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Abstract: Myoporum bontioides is a traditional medicinal plant in Asia with various biological activities,
including anti-inflammatory and anti-bacterial characteristics. To identify the bioactive constituents
from M. bontioides, a newly-identified flavone, 3,4′-dimethoxy-3′,5,7-trihydroxyflavone (compound 1),
along with eight known compounds, were investigated in human MCF-7 breast cancer, SCC4 oral
cancer, and THP-1 monocytic leukemia cells. Among these compounds, compound 1 exhibited the
strongest antiproliferative activity with half-maximal inhibitory concentration (IC50) values ranging
from 3.3 µM (MCF-7) to 8.6 µM (SCC4). Flow cytometric analysis indicated that compound 1 induced
G2/M cell cycle arrest in MCF-7 cells. Mechanistic evidence suggests that the G2/M arrest could be
attributable to compound 1’s modulatory effects on the phosphorylation and expression of numerous
key signaling effectors, including cell division cycle 2 (CDC2), CDC25C, and p53. Notably, compound
1 downregulated the expression of histone deacetylase 2 (HDAC2) and HDAC4, leading to increased
histone H3 acetylation and p21 upregulation. Together, these findings suggest the translational
potential of compound 1 as a breast cancer treatment.
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1. Introduction

Phytochemicals, such as dietary phenolic compounds, phenolic acids, flavonoids, carotenes,
and organosulfur, are commonly found in fruits, vegetables, and plants, and have been used in
chemoprevention, and as anti-inflammatory, antitumor, antibacterial, and antioxidant agents for
centuries [1]. Previous studies suggest that the incidence of cancer could be reduced by the appropriate
intake of dietary phytochemicals [2]. More importantly, some phytochemicals have been widely used
as therapeutic agents against various diseases [3]. For example, taxol, camptothecin, and vinblastine
show antitumor activity against breast, lung, bladder, and other cancers [3]. Myoporum bontioides
(Myoporaceae) is an evergreen shrub distributed throughout Taiwan, South China, and Japan [4].
The moisturizing property of this plant has attracted considerable interest in its development for further
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application in the cosmetic industry [5]. In China, M. bontioides has been used as a folk medicine for
pulpitis and sciatica for a long time [6–8].

The members of the family Myoporaceae are known for producing sesquiterpenes, volatile
oils, and flavonoids, which have activities against insects, bacteria, inflammation, and cancer [9–12].
To further explore their antitumor activity, the active constituents of the acetone extract of
M. bontioides leaves were isolated. In this article, we report the isolation and structural elucidation
of a newly-identified flavone, 3,4′-dimethoxy-3′,5,7-trihydroxyflavone (1), along with eight known
constituents, myoporone (2), rhamnocitrin (3), norartocarpetin (4), 5,7,4′-trihydroxyflavone (5), tricin
(6), diosmetin (7), 3,3′-dimethoxyquercetin (8), and β-sitosterol (9). We investigated the antitumor
activities of compounds 1 and 3–8 against a panel of human cancer cell lines, and the antitumor
mechanism of compound 1 against breast cancer cells.

2. Results

2.1. Isolation of Compounds 1–9 from the Acetone Extract of M. bontioides Leaves

Repeated chromatography of the acetone extract of M. bontioides leaves (3.1 kg dry weight) using
silica gel yielded compounds 1–9 (Figure 1A). High-resolution electron ionization mass spectrometry
(HREIMS) data showed a molecular ion peak at m/z 330.0743, corresponding to the molecular formula
C17H14O7 (calcd., 330.0740). The infrared (IR) spectrum of 1 showed hydroxyl and chelated carbonyl
absorption bands at 3372 and 1655 cm−1, respectively, while its ultraviolet (UV) spectrum exhibited
absorption maxima (209, 255, and 355 nm) consistent with those of a flavone structure [13]. The 1H-
and 13C-NMR spectra (Supplementary Materials) were similar to those of 3,3′-dimethoxyquercetin (8)
except for C-3′ and C-4′ [14]. The HMBC correlations of OMe-4′/C-4′ and H-6′/C-2′ and C-4′ and the
cross-peak of H-5′/OMe-4′ in the NOESY spectrum confirmed that the methoxyl group was linked at
C-4′ (Figure 1B). Therefore, compound 1 was characterized as 3,4′-dimethoxy-3′,5,7-trihydroxyflavone.
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Figure 1. Compounds isolated from M. bontioides. (A) Chemical structures of compounds 1–9; and (B)
key HMBCs (H→C) and selected NOESY (H↔H) correlations of compound 1.

The chemical investigation also yielded eight known compounds, myoporone (2) [15],
rhamnocitrin (3) [16], norartocarpetin (4) [17], 5,7,4′-trihydroxyflavone (5) [18], tricin (6) [19], diosmetin
(7) [20], 3,3′-dimethoxyquercetin (8) [14], and β-sitosterol (9) [21], which were all identified based on
the previously published spectroscopic data.
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2.2. Compound 1 Inhibits Growth of MCF-7 Cells

To assess the potential antitumor activities of these compounds, we examined the antiproliferative
effects of compounds 1 and 3–8 using the MTT assay in a panel of human cancer cell lines, including
MCF-7 breast cancer, SCC4 oral cancer, and THP-1 leukemia cells (Table 1). The antiproliferative effect
of compound 2 was not examined because it was unstable in the culture medium. The MTT assay
suggests that compound 1 had the strongest antiproliferative activity against all three cancer cell lines
among the test compounds. Compound 1 suppressed the viability of MCF-7 breast cancer, SCC4
oral cancer, and THP-1 leukemia cells with 48 h half-maximal inhibitory concentration (IC50) values
of 3.3 ± 0.6, 8.6 ± 2.7, and 8.5 ± 0.6 µM, respectively. We subsequently focused on characterizing
compound 1 because it had the strongest antiproliferative activity among the isolated compounds
against MCF-7 cells. The IC50 of compound 1 against MCF-7 cell growth was 1.6 µM at 72 h in the
MTT assay (Figure 2).

Table 1. Antiproliferative activities of compounds 1 and 3–8 against different cancer cell lines.

Compound IC50 (µM) a

SCC4 b MCF-7 b THP-1 b

1 8.6 ± 2.7 3.3 ± 0.6 8.5 ± 0.6
3 9.6 ± 2.4 8.9 ± 1.0 > 30
4 21.3 ± 4.4 12.7 ± 1.0 18.5 ± 3.7
5 >30 10.3 ± 1.0 17.0 ± 1.7
6 12.5 ± 1.7 >30 >30
7 >30 >30 >30
8 9.4 ± 1.0 16.8 ± 3.5 13.5 ± 1.8

Etoposide c 2.6 ± 0.4 8.8 ± 1.0 2.4 ± 0.4
a Data are presented as mean± S.E.M. (n = 3–6); b Key to all cell lines: MCF-7, human breast adenocarcinoma; THP-1,
human monocytic leukemia; SCC4, human oral squamous cell carcinoma; c Etoposide was used as a positive control.
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Figure 2. Inhibitory effects of compound 1 on viability of MCF-7 breast cancer cells. Cells were treated
with compound 1 at the indicated concentrations for 48 and 72 h, and cell viability was determined by
MTT assay. Data are mean ± standard deviation (SD, n = 6). * p < 0.05 and ** p < 0.01 compared to
control group.

2.3. Compound 1 Induces G2/M Arrest and Apoptosis in MCF-7 Cells

To determine whether compound 1 inhibited cell growth by modulating the cell cycle, MCF-7
cells were treated for 48 h and stained with propidium iodide (PI). Flow cytometric analysis of the cell
cycle indicated that compound 1 caused G2/M accumulation (Figure 3A,B, etoposide was a positive
control). For MCF-7 cells, the cell population in the G2/M phase increased from 12.3% ± 2.3% in
the control group to 69.0% ± 5.6% in 10 µM compound 1 group (p < 0.005). Although there were
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occurrences of apoptosis, the cells undergoing apoptosis accounted less than 10% of cells even at the
concentration of 5 µM of compound 1 which suggested that apoptosis might not be the major event.
(Figure 3C,D).
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Figure 3. Compound 1 induced G2/M arrest and apoptosis in MCF-7 breast cancer cells. (A) Effect
of compound 1 on cell cycle distribution. MCF-7 cells were treated with compound 1 at the indicated
concentrations for 48 h, followed by propidium iodide (PI) staining and flow cytometric analysis.
Treatment with etoposide (ETO) at 10 µM was used as a positive control. Three independent
experiments were performed; and data are presented in (B) as mean ± standard deviation (SD,
n = 3); (C) the effect of compound 1 on annexin V/PI staining of MCF-7 cells for 48 h; and (D) the
percentages in the graphs represent the percent of cells in the respective quadrants. Columns, mean;
bars, SD (n = 3).

2.4. Compound 1 Modulates Cell Cycle-Related Proteins in MCF-7 Cells

Previous studies showed that dysregulation of cyclins and cyclin-dependent kinases (CDKs)
enhances tumor growth [22,23]. To further investigate the anti-tumor mechanism underlying
compound 1-induced G2/M arrest, we evaluated cell cycle-related proteins from the lysates of
MCF-7 cells treated with the indicated concentration of compound 1. Compound 1 downregulated
the expression levels of several pivotal cell cycle-regulatory proteins including cyclin A, cyclin B1,
cyclin D1, CDK6, total cell division cycle 2 (CDC2), and phosphorylated (p)-CDC2 (Figure 4A).
CDC25C, a phosphatase responsible for CDC2 activation, was concurrently downregulated in both the
phosphorylated and total form (Figure 4A). A previous report that p53 downregulated transcriptional
activity by directly binding to a promoter element of CDC25C [24] prompted us to examine the
phosphorylation and expression of p53, as well as its downstream target, p21. Both phosphorylated
and total p53 and p21 were upregulated by compound 1 (Figure 4A).

These findings suggest that compound 1 inhibited MCF-7 cell proliferation by modulating cell
cycle-related proteins and inducing G2/M arrest. To further determine if the blockade occurred at the
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G2 or M-step, we examined the expression of p-mitotic protein monoclonal 2 (p-MPM2), which is a
mitotic marker [25]. Compound 1 increased p-MPM2 in a dose-dependent manner, suggesting that the
M phase was arrested by compound 1 (Figure 4B).
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concentrations for 48 h; and (B) the effect of compound 1 on the expression of phosphorylated MPM2.
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2.5. Compound 1 Induces HDAC Inhibition in MCF-7 Cells

Previous studies showed that flavonoids regulate the activity of histone deacetylases (HDACs),
and their inhibition is an epigenetic mechanism for the regulation of the cell cycle and inhibition of cell
growth [26–28]. To investigate the role of HDACs in compound 1-induced cell cycle arrest, the protein
expression and activity of HDACs were evaluated in MCF-7 cells treated with compound 1 (Figure 5).
Treatment with compound 1 decreased the protein expression of HDAC2 and HDAC4, accompanied
with an increase in the acetyl form of histone H3 (Figure 5).
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2.6. Compound 1 Increases Reactive Oxygen Species (ROS) Generation in MCF-7 Cells

Reactive oxygen species (ROS) generation is responsible for the antitumor effect of several
phytochemicals, including curcumin, epigallocatechin-3-gallate (EGCG), and resveratrol [29–31].
Therefore, we next examined the effect of compound 1 on ROS generation of MCF-7 cells (Figure 6)
and found it increased ROS production in a concentration-dependent manner (H2O2 was the positive
control, Figure 6A). Pre-treatment with glutathione (GSH) partially inhibited ROS generation by
compound 1 (Figure 6B).
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3. Discussion

Accumulating evidence indicates that phytochemicals including flavonoids, polysaccharides,
saponins, and polyphenolic compounds play important roles in preventing or treating chronic
diseases, including cardiovascular diseases, diabetes mellitus, obesity, neurodegenerative diseases,
gastrointestinal cancer, and breast cancer [1,32–35]. Preliminary studies have shown promising results,
therefore, numerous polyphenolic compounds and flavonoids have been evaluated for potential
antitumor efficacy in ongoing clinical trials [36].

In this study, a new flavone (1) and eight known compounds were isolated and identified
from M. bontioides. Compound 1, which was characterized for the first time, exhibited a stronger
antiproliferative activity against the three human cancer cell lines tested than that of the other eight
known constituents. Comparing the IC50 values with structures of the individual compounds, we
found that replacing a hydrogen at C-3 (i.e., 7) resulted in a substantial loss of antitumor activity
(Table 1). In addition, the compound with a methoxyl group at C-7 (compound 1 vs. compound 8)
showed slightly decreased cytotoxicity against MCF-7 and THP-1 cells. Furthermore, the replacement
of a methoxyl group at C-5′ (compound 6 vs. compound 5) led to specific cytotoxicity against the SCC4
cell line. Moreover, compounds 6 and 7 exhibited lower antitumor activity than compounds 8 and 1
did against MCF-7 cells and, therefore, we speculated that the methoxyl group at C-3 played an integral
role in mediating the cytotoxicity. The mechanistic study showed that compound 1 upregulated p53
and p21, downregulated several pivotal cell cycle-regulatory proteins, inhibited HDAC expression,
and led to M phase arrest in MCF-7 cells.

G2/M is a cell cycle phase during which the cells prepare, and the chromosome segregates into two
daughter cells. The cell cycle propagation is tightly controlled by cell cycle-related proteins including
cyclins, CDKs, and CDK kinase inhibitors p21 and p27 [37]. CDC25C, a phosphatase, activates CDC2
by removing both its phosphorylated residues at tyrosine 15 and threonine 14, leading to the onset of
mitosis [38,39]. One pivotal key player among the cell cycle-related proteins in the milieu is p53, which
has been reported to control the G2/M cell cycle checkpoint under stress signals [40–42]. For instance,
the upregulation of p53 and p21 causes G2 phase arrest when DNA damage occurs [41,42]. Therefore,
it would be reasonable to target p53 as an anticancer strategy. Moreover, several phytochemicals and
their derivatives, including indole-3-carbinol, curcumin, and flavonoids have shown inhibition of
cancer cell growth through p53 induction [43–45].

HDACs, which are epigenetic regulators of histones, participate in signal transduction, apoptosis,
cell cycle regulation, and angiogenesis [46]. The relationship between HDACs and cell cycle has
been well studied. HDACs deacetylate and regulate the activity of key cell cycle-related proteins,
including p53, E2F, and pRb [47]. For example, HDAC2 is recruited to the promoter of p53-dependent
target genes as a co-repressor to inhibit their transcription, and HDAC inhibitors can reverse the
resistance of antiestrogen therapies in breast cancer [48,49]. Wilson et al. reported that HDAC4 forms a
part of the HDAC4-HDAC3-N-CoR/SMRT corepressor complex that represses p21 transcription in
maintaining the growth of colon cancer cells [50]. Our study showed that compound 1 modulated
cell cycle-regulatory proteins, induced G2/M arrest, and inhibited HDAC expression in MCF-7 cells.
We speculate that HDACs are involved in the cell cycle regulation and growth inhibition of MCF-7
cells by compound 1. Similarly, some phytochemicals, genistein, EGCG, and curcumin showed
antiproliferative activities in vitro and in vivo by modulating HDACs [51,52].

In summary, compound 1 modulates HDACs and cell cycle-regulatory proteins, arrests cells in
the M phase, increases ROS generation and finally, inhibits MCF-7 cell proliferation.

4. Materials and Methods

4.1. General

Chromatographic purification and spectroscopic characterization of the test agents were
conducted using the following products and instruments. TLC, silica gel 60 F254 pre-coated plates
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(Merck, Darmstadt, Germany); column chromatography (CC), silica gel 60 (70–230 or 230–400 mesh,
Merck); UV, Jasco UV-240 spectrophotometer (λmax (log ε) in nm) (Jasco Corporation, Tokyo, Japan);
optical rotation, Jasco DIP-370 polarimeter (in chloroform [CHCl3]) (Jasco Corporation); Fourier
transform IR (FT-IR), Shimadzu-IR Prestige-21 FTIR spectrophotometers (in cm−1) (Shimadzu
Corporation, Tokyo, Japan); 1H-, 13C-NMR, and two-dimensional (2D)-NMR Spectra, Agilent
Technologies DD2 600 spectrometers (δ in ppm rel. to Me4Si as internal standard; J in Hz) (Agilent
Technologies, Santa Clara, CA, USA), and EIMS and HREIMS, Finnigan Thermo Quest MAT-95XL
mass spectrometer [m/z (rel. %)] (Thermo Scientific, Waltham, MA, USA).

4.2. Plant Material

The leaves of M. bontioides (Myoporaceae) were collected and identified by one of the co-authors,
Dr. Wei-Yu Lin in Kinmen County, Taiwan in October 2011, and a voucher specimen (2011) has been
deposited in the College of Medicine, China Medical University.

4.3. Extraction and Isolation

The leaves of M. bontioides (3.1 kg) were ground, extracted with acetone at 25 ◦C, and concentrated
under reduced pressure to afford a brown residue (90 g). This residue was fractionated using
silica gel column chromatography using n-hexane:ethyl acetate (EtOAc), 19:1; n-hexane:EtOAc, 9:1;
n-hexane:EtOAc, 4:1; n-hexane:EtOAc, 1:1, and n-hexane:EtOAc:methanol (MeOH), 1:1:1, to yield
five fractions (A–E). Fractions B and E were further subjected to silica gel column chromatography to
obtain compounds 1–9 as described below. Fraction E (1.0 g), CH2Cl2–MeOH (13:1) yielding fractions
E1–E6; fraction E6 (238 mg), CH2Cl2:acetone (4:1) yielding 1 (10 mg) and 2 (5 mg). Fraction E5 (172 mg),
CHCl3:acetone (5:1) yielding 3 (4 mg) and 4 (5 mg). Fraction E3 (59 mg), CHCl3:MeOH (9:1) yielding 5
(3 mg) and 6 (3 mg). Fraction E4 (49 mg), CHCl3:EtOAc (9:1) yielding 7 (6 mg). Fraction B (311 mg),
n-hexane:EtOAc (9:1) providing fractions B1–B6; fraction B4 (105 mg), n-hexane–acetone (4:1) yielding
8 (12 mg). Fraction B3 (95 mg), n-hexane:EtOAc (4:1) yielding 9 (28 mg).

3,4′-Dimethoxy-3′,5,7-trihydroxyflavone (1): yellow powder; UV (MeOH) λmax (log ε) nm: 209 (4.45), 255
(4.20), 268 (4.20), 295 (3.95), 355 (4.15); (AlCl3): 209 (4.47), 268 (4.24), 299 (3.98), 362 (4.11), 401 (4.12);
(NaOAc): 219 (4.78), 276 (3.30), 321 (4.00), 374 (4.07); (NaOAc-H3BO3): 218 (4.77), 256 (4.15), 269 (4.15),
296 (3.90), 358 (4.09); (NaOMe): 212 (4.70), 272 (4.47), 305 (3.98), 389 (4.18); IR (KBr) υmax: 3452, 1655
cm−1; 1H-NMR (CH3OH, 600 MHz): δ 3.88 (3H, s, OMe-3), 3.95 (3H, s, OMe-4′), 6.25 (1 H, d, J = 2.4 Hz,
H-6), 6.51 (1 H, d, J = 2.4 Hz, H-8), 7.12 (1 H, d, J = 8.4 Hz, H-5′), 7.64 (1 H, d, J = 2.0 Hz, H-2′), 7.66 (1H,
dd, J = 8.4, 2.0 Hz, H-6′); 13C-NMR (CH3OH, 150 MHz): δ 56.3 (OMe-4′), 60.2 (OMe-3), 94.5 (C-8), 99.4
(C-6), 105.9 (C-10), 112.1 (C-5′), 115.8 (C-2′), 121.8 (C-6′), 124.1 (C-1′), 139.5 (C-3), 147.3 (C-3′), 150.9
(C-4′), 156.5 (C-2), 157.8 (C-9), 163.2 (C-5), 165.0 (C-7), 179.5 (C-4); EIMS (70 eV) m/z (rel. int.): 330
[M]+ (100), 301 (10), 287 (31); HREIMS m/z 330.0743 (calcd. for C17H14O7, 330.0740). The spectra were
showed in supplementary materials.

The structures of compounds 2–9 were identified using spectroscopic methods and were compared
with literature data [14–21].

4.4. Reagents

All of the chemicals used were dissolved in dimethyl sulfoxide (DMSO) and were added to
the culture medium at indicated concentrations to a final DMSO concentration <0.1%. The following
antibodies were used: p-15Ser p53, p53, CDK6, CDC25C, p-216Ser CDC25C, CDC2, p-15Tyr CDC2, cyclin
A, cyclin B1, cyclin D1, HDAC2, HDAC4, p21 (Cell Signaling Technologies, Beverly, MA, USA); β-actin
(Sigma-Aldrich, St. Louis, MO, USA); p-Ser/Thr-Pro MPM2 (Merck Millipore Corporation, Darmstadt,
Germany); and acetyl Histone H3 (Upstate, Temecula, CA, USA). The enhanced chemiluminescence
(ECL) system for detection of immunoblotted proteins was from GE Healthcare Bioscience (Piscataway,
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NJ, USA). All other chemicals and reagents were obtained from Sigma-Aldrich (St. Louis, MO, USA)
unless otherwise mentioned.

4.5. Cell Culture

MCF-7 breast cancer, SCC4 oral cancer, and THP-1 acute myeloid leukemia cells were purchased
from the American Type Culture Collection (ATCC, Manassas, VA, USA). MCF-7 and SCC4 cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM)/Ham’s F-12 medium (Gibco, Grand
Island, NY, USA) and THP-1 cells were cultured in Roswell Park Memorial Institute (RPMI)-1640
medium (Invitrogen, Carlsbad, CA, USA). All cells were supplemented with 10% heat-inactivated FBS,
5 mg/mL of penicillin, 10 mg/mL of neomycin, and 5 mg/mL streptomycin at 37 ◦C in a humidified
incubator in an atmosphere of 5% CO2.

4.6. MTT Assay for Cell Viability

The suppressive effects of the compounds on cell viability were assessed using the MTT
assay [53] in six replicates. Cells (5 × 103/200 µL) were seeded in 96-well flat-bottomed plates in 10%
FBS-supplemented medium, incubated for 24 h, and then they were exposed to various concentrations
of the compounds dissolved in DMSO (final DMSO concentration, 0.1%) in 5% FBS-supplemented
medium. Control cells were treated with the DMSO vehicle at a concentration equal to that of the
compound-treated cells. Then, the medium was removed, replaced with 200 µL 0.5 mM MTT in 10%
FBS-containing DMEM/Ham’s F-12 medium, and the cells were incubated in a 5% CO2 incubator at
37 ◦C for 3 h. After removing the supernatant, the reduced MTT dye was solubilized in DMSO, and
the absorbance at 570 nm was determined using a plate reader. The test agent-treated cell viability was
expressed as a percentage of the viable control cells. The IC50 values of each group were calculated
using median-effect analysis and presented as the mean ± standard deviation (SD).

4.7. Flow Cytometry Analysis

Cell cycle analysis was performed using flow cytometry [54]. Briefly, MCF-7 breast cancer cells
(1 × 105) were plated and treated with compound 1 for 48 h with 5 % FBS-supplemented DMEM/F12.
The cells were collected, fixed in 70% cold ethanol for 4 h at 4◦C, centrifuged at 1200 rpm for 5 min,
and then re-suspended in ice-cold PBS containing 2% FBS. Then, the cells were stained with propidium
iodide (PI) and analyzed using flow cytometry and the multicycler (ModFitLT 3.0) software program
(Becton Dickinson, Becton, Germany). For apoptosis evaluation, cells were stained with annexin V and
PI (1 µg/mL) and determined on a BD FACSAria flow cytometer (Becton Dickinson).

4.8. ROS Generation

ROS production was detected using the fluorescence dye 2′,7′-dichlorodihydrofluoresceindiacetate
(H2DCFDA, Molecular Probes, Eugene, OR, USA) [53]. The cellular ROS content was detected using
flow cytometry according to the manufacturer’s instruction. Briefly, cells (2.5 × 105/mL) were treated
with DMSO or compound 1 (0–5 µM) with or without GSH pre-treatment for 15 min for 3 h. Then,
the cells were washed twice with PBS and stained with H2DCFDA (5 µM) at 37 ◦C for 30 min. After
washing with PBS, the fluorescence intensity induced by ROS generation was assessed using a flow
cytometer (BD FACSCanto II, Becton-Dickinson, Becton, Germany).

4.9. Western Blot Analysis

The drug-treated cells were collected, washed with ice-cold PBS, and then resuspended in lysis
buffer [53]. Soluble cell lysates were collected after centrifugation at 1500× g for 5 min. Equivalent
amounts of protein (60–100 µg) from each cell lysate were resolved on 10% SDS-polyacrylamide
gels and transferred to nitrocellulose membranes, which were blocked with 5% nonfat milk in
PBS containing 0.1% Tween 20 (PBST). Then, the membranes were incubated overnight with the
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corresponding primary antibodies (1:1000–1:2000) at 4 ◦C, followed by washing with PBST four times,
incubation with the secondary antibody (1:1000) in PBST at room temperature for 1 h, and then they
were visualized using ECL.

4.10. Statistical Analysis

The data were presented as means ± SD. Statistical analysis was performed using Student's t-test
for two-group comparisons, and p-values < 0.05 were considered statistically significant.

Supplementary Materials: The 1H and 13C-NMR, HMQC, HMBC, and NOESY plots of compound 1 are provided
in the Supplementary Materials.
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