the other as that fulfilling some

homeostatic functional role in the adult brain [41]. In the healthy

normal brain, neural stem cells in the SGZ give rise to transiently

amplifying progenitor cells, go through postmitotic stage [42], and

become functional neurons in 4 to 7 weeks [43], whereas dividing

OPCs can maintain action potentials, receive functional synaptic

inputs, release synapse-modulatory substances and renew them-

selves as pairs of daughter cells in the hippocampus [11,12].

Therefore, oscillatory proliferation of OPCs might have great

impact on hippocampal function. For example, OPC proliferation

itself could facilitate remodeling of neural circuits. Since

chondroitin sulfate proteoglycans, components of an OPC marker

NG2, play a role in learning and memory of the hippocampus

[44], we predict that the proliferation of OPCs in response to

neuronal activity may eventually modulate the synaptic plasticity

for the hippocampal function. These ideas are warranted to be

addressed in the future.

Materials and Methods

Ethics Statement
The protocols used for all animal experiments in this study were

approved by the Animal Research Committee of Tohoku

University (20MA-182).

Housing conditions
Six-week-old male mice (C57BL/6J, Japan Charles River Inc.)

were housed under 12-hour light (LED, 300 lux)/12-hour dark (L-

D) cycles for two weeks to synchronize the phase of their internal

clocks, with water and food available ad libitum. To monitor

general motor activity, animals were kept individually in cages

equipped with infrared motion detectors (ClockLab, Actimetrics

Inc.) under the L-D cycles. The data were analyzed using

MATLAB (The MathWorks Inc.), and activity records were

Figure 3. Cyclin D1 is expressed in OPCs in the hippocampus. (A) Immunostaining with anti-cyclin D2 antibody in the hippocamous.
Immunoreactive signals were seen along the SGZ of the DG. (B) Immunostaining with anti-cyclin D1 antibody in the hippocampus. White dots show
the margin of the DG. The bright band of immunoreactivity seen above the DG is the cluster of pyramidal neurons in CA1 as previously reported [47].
(C and D) Double immunostaining with anti-PDGFRa and anti-cyclin D1 antibodies in the hippocampus. White arrows indicate PDGFRa-positive cells
that are positive for cyclin D1. Higher magnitude image of double positive cell (D). Scale bar: 20 mm. (E) The percentage of cells positive for each
marker among all PDGFRa-positive cells.
doi:10.1371/journal.pone.0027628.g003

Figure 2. Daily variation in the number of BrdU-positive cells and PH3-positive cells in the neurogenic area and the non-neurogenic
area of the hippocampus. (A) Representative actogram of the locomotor activity of a mouse reared under a constant L-D cycle. The white and
black horizontal bars represent the light and dark periods, respectively, across two days. Black bars on each line represent the amount of locomotor
activity. (B) Total number of BrdU-positive cells in the neurogenic area at various ZT (mean 6 s.e.m., n = 8 to 10 for each time point). White and black
bars represent light and dark periods of the day, respectively. There was no significant variation in the number of BrdU-positive cells between each
time point ZT (p = 0.322 by one-way ANOVA). (C) Total number of PH3-positive cells in the neurogenic area at various ZT. The number of PH3-positive
cells was the highest at ZT18 and the lowest at ZT6 (mean 6 s.e.m., n = 8 for each time point, p,0.001 by one-way ANOVA, ***p,0.001 and by a post
hoc Tukey test). (D) BrdU-positive cells labeled with NG2 in the non-neurogenic area. (E) Total number of BrdU-positive cells in the non-neurogenic
area at various ZT (mean 6 s.e.m., n = 8 to 10 for each time point). The number of BrdU-positive cells was the highest at ZT6 and the lowest at ZT21
(p = 0.021 by one-way ANOVA, *p,0.05 by a post hoc Tukey test). (F) PH3-positive cell labeled with NG2 in the non-neurogenic area. (G) Total number
of PH3-positive cells in the non-neurogenic areas at various ZT. The number of PH3-positive cells was the highest at ZT18 and the lowest at ZT6
(mean 6 s.e.m., n = 8 for each time point, p = 0.004 by one-way ANOVA, **p,0.01 by a post hoc Tukey test).
doi:10.1371/journal.pone.0027628.g002
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plotted as actograms. The time of day is designated as zeitgeber

time (ZT). ZT0 and ZT12 correspond to the times when the light

was turned on and off during the L-D cycles, respectively.

BrdU injection
To assess daily changes in cell proliferation, animals were

intraperitoneally injected with 50 mg/kg of 5-bromo-29-deox-

yuridine (BrdU, Sigma-Aldrich). Every three hours throughout

the L-D, a mouse was given a single injection and sacrificed

three hours afterward. To identify proliferating cell types and to

assess the effect of physical exercise on cell proliferation, animals

were intraperitoneally injected with BrdU (50 mg/kg) three

times at ZT0, ZT8 and ZT16 and then sacrificed at the following

ZT0.

Immunohistochemistry
Immunohistochemistry (IHC) analysis of cryosections was

performed as described in previous reports [45,46]. Briefly, frozen

coronal sections (16 mm thickness) were prepared through the

entire rostrocaudal extent of the hippocampus using a cryostat

(CM3050, Leica Instruments), and every fourth section was

selected for IHC. To quantify the number of BrdU-labeled cells,

every fourth section of the entire hippocampus was observed using

a confocal laser scanning microscope (LSM-PASCAL, Zeiss), and

the total number of positive cells was multiplied by four. For the

quantification of c-Fos, every sixth section taken at ZT18 was

observed using a fluorescence microscope (BIOREVO, Keyence)

and processed for automated counting using the cell count

software (BZ-H1C, Keyence), and the total number of positive

cells was multiplied by six. To identify proliferating cell types,

coronal brain slices (40 mm thickness) were made with a vibratome

(Microslicer, Dosaka), and double-immunofluorescent labeling

against BrdU and cell-type-specific markers was performed as

described previously [46]. The primary antibodies used in this

study are shown in Table S1. For secondary antibodies, we used

DyLight488-, Cy3- or Cy5-conjugated anti-mouse, anti-rabbit or

anti-rat antibodies (Jackson ImmunoResearch) and Alexa 488- or

555-conjugated anti-mouse or anti-rabbit antibodies (Invitrogen/

Molecular Probes). More than 200 BrdU-positive cells from four

animals were analyzed with a confocal laser scanning microscope

to identify cells co-expressing BrdU and other cell-type-specific

markers.

Wheel-running exercise
Mice were housed individually in transparent plastic cages

(35620620 cm). Each cage was equipped with a running wheel

15 cm in diameter, which turned a microswitch during each

revolution. Wheel-running activity was continuously recorded in

5-min intervals by a data-logger system (CardBus TYPE II size PC

Card for input/output of digital signals PIO-16/16L(CB)H,

CONTEC CO., LTD). In the control group (non-runners), mice

were individually kept in cages with locked running wheels. The

mice were maintained under the L-D cycles for one week and then

allowed to exercise by voluntary wheel-running for an additional

week.

Statistical analyses
Statistical analysis of the daily variation in the number of

proliferating cells was done via one-way ANOVA followed by a

post hoc Tukey test, and evaluation of statistical differences between

runners and non-runners was performed using two-tailed

Student’s t tests (SPSS software, SPSS Inc.). p,0.05 was

considered statistically significant.

Supporting Information

Figure S1 Schematic diagram showing the neurogenic
area and the non-neurogenic area in mouse hippocam-
pus. SGZ, subgranular zone; GCL, granular cell layer; DG,

dentate gyrus. The neurogenic area (SGZ, pink dotted line) is a

narrow layer of cells bordered the GCL of the DG. The non-

neurogenic area (light orange) includes entire hippocampal grey

matter excluding SGZ.

(TIF)

Figure S2 Increased neural progenitor/OPC prolifera-
tion in the hippocampus with wheel-running exercise. (A)

Representative actogram of a mouse performing wheel-running

exercise under L-D cycles. (B) Total number of BrdU-positive cells

in the non-runner and runner groups in the neurogenic area

(mean 6 s.e.m., n = 8, ***p,0.001 by two-tailed Student’s t-test).

(C) Expression of PDGFRa in BrdU-positive cells in exercised

mice (white arrows). Scale bar: 20 mm. (D) The percentage of

PDGFRa-positive cells among all BrdU-positive cells in non-

runner and runner mice. (E) Total number of BrdU-positive cells

in the non-runner and runner groups in the non-neurogenic area

(mean 6 s.e.m., n = 8, ***p,0.001 by two-tailed Student’s t-test).

(TIF)

Figure S3 Wheel-running exercise increases c-Fos ex-
pression in the hippocampus during the nighttime. (A)

DG stained with anti-c-Fos antibody in non-runners at ZT18. (B)

DG stained with anti-c-Fos antibody in runners at ZT18. Scale

bars: 50 mm. (C) Total number of c-Fos-positive cells in the

hippocampus at ZT18 in non-running and running mice (mean 6

s.e.m., n = 4 for each group, **p,0.01 by two-tailed Student’s t-

test).

(TIF)

Figure S4 OPCs in the mossy fiber terminal field in the
hippocampus. (A) Schematic representation of the mossy fiber

(MF) connections on the CA3 pyramidal neurons (referred to [48]).

The dentate granule cells send unmyelinated axons to the CA3

region. (B) Double immunostaining with synaptophysin, a marker

for synaptic vesicle protein, and PDGFRa of the black box in the

scheme of hippocamous (A). Since MFs are known to course and

form giant synaptic terminals [49], accumulation of synaptophysin

immunoreactivity along with CA3 pyramidal cells (yellow dots) were

seen [50]. PDGFRa were detected among the synaptophysin

immunoreactivity, the MFs pathway. Scale bar: 20 mm.

(TIF)

Table S1 Primary and secondary antibodies used in the
experiments.
(TIF)
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