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Abstract: I2-IR have been found dysregulated in patients with neurodegenerative diseases, such
as Alzheimer’s disease (AD), in which the importance of neuroinflammation in the establishment
and maintenance of cognitive decline is well-documented. To research the implication of I2-IR
in neuroinflammatory pathways altered in AD, we determined the expression profile of genes
associated with inflammation in the 5XFAD model treated with LSL60101, a well-established I2-IR
ligand. Thus, we performed a qPCR array containing 84 inflammation-related genes. Hierarchical
clustering analysis revealed three gene clusters, suggesting that treatment with LSL60101 affects
the gene expression associated with inflammation in the 5XFAD model. Furthermore, we evaluated
the functions of the three clusters; thereby performing a pathway enrichment analysis using the GO
database. As we expected, clusters 2 and 3 showed alterations in the inflammatory response,
chemotaxis and the chemokine-mediated signaling pathway, among others. To validate previous
results from the gene profiling analysis, the expression levels of a representative subset of mRNAs
were selected according to the intensity of the observed changes and their biological relevance.
Interestingly, changes induced by LSL60101 in the 5XFAD model were validated for several genes.
These results suggest that treatment with LSL60101 in the 5XFAD model reverses the inflammatory
process during the development of AD.

Keywords: I2 imidazoline receptors; neuroinflammation; LSL60101; Alzheimer’s disease;
transcriptomics; 5XFAD

1. Introduction

Imidazoline receptors (IR) were described in the late 1880s as binding sites for adren-
ergic ligands such as clonidine, idazoxan and related compounds, but not for adrenaline;
thus, they constitute nonadrenergic receptors [1–3]. IR have been divided into two classes,
I1-IR and I2-IR, primarily based on their sensitivity to clonidine and idazoxan, respectively,
and a third atypical imidazoline subtype has also been identified [4,5]. I1-IR activation has
been associated with cardiovascular and metabolic effects [6–8], whereas I2-IR are widely
distributed in the brain and primarily in glial cells [4], and the binding of specific ligands
to I2-IR has been shown to induce several pharmacological effects, such as analgesia,
anti-inflammatory effects, and neuroprotection [8,9].

Regarding I2-IR primary localization in astrocytes and glial cells, it has been demon-
strated that I2-IR ligands modulate glial activity in the mice model brain and in spinal
cord injury [10,11]. In these studies, using an experimental autoimmune encephalomyelitis
model, 2-BFI administration reduced the expression of inflammatory cytokines, including
interferon-g (IFN-γ), tumor necrosis factor-α (TNF-α) and microglial activation. Similarly,
in a traumatic injury model, 2-BFI reduced interleukin 1β (IL-1β) secretion and microglia
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activation [12]. In vitro studies corroborate that I2-IR ligands exert their action on the glial
cells by suppressing astrocytic activation induced by lipopolysaccharide (LPS) and decreas-
ing TNF-α levels [13]. Consistent with these changes, the recently described I2-IR ligands
MCR5 and B06 decrease the expression of proinflammatory markers, such as TNF-α, IL-1β
and interleukin 6 (IL-6), and promote synaptic plasticity in a mouse model of aging and
neurodegeneration [14–16]. Interestingly, I2-IR have been found dysregulated in patients
with neurodegenerative diseases, such as Alzheimer’s disease (AD) [17,18]. AD is a neu-
rodegenerative disease with special histochemical hallmarks, namely amyloid plaques
and neurofibrillary tangles [19]. Besides the precise etiology of the pathology, it is well
known that neuroinflammation, including the inflammatory levels of cytokines and their
corresponding pathways, is the landscape that must be faced in the challenge to identify
new therapeutic tools to treat AD [20].

The 5XFAD mouse model is a well-characterized double-transgenic APP/PSEN1
model, coexpressing five familial AD mutations. This animal model incorporates AD
pathological characteristics, including early plaque formation and gliosis, robust cogni-
tive and behavioral deficits such as memory impairment [21]. The well-established I2-IR
ligand LSL60101, first described in 1995 and recently evaluated in depth by our group,
presents high selectivity for the I2-IR receptors and an optimal pharmacokinetic and
safety profile [22,23]; thus, it has proven to be a useful tool in I2-IR research throughout
the years [24–26]. Remarkably, LSL60101, similarly to BU224, demonstrated a neuroprotec-
tive effect on the familial AD mouse model 5XFAD [27,28]. LSL60101 reduced inflammation
inherent to AD and microglial activation in this mouse model, in agreement with the reports
mentioned above, further indicating the modulation of inflammatory pathways by I2-IR
ligands in the brain and its contribution to glial function and activation.

This work aims to unravel the effect of LSL60101, and consequently the implication
of I2-IR receptors in inflammatory pathways related to AD, and, by extension, to other
neurodegenerative diseases whose pathologies include neuroinflammation. To this end,
we analyzed a set of gene expression panels related to inflammation, including several
cytokines and their receptors, regulators, and mediators of signaling pathways and factors
implicated in the regulation of immune response after LSL60101 treatment in wildtype and
5XFAD mice.

2. Materials and Methods
2.1. Animals and Treatments

The 5XFAD is a double-transgenic APP/PSEN1 that coexpresses AD mutations and
presents a robust inflammation background [21]. Seven-month-old female 5XFAD mice
(n = 23) and wildtype (WT; n = 23) mice were used to perform molecular analyses. The ani-
mals were randomly allocated to experimental groups and divided into four groups: WT
control and 5XFAD control, administrated with vehicle (2-hydroxypropyl)-β-cyclodextrin
1.8%), and WT and 5XFAD treated with I2-IR ligand, administrated with LSL60101 diluted
in vehicle (1 mg/kg/day), as shown in Figure 1. Treatment was administered through
drinking water for 4 weeks. The animals had free access to food and water and were
kept under standard temperature conditions (22 ± 2 ◦C) and 12 h:12 h light–dark cycles
(300 lux/0 lux). The water consumption was controlled each week, and the I2-IR ligand
concentration was adjusted accordingly to reach the precise dose.

All studies and procedures for the mouse behavior tests, brain dissection and ex-
tractions followed the ARRIVE and standard ethical guidelines (European Communities
Council Directive 2010/63/EU) and Guidelines for the Care and Use of Mammals in Neu-
roscience and Behavioral Research (National Research Council 2003) and were approved
by Bioethical Committees from the University of Barcelona (670/14/8102) and the Govern-
ment of Catalonia (10291, approved 1/28/2018).
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Figure 1. Experimental design of sampling processing, bioinformatic analysis and qPCR validation.

2.2. Brain Processing and RNA Extraction

Mice were euthanized by cervical dislocation after the treatment period. The brains
were immediately removed from the skulls, and the hippocampi were dissected, frozen and
maintained at −80◦C. Total RNA isolation from hippocampal samples was performed using
the TRIzol®reagent according to the manufacturer’s instructions (Bioline Reagent, London,
UK). The yield, purity and quality of RNA were determined spectrophotometrically with
a NanoDrop™ND-1000 apparatus (Thermo Fisher, Waltham, MA, USA) and an Agilent
2100B Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA samples with
260/280 ratios and RINs higher than 1.9 and 7.5, respectively, were selected. A reverse
transcription-polymerase chain reaction (RT-PCR) was performed. Briefly, 1 µg and 2 µg
of messenger RNA (mRNA) were reverse transcribed using a high-capacity cDNA reverse
transcription kit (Applied Biosystems, Foster City, CA, USA) for PCR array performance
and q-PCR validation, respectively.

2.3. Real-Time Quantitative PCR Array

A real-time quantitative PCR array containing 84 inflammation-related genes (qPCR
Sign Arrays 96 system, AnyGenes, Paris, France) was used for screening according to
the instructions of the manufacturer. Briefly, 2 µL of diluted cDNA pooled samples (n = 4;
2 µg cDNA diluted at 1/12 from reverse transcription (20 µL) performed with 1 µg of RNA)
was mixed with 10 µL of 2× Perfect Master Mix SYBR Green and 8 µL ultrapure H2O and
added to each well; consequently, the total reaction volume was 20 µL per well. After
20 µL of the reaction mix was in each well of the 96-well plate, the plate was centrifuged,
and then the qPCR run was performed using a Step One Plus Detection System (Applied-
Biosystems), following the manufacturer’s recommendations and protocols. PCR reaction
conditions were 95 ◦C, 10 min; 95 ◦C, 5 s and 60 ◦C, 30 s, ×40 cycles. After completion
of the reaction, the melting curve was analyzed, 95 ◦C, 10 s, 65–95 ◦C, 30 s.
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2.4. Hierarchical Clustering

We performed a hierarchical clustering with the genes analyzed in the qPCR Sign
Arrays 96 system to evaluate the expression profile between the study groups. These
genes were clustered into three groups based on the expression profile using the R package
heatmap. The expression data were clustered by Euclidean distances between genes and
by applying the complete method for hierarchical clustering. Complete microarray gene
expression data are presented in Supplementary Table S2.

2.5. Protein–Protein Interaction Network and Functional Annotation

To determine the interactions between the groups, we performed protein–protein
interaction networks using the database STRING [29]. A PPI enrichment p-value < 0.001
was considered statistically significant, indicating that the proteins are at least partially
biologically connected. To determine the functional annotation of the three groups, we
determined the gene ontology (GO) and performed pathway analysis with the Kyoto Ency-
clopedia of Genes and Genomes (KEGG), using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) [30]. GO terms and KEGG pathways with an adjusted
p-value < 0.05 were considered statistically significant. We used the KEGG mapping tool
to display the downregulated (green) and upregulated genes (red) in KEGG pathway
maps [31]. To evaluate the transcriptional regulatory interactions between the three groups
of genes and mouse transcriptional factors (TFs), we used the TRRUST database [32]. TR-
RUST identifies potential TFs involved in the regulation of genes of interest. TFs with an
adjusted p-value < 0.05 were considered statistically significant.

2.6. Gene Expression Validation with Real-Time Quantitative PCR

To confirm the PCR array results, which identified specific genes as responding to
I2-IR treatment, quantitative SYBR®Green real-time PCR was performed using a Step One
Plus Detection System (Applied-Biosystems) with SYBR®Green PCR Master Mix (Applied-
Biosystems). Each reaction mixture contained 6.75 µL of complementary DNA (cDNA)
(with a concentration of 2 µg), 0.75 µL of each primer (with a concentration of 100 nM) and
6.75 µL of SYBR®Green PCR Master Mix (2×).

The data were analyzed utilizing the comparative cycle threshold (Ct; ∆∆Ct) method,
in which the levels of a housekeeping gene are used to normalize differences in sample
loading and preparation. Normalization of expression levels was performed with β-actin.
The primer sequences used are presented in Supplementary Table S1. Each sample was
analyzed in duplicate, and the results represent the ratio percentage of the transcript levels
among different groups compared to the control group.

2.7. Statistical Analysis

Data analysis was conducted using GraphPad Prism ver. 8 statistical software. Data
are expressed as the mean ± standard error of the mean (SEM) of 5–6 samples per group.
All data were tested for normal distribution and equal variance. Means were compared with
two-way analysis of variance (ANOVA) followed by the Tukey post hoc test. Comparison
between groups was also performed by a two-tailed Student’s t-test for independent
samples when it was necessary. Statistical significance was considered when p values were
< 0.05. The statistical outliers were determined with Grubs’ test and when necessary were
removed from the analysis.

3. Results
3.1. LSL60101 Treatment Regulates Genes Associated with the Inflammatory Response

To determine the expression profile of genes associated with inflammation in the 5XFAD
model treated with LSL60101, we performed a real-time quantitative PCR array contain-
ing 84 inflammation-related genes. Hierarchical clustering analysis revealed three gene
clusters (Figure 2A). Interestingly, cluster 2 was characterized by genes with reduced ex-
pression after LSL60101 treatment (Figure 2A). Cluster 3 had increased expression of genes
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after treatment in the 5XFAD mice (Figure 2A). These results suggest that treatment with
LSL60101 affects the gene expression associated with inflammation in the 5XFAD model.

Figure 2. Hierarchical clustering and gene ontology of inflammatory genes in WT and 5XFAD mice treated with LSL60101.
(A) The genes present in the qPCR array were subjected to hierarchical clustering analysis. The heatmap shows three clusters
with a specific expression profile between the experimental conditions represented in “expression profile”. The predicted
protein–protein interactions analysis is shown, as well as the PPI enrichment p-value of each cluster. (B) The dotplot shows
the top GO terms of the clusters. An adjusted p-value < 0.05 was considered statistically significant.
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To evaluate the functions of the three clusters, we performed a pathway enrich-
ment analysis using the GO database. As we expected, clusters 2 and 3 show alterations
in processes, such as the inflammatory response, chemotaxis and the chemokine-mediated
signaling pathway (Figure 2B), indicating that these mechanisms are involved in the effects
observed after treatment with LSL60101 in 5XFAD mice. Additionally, KEGG analysis
demonstrated alteration in the chemokine signaling pathway and cytokine–cytokine recep-
tor interaction (Figure 3A,B). Notably, in the pathway of Figure 3B, among the deregulated
genes detected in response to treatment with LSL60101, we can observe a reduction in Tnf-α
and Il-6, two cytokines with high expression in the development of AD [33]. These results
suggest that treatment with LSL60101 reverses some of the inflammatory genes related to
cognitive decline in the 5XFAD model.

Figure 3. KEGG pathway analysis and cytokine–cytokine receptor interaction pathway. (A) The dotplot shows the top KEGG
pathways of the clusters. The cytokine–cytokine receptor interaction is representative of the three clusters. An adjusted
p-value < 0.05 was considered statistically significant. (B) The KEGG pathway map cytokine–cytokine receptor interaction
(mmu04060) is shown. The downregulated (green) and upregulated genes (red) in the 5XFAD control condition versus
the 5XFAD LSL60101 condition are shown.
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3.2. NF-κβ Pathway Regulates the Inflammatory Response in LSL60101 Treatment

NF-κβ is a transcription factor that regulates multiple aspects associated with inflam-
matory responses [34]. Using the TRRUST database, a manually curated database of human
and mouse transcriptional regulatory networks, we found that the genes present in clusters
2 and 3 can be regulated by RELA and NFKB1 (Figure 4A), two subunits of the transcrip-
tion factor NF-κβ [35], suggesting that NF-κβ regulates the neuroinflammation process
in the 5XFAD model after treatment. Interestingly, several members of the NF-κβ signal-
ing pathway, such as IL-1β, cyclooxygenase 2 (COX2), TNF-α and MIP-2, were reduced
in the treatment group (Figure 4B). Altogether, we suggest that treatment with LSL60101
alters the expression of genes associated with neuroinflammation processes in the 5XFAD
model, which could be dependent on the NF-κβ pathway, reinforcing the role of this
pathway as a therapeutic target for AD [35].

1 
 

 
Figure 4. Cont.
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3.3. Validation of a Representative Subset of Genes Involved in Neuroinflammation and AD

To validate previous results from the gene profiling analysis, the expression levels
of a representative subset of mRNAs were selected according to the intensity of the ob-
served changes and their biological relevance and were measured by single real-time PCR
in the hippocampus samples from each group. We evaluated the expression of C-X-C motif
chemokine receptor 2 (Cxcr2), Toll-like receptor 5 (Tlr5), CD40 ligand (CD40lg), chemokine (C-C
motif) ligand 7 (Ccl7), C-C chemokine receptor type 4 (Ccr4), Ifn-γ, E-selectin (Sele), chemokine
(C-C motif) ligand 12 (Ccl12), chemokine (C-C motif) ligand 8 (Ccl8) and C-X-C motif chemokine
ligand 10 (Cxcl10) (Figure 5A–J). Interestingly, changes induced by LSL60101 in the 5XFAD
model were validated for Cxcr2, Tlr5 and Sele (Figure 5A,B,G), and a clear decreasing
tendency in the 5XFAD LSL60101-treated group for CD40lg, Ccl7 and Ccr4 was observed
(Figure 5C–E). On the contrary, an increasing tendency in the 5XFAD LSL60101-treated
group was found for Ccl12, Ccl8 and Cxcl10 (Figure 5F,H–J). Similarly, changes induced
by LSL60101 in the WT model were not statistically significant; however, a decreasing ten-
dency for CD40lg, Ccl8 and Cxcl10 (Figure 5C,I,J) and an increasing tendency for Ccr4 and
Ccl7 were observed (Figure 5D–E). Significant changes in the WT LSL60101- and 5XFAD
LSL60101-treated groups were found for CD40lg, Ccl12, Ccl8 and Cxcl10 (Figure 5C,H–J).
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Figure 5. Validation of representative subset of mRNAs. Gene expression of Cxcr2, Tlr5, Cd40lg, Ccl7, Ccr4, Ifn-γ, Sele,
Ccl12, Ccl8 and Cxcl10 (A–J) in the hippocampus of WT and 5XFAD control and LSL60101-treated mice. Gene expression
levels were determined by real-time PCR. Values in bar graphs are adjusted to 100% for relative gene expression of the WT
control. Bars represent mean ± SEM. Two-way ANOVA with Tukey post hoc analysis, * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001; n = 5–6 per group.
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4. Discussion

As aforementioned, AD is characterized by multiple molecular signatures at differ-
ent stages of the disease, neuroinflammation being one of the most relevant early events
in the disease [36]. Indeed, chronic inflammation contributes to neuronal dysfunction and
cognitive decline [37]. In the current AD drug development pipeline, inflammation is
addressed by several drugs with different action mechanisms, demonstrating its potential
as a major target for effective AD treatment [38]. Evidence provided by our group and
others demonstrates that selective I2-IR ligands can modulate neuroinflammation, promot-
ing changes in inflammatory cytokine protein levels and/or gene expression in AD mice
models [14,16,27,39]. Nevertheless, researching the specific mechanisms whereby I2-IR
ligands modulate inflammatory pathways is necessary to understand better the potential
link between their neuroprotective and anti-inflammatory effects. Thus, the main goal
of this work was to study and identify new inflammatory transcriptome biomarkers af-
ter LSL60101 treatment and validate some of the inflammatory markers that were found
altered in our previous works. Here, we used the hippocampal transcriptome of 5XFAD
mice, which harbor five APP/PSEN1 mutations, leading to a robust Aβ production and
deposition in their brains [21]. Interestingly, we recently demonstrated that chronic treat-
ment with LSL60101 improved cognitive impairment and reduced Aβ plaques and tau
pathology in 7-month-old 5XFAD mice [28].

In the present study, a gene expression profile study of the hippocampus samples from
the 5XFAD mice indicated that LSL60101 treatment significantly modified the expression
of several genes, generating three hierarchical clusters based on the enrichment heatmap.
Not surprisingly, two clusters were characterized by genes with reduced expression after
LSL60101 treatment, suggesting an anti-inflammatory effect of LSL60101. In line with these
results, in the AD landscape provided by the 5XFAD mice, LSL60101 was shown to decrease
microglial and astroglial reactivity by reducing Iba-1 and GFAP levels, respectively [28].
Indeed, microglia and astrocytes are central players in the neuroinflammatory process,
producing proinflammatory or anti-inflammatory cytokines upon pathological insults [40].
Similarly, one hierarchical cluster was characterized by increased anti-inflammatory gene
expression in the LSL60101 group, confirming our hypothesis of anti-inflammatory proper-
ties of the selective I2-IR ligand. Notably, 17 genes in the hippocampus of LSL60101-treated
mice displayed a significant change of more than twofold in their expression, and we were
able to validate the modifications for Ccr4, Ifn-γ and Sele (cluster 2) and Cxcr2, Tlr5, CD40lg,
Ccl7, Ccl12, Ccl8 and Cxcl10 (Cluster 3). Among them, Cxcr2, Tlr5, Sele, CD40lg, Ccl7 and
Ccr4 were found to significantly decrease or presented a clear tendency to decrease after
treatment, while Ccl8, Ccl12 and Cxcl10 gene expression tended to increase after treatment
in 5XFAD mice.

Thus, our results indicated an anti-inflammatory landscape, with several reduced
proinflammatory and several increased anti-inflammatory cytokines. For instance, the re-
ceptor CXCR2 presents a prominent expression at microglia in AD compared to the normal
brain tissue and could be used as a strategic therapeutic target to counterbalance inflam-
matory microenvironments in AD [41,42]. On the other hand, it has been suggested that
the CD40–CD40LG interaction may be involved in the inflammatory pathways in AD.
It has been demonstrated that CD40LG and Aβ synergistically increase TNF-α and pro-
mote neuronal death, reinforcing the AD pathology [43]. Finally, overexpression of different
chemokine receptors, including CCR4, has been identified in T-cells of AD patients, linking
these inflammatory cells to brain damage [44]. Taken together, the results suggest that
treatment with IR-I2 ligands as LSL60101 might attenuate the neuroinflammatory process
in AD by reversing the expression of inflammatory mediators.

Moreover, as we expected, our results showed alterations in GO enrichment analysis
in processes such as the inflammatory response, chemotaxis and the chemokine-mediated
signaling pathway. Similarly, KEGG pathways are related to chemokine signaling path-
ways, cytokine–cytokine receptor interaction and Toll-like receptor signaling, among others.
Altogether, this evidence suggests that the selective I2-IR ligand, LSL60101, presents di-
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versity in the modulation of pathways and biological functions in AD. In accordance with
our results, the selective I2-IR ligand has been shown to mediate pleiotropic central effects
in vivo and in vitro, including alterations in dopamine and serotonin levels, acute hyper-
phagic effects, inhibition of the development of the opioid-induced tolerance, potentiation
of morphine analgesia, glia modulation and neuroprotection [22,24,45–48]. Interestingly,
gene set enrichment analysis identified several genes such as Il-1β, Cox2, Tnf-α and Mip-2,
which were present in clusters 2 and 3 associated with the NF-κβ pathway and were
reduced in the LSL60101 treatment group. Of note, activation of the NF-κβ pathway is
closely related to neurodegeneration and particularly to AD [35], while its inhibition has
been shown to improve cognitive deficits in in vivo models of AD [49]. In turn, reductions
in NF-κβ-regulated genes, such as Il-1β, Cox2 and Tnf-α, were observed after treatments
with selective I2-IR ligands, delivering neuroprotection in mouse models of aging neu-
rodegeneration and AD [14–16,39]. Therefore, downregulation of the NF-κβ pathway by
LSL60101 might partially account for the altered gene expression of inflammatory markers
and further explain its neuroprotective effect in this AD mouse model. In this line of evi-
dence, NF-κβ has been implicated in APP processing and facilitation of Aβ generation [50];
thus, its downregulation is in accordance with the amelioration of Aβ pathology induced
by LSL60101 treatment in 5XFAD mice.

In conclusion, our study identified several genes, modulated pathways, transcrip-
tional factor signatures and their transcriptional regulatory networks that correlated with
previously reported cognitive improvement after LSL60101 treatment in 5XFAD mice [28],
demonstrating the potential of selective I2-IR ligands for AD treatment.
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