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Abstract
Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as 
tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, 
plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-
dependent mechanisms. Herein, we discuss the recent evidence regarding the role of neuroserpin in healthy and diseased 
conditions and highlight the participation of the serpin in various cellular signalling pathways. Several polymorphisms and 
mutations have also been identified in the protein that may affect the serpin conformation, leading to polymer formation and 
its intracellular accumulation. The current understanding of the involvement of neuroserpin in Alzheimer’s disease, cancer, 
glaucoma, stroke, neuropsychiatric disorders and familial encephalopathy with neuroserpin inclusion bodies (FENIB) is 
presented. To truly understand the detrimental consequences of neuroserpin dysfunction and the effective therapeutic target-
ing of this molecule in pathological conditions, a cross-disciplinary understanding of neuroserpin alterations and its cellular 
signaling networks is essential.
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Retina

Abbreviations
AD  Alzheimer’s disease
AFP  Serum a-fetoprotein
Akt  Protein kinase B

ALLO  Allopregnanolone
APP  Amyloid precursor protein
AMPA  α-Amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid
Aβ  Amyloid-beta
Aβ40  Amyloid-beta 40
Aβ42  Amyloid-beta 42
AT/RT  Atypical teratoid/rhabdoid tumours
ATF4  Activating transcription factor 4
ATF6  Activating transcription factor 6
ATF6C  Cleaved activating transcription factor 6
AtT20  Cells derived from an anterior pituitary corti-

cotrope tumour
BBB  Blood–brain barrier
Bcl-1  B-cell leukemia line
Bcl-2  B-cell lymphoma 2
BiP  Binding immunoglobulin protein
CA1  Hippocampal cornu ammonis
Cas-3  Caspase-3
cFn  Cellular fibronectin
CNS  Central nervous system
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CSF  Cerebrospinal fluid
Cys  Cysteine
Dab1  Disabled-1 protein
DNA  Deoxyribonucleic acid
E3  E3 ubiquitin ligase
ECM  Extracellular matrix
EMT  Epithelial–mesenchymal transition
ER  Endoplasmic reticulum
ERAD  Endoplasmic reticulum-associated 

degradation
ERG  Electroretinogram
FasL  Fas ligands
FENIB  Familial encephalopathy with neuroserpin 

inclusion bodies
G1  Gap phase 1
G1/S  Gap phase 1, synthesis phase
GCL  Ganglion cell layer
gp78  Autocrine motility factor receptor
GTPase  Guanosine triphosphate enzyme
HCC  Human hepatocellular carcinoma
HEK293  Human embryonic kidney 293 cells
Hrd1  HMG-CoA reductase degradation protein 1
I-κB  Inhibitor of NF-κB
ICAM1  Inflammatory marker intracellular adhesion 

molecule-1
IL-6  Interleukin 6
INL  Inner nuclear layer
iPSCs  Induced pluripotent stem cells
IOP  Intra ocular pressure
IRE1  Inositol-requiring enzyme 1
L1CAM  L1 cell-adhesion molecule
LDH  Lactate dehydrogenase
LDL  Low-density lipoprotein
LEXSY  Leishmania expression system
LRP-1  Low-density lipoprotein receptor-related 

protein 1
MAP2  Microtubule-associated protein 2
MAPK  Mitogen-activated protein kinase
MCAO  Middle cerebral artery occlusion
MCI  Mild cognitive impairment
Met  Methionine
miR-21  MicroRNA-21
MK-801  Dizoclipine
MMP-9  Matrix metalloproteinase-9
MRI  Magnetic resonance imaging
mRNA  Messenger ribonucleic acid
MMSE  Mini-mental state exam
mNGF  Mature neurite growth factor
N2a  Neuro2a mouse neuroblastoma cell line
NFκB  Nuclear factor kappa light chain enhancer of 

activated B cells
NGF  Nerve growth factor
NMDA  N-Methyl-d-aspartate

NO  Nitric oxide
NSCLC  Non-small cell lung cancer
ONL  Outer nuclear layer
OS-9  Osteosarcoma amplified 9
p63  Transcription factor p63
p65  Transcription factor p65
PAI-1  Plasminogen activator inhibitor-1
PARP  Poly(adenosine diphosphate-ribose) 

polymerase
PC12  Pheochromocytoma cell line
PD  Parkinson’s disease
PERK  Protein kinase R-like endoplasmic reticulum 

kinase
PI3K/Akt  Phosphoinositide 3-kinase/protein kinase B
PN-1  Protease nexin-1/glia-derived nexin
PNS  Peripheral nervous system
POAG  Primary open angle glaucoma
proNGF  Precursor nerve growth factor
PROG  Progesterone
Q-PCR  Quantitative polymerase chain reaction
RCL  Reactive centre loop
RGC   Retinal ganglion cell
Rgs2  Regulator of G protein signalling 2
SCCHN  Squamous cell carcinoma of the head and 

neck
SCI  Subjective cognitive impairment
SERPIN  Serine protease inhibitor
SERPINI1  Serine protease inhibitor, clade I, member 1
SOD1  Superoxide dismutase 1
SREBP  Sterol regulatory binding-element protein
SSRI  Selective serotonin reuptake inhibitor
TBI  Traumatic brain injury
THR1β  Thyroid hormone receptor 1-beta
TNFα  Tumour necrosis factor-alpha
tPA  Tissue plasminogen activator
Trk  Tropomyosin receptor kinase
TrkA  Tropomyosin kinase-A
TUNEL  Terminal deoxynucleotidyl transferase dUTP 

nick end labelling
uPA  Urokinase plasminogen activator
uPAR  Urokinase plasminogen activator receptor
UPR  Unfolded protein response
VLDL  Very low-density lipoprotein
VLDLR  Very-low-density lipoprotein receptor
XBP1  X-box-binding protein 1

Introduction

Neuroserpin or axonin-2 is a glycosylated serine proteinase 
inhibitor (serpin) that was initially identified as a protein 
secreted from cultured dorsal root ganglia of chicken embryo 
[145]. Subsequent in situ hybridisation and northern blot 
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analysis showed this protein to be predominantly localised 
within the neuronal populations of the central and peripheral 
nervous system. However, the protein has also been reported 
to be expressed in pancreas, kidneys, skeletal muscle, heart 
tissue, and immune cell populations within the blood [98, 
117].

Primary structural evaluation of neuroserpin has revealed 
its molecular mass to be approximately 44 kDa, which is 
increased further by N-linked glycosylation. The protein 
is also composed of 410 amino acids, which is reduced to 
394 amino acids following the cleavage of signal peptides 
[139, 145]. Purified human neuroserpin exhibits a molecular 
weight of 55 kDa, owing to glycosylation at multiple sites 
[117, 139, 157]. Neuroserpin is encoded by the SERPINI1 
gene, and mapped to q26 region of chromosome 3 with a 
total of nine exons [139].

Serpin proteins have been implicated in regulating mul-
tiple physiological processes such as coagulation, fibrinoly-
sis, complement system activation and the modulation of 
serine protease activity in a cell- and tissue-specific manner 
[115, 141, 144]. Studies have established that neuroserpin 
as a member of the serpin family, shares a high degree of 
homology with the archetypal serpin, alpha-1 antitrypsin 
[30]. Neuroserpin was initially predicted to be heparin-inde-
pendent and a functional inhibitor of trypsin-like proteases 
within the nervous system [117], with subsequent studies 
demonstrating its inhibition of amidolytic activity of tissue 
plasminogen activator (tPA) and plasmin [87, 116]. Neuro-
serpin has since been shown to play key roles in mediating 
neurite outgrowth, axonal development and maintaining 
normal synaptic plasticity through its inhibitory effects on 
tPA in the central nervous system (CNS), but also through 
mechanisms that are partially independent of tPA [64, 127, 
139, 171]. Structurally, neuroserpin possesses a conserved 
‘serpin fold’, that is composed of three β-sheets and nine 

α-helices within the main body of the protein [48, 129, 141]. 
The serpin also contains an exposed and structurally flex-
ible reactive centre loop (RCL), which utilises a mouse-trap 
mechanism of suicide substrate inhibition [48, 115], that 
allows the protein to present itself as a pseudo substrate to 
the target serine proteases, such as plasmin and tPA [115]. 
The interacting protease engages with the scissile P1–P1’ 
peptide bond of the serpin in the RCL and cleaves it through 
the formation of an intermediate covalent Michaelis com-
plex. This cleavage induces a conformational change in the 
serpin structural fold that in turn distorts the active site of 
the proteolytic enzyme, rendering it catalytically inactive 
[48, 71].

Alterations in neuroserpin activity and its expression have 
been reported, with potentially deleterious effects in various 
neuropathological disease conditions. The protein deficiency 
for instance, has been implicated in inducing exacerbated 
neuronal cell death and increased cerebral infarct size fol-
lowing focal cerebral ischemia in mouse models of stroke 
[47]. On the other hand, treatment with neuroserpin follow-
ing kainic acid-induced seizures has been shown to signifi-
cantly delay the progression of seizure activity [173], and 
exerts a neuroprotective effect against N-methyl-d-aspartate 
(NMDA) induced excitotoxicity, both in vivo and in vitro 
[89]. Exogenous neuroserpin administration has also been 
associated with the reduction of cerebral infarct volumes, 
as well as increased neuronal survival in post-embolic and 
ischemic-induced conditions [25, 131, 175, 179]. Changes 
in neuroserpin expression and activity have also been associ-
ated with cancer metastasis, Alzheimer’s disease (AD) and 
primary open angle glaucoma (POAG) pathologies (Fig. 1) 
[39, 55, 65, 90, 153]. Furthermore, neuroserpin genetic vari-
ations have been shown to be associated with phenotypic 
clinical manifestations including progressive myoclonus 
epilepsy (neuroserpinosis), in familial encephalopathy with 

Fig. 1  The role of neuroser-
pin in various diseases of the 
central nervous system. A flow 
diagram showing the involve-
ment of neuroserpin in various 
disorders affecting the central 
nervous system. AT/RT, Atypi-
cal teratoid/rhabdoid tumours
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neuroserpin inclusion bodies (FENIB) (Fig. 1) [30, 132]. 
Emerging evidence also points towards a possible role for 
neuroserpin in modulating neurovascular permeability, 
inducing neuroprotective effects, promoting axonal regen-
eration and effects independent of its canonical interactions 
with tPA [100, 121, 131]. By elucidating the cellular path-
ways that may influence or alter the role of neuroserpin as 
a protease inhibitor or underlie the impact of neuroserpin 
genetic variants, it may be possible to improve our knowl-
edge of various neurological disease mechanisms with wider 
applicability to identify novel therapeutic approaches. This 
review focuses on neuroserpin actions both dependent and 
independent of tPA and plasminogen in various neuropatho-
logical disorders and discusses recent research outcomes, 
which could help us develop mechanism-based protective 
strategies.

Neuroserpin involvement in axonal growth 
and synaptic plasticity

Whilst in vitro studies demonstrate the complex formation 
and inhibition of tPA, it is unclear which neuroserpin func-
tions may be dependent or independent of tPA in vivo [64, 
116]. Neuroserpin has been demonstrated to interact with 
and inhibit the proteolytic activity of urokinase plasminogen 
activator (uPA), plasmin and trypsin-like serine proteinases 
in vitro [64, 116]. The tPA/uPA system is intricately associ-
ated with neuronal development, promoting synaptic con-
nectivity, plasticity and axonal refinement [159]. Chiefly, 
the plasmin/plasminogen activator network is involved in the 
proteolytic degradation of the extracellular matrix (ECM), as 
a driving force for remodulation, cell migration and growth 
cone motility [109]. Hence, neuroserpin is thought to fine-
tune the proteolytic activity of these enzymes and mediate 
neurogenesis and synapse formation [67, 167]. In particu-
lar, the co-expression of neuroserpin with neuronal markers, 
such as Tuj1 and calbindin, suggested its involvement during 
the early stages of neurogenesis in the hippocampi of adult 
rats [167]. Neuroserpin deficiency during early neurodevel-
opmental phases is also associated with deficits in neuro-
genesis via the premature differentiation of hippocampal 
neurons. Premature termination of the neuronal precursor 
proliferative phase was found to be concomitant to changes 
in the ECM composition and dendritic spine morphology, 
to a more mature phenotype [67]. These observations have 
been corroborated in cell culture experiments where neuro-
serpin was shown to induce neurite outgrowth in AtT20 cells 
[69]. However, it is still unknown whether the inhibitory 
function of neuroserpin is necessary for the protein to medi-
ate neurogenesis and synaptic formation, particularly since 
neuroserpin was also demonstrated to promote cell–cell 

interactions in cultured pheochromocytoma PC12 cells in a 
tPA-independent manner [90].

The spatio-temporal distribution of neuroserpin mRNA 
and protein in the CNS was detailed in early studies by 
Krueger et al. [87]. Neuroserpin was observed to be abun-
dantly expressed during late-stage post-mitotic develop-
ment, following the cessation of axonal pathfinding and 
during synapse formation processes. A weak detection of 
neuroserpin mRNA was evident in the neuronal precursors 
migrating from ventricular zones, and into the cortical plate. 
The post-mitotic neurons of the neocortex, which had set-
tled in the cortical plate strongly expressed neuroserpin as 
they began extending axons that would eventually develop 
synaptic networks. Neuroserpin expression has been shown 
to reach its highest levels perinatally and regress after the 
development of the cortical plate, following the first week 
of life in mice [87]. Increased neuroserpin expression is also 
reported within the neuromuscular junctions of motor neu-
rons in mice during early postnatal development. In adults, 
the overall expression is weaker, but stronger neuroserpin 
expression is visible in areas of the neocortex, amygdala, 
olfactory bulb and hippocampus that undergo active synaptic 
plasticity [82, 87].

The enhanced expression of neuroserpin has been sug-
gested to elicit neural changes associated with improved 
cognitive function, namely the higher density of dendritic 
protrusions, as well as increased length and alterations of 
dendritic spine shape in hippocampal neurons [13]. This 
indicates positive effects of neuroserpin on synaptic plas-
ticity that correlate with improved memory, learning, social 
behaviour, and cognition [64, 101, 127]. Accordingly, the 
deficiency in neuroserpin expression was demonstrated to 
affect learning and memory retention capacity in mice [127]. 
Furthermore, mice lacking or overexpressing neuroserpin 
were shown to manifest behavioural phenotypic changes 
including deficits in exploratory behaviour, neophobia and 
the augmentation of anxiety-like symptoms [101].

The role of neuroserpin in neuropsychiatric 
conditions

As previously described, neuroserpin is abundantly 
expressed in the cerebral hippocampus, neocortex, olfactory 
bulb and amygdala regions, that are intricately associated 
with memory processing and learning [87, 127]. Neuroser-
pin is also shown to be significantly expressed in the noradr-
energic neurons of the locus coeruleus, an area that has been 
implicated to play a role in vigilance, fear and the processing 
of sensory stimuli, alluding to a role for neuroserpin in vari-
ous neuropsychiatric conditions [15, 87].

Early studies demonstrated that neuroserpin is involved 
in regulating mood and emotional health, with implications 
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in anxiety-like behaviour. Transgenic mice that either over-
expressed or were deficient in neuroserpin indeed displayed 
atypical neophobic behaviour with reduced locomotor activ-
ity, decreased exploration of novel environments, anxiety-
like responses to O-maze situations and the avoidance of 
novel objects. In particular, mice that overexpressed neu-
roserpin were averse to bright light, and spent a significant 
amount of their time hidden in dark compartments in the 
light–dark box tests [101]. A similar anxiety-like phenotype 
was reported in neuroserpin-deficient zebrafish that exhib-
ited a preference to stay in outer zones of the test arena, in 
both continuous light and light-to-dark transition conditions. 
Further, RNA sequencing analysis revealed differentially 
expressed pathways in neuroserpin-deficient zebrafish lar-
vae, including the downregulation of G protein signalling 2 
(Rgs2) [60]. Rgs2 has previously been implicated not only 
in AD-related cognitive deficits [58], but it also influences 
anxiety-like symptoms in mice [166], as well as generalised 
anxiety and panic disorder in humans [85, 93]. The gene is 
also associated with an array of intermediate phenotypes, 
such as childhood temperament, adult personality, introver-
sion, agoraphobia, and alterations to functions of the amyg-
dala and insular cortex in humans [93, 142].

Recently, neuroserpin-deficient mice have been described 
to exhibit sociability deficits in behavioural assays, specifi-
cally in social investigation when introduced to unfamiliar 
mice, concomitant to reduced long term potentiation. As 
such, this study also investigated neuroserpin protein levels 
in post-mortem brain samples of patients with idiopathic 
autism and schizophrenia; however, no significant changes 
were observed when compared to age- or gender-matched 
controls [127]. In contrast, neuroserpin gene upregulation in 
the brain tissue of chronic schizophrenic subjects was previ-
ously observed, using RNA microarray analysis in genome-
wide association studies [59]. Earlier studies have indicated 
neurodevelopmental and synaptic pathology in schizophre-
nia [162], and this adds weight to the significance of neu-
roserpin in the disorder, particularly due to its inherent role 
in synaptic plasticity during developmental and adult stages 
of life [87]. Neuroserpin was also notably upregulated in 
the induced pluripotent stem cells (iPSCs) generated from 
schizophrenic patients, that were analysed via deep RNA 
sequencing [163].

A robust neuroserpin expression within the seroton-
ergic neurons of the raphe nuclei has been observed and 
this is significant, considering the role of the dorsal raphe 
nuclei both as a canonical transmitter of serotonin, and in 
its central involvement in neuroplasticity [87]. Serotoner-
gic neurons are directly involved in regulating mood and 
indicated in conditions such as major depressive disorder 
[83, 105]. Indeed, various drugs, such as selective serotonin 
re-uptake inhibitors (SSRIs), that manipulate the serotoner-
gic network are the first line of anti-depressant treatment in 

these conditions [46]. Recent investigations found that neu-
roserpin expression is diminished in rat models of depres-
sion and neuro-inflammation. These reports were further 
substantiated by decreased neuroserpin mRNA expression 
in the peripheral blood mononuclear cells of patients with 
first-episode depression. Further, attenuated neuroserpin 
mRNA in these patients was negatively correlated with Beck 
depression inventory scores [61]. Meanwhile, neuroserpin 
was observed to be upregulated in a rat serotonergic cell 
line derived from the raphe nucleus (RN46A) in response to 
valproic acid treatment, a mood-stabilising drug that is com-
monly prescribed for bipolar disorder [4]. Microarray analy-
sis of anti-depressant related genes also revealed enriched 
expression of neuroserpin in the adult rat hippocampus, 
specifically in the dentate gyrus sub-granular zone. This 
area is critical in hippocampal neurogenesis for adults, and 
extremely receptive to environmental and pharmacological 
stimulation [167]. Indeed, the inhibition of neurogenesis in 
this region has been demonstrated to block the therapeutic 
action of anti-depressant drugs [136]. Collectively, these 
studies reveal the involvement and significance of neuro-
serpin-mediated changes in the aetiology of mood disorders. 
Future investigations into the genetic and cellular signalling 
pathways will help to elucidate the molecular mechanisms 
underlying the role of neuroserpin in these debilitating neu-
ropsychiatric conditions.

Neuroserpin crosstalk with cellular 
signalling networks

Several downstream cellular signalling events linked with 
neuroserpin have been identified in the brain and in retinal 
tissues in recent years. These effects are mediated either 
through the proteinase inhibitory effects of neuroserpin on 
plasminogen activators, or its non-enzyme inhibitory roles 
[55, 117, 165]. Neuroserpin mainly exerts neuroprotective 
effects through its canonical inhibitory actions on plasmino-
gen activators such as tPA [25, 175]. Recent literature sug-
gests that the neuroprotective effects of neuroserpin might 
also be attributed to its direct inhibitory actions on plasmin 
and its ability to moderate plasmin-mediated excitotoxic-
ity, independent from tPA [165]. Plasmin inhibitory activ-
ity of neuroserpin was reported by us in the retina, which 
might play a neuroprotective role for retinal ganglion cells 
in glaucoma [55]. As an inhibitor of tPA and plasmin, the 
serpin may contribute to the preservation of neurovascu-
lar unit integrity through its modulatory effects on neu-
ronal nitric oxide (NO) synthase and proteolytic activation 
of platelet-derived growth factor signalling [42, 118, 120, 
147]. With respect to non-proteinase inhibitory roles, the 
serpin is implicated in regulating the extent of cell–cell 
adhesion in vitro and this role appears to be independent 
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of the inhibition of plasminogen activators, leading to the 
proposition that these effects might be mediated through 
different cell membrane receptors [90]. Furthermore, the 
cytoskeletal-adhering protein, N-cadherin is increased in 
cells overexpressing neuroserpin, suggesting a role for neu-
roserpin in regulating cell adhesion-associated signalling 
pathways. Increased N-cadherin levels were particularly 
localised to cell membrane compartments in contact with 
other cells, consistent with its roles in mediating cell adhe-
sion (Fig. 2a). Interestingly, the effect on N-cadherin and 
the regulation of cell adhesion was also evident with mutant 
neuroserpin species, which were devoid of innate proteinase 
inhibitory activity; further supporting the hypothesis that 
neuroserpin is involved in regulating critical cellular func-
tions through pathways beyond tPA and plasmin engage-
ment [90]. N-cadherin plays important roles in synapse 
formation and forming  Ca2+-dependent interactions with 
actin and catenin cytoskeletal networks [17]. Neuroserpin 

is enriched in presynaptic terminals and its regulation of 
cadherins implicates that the serpin might play a role in the 
formation and preservation of synaptic connections. These 
effects could possibly be mediated through the Rho family 
of GTPases, that are regulated through N-cadherin signalling 
[17]. Taken together, these interactions implicate the role of 
neuroserpin in preserving synaptic networks, through cell 
adhesion and intracellular signalling pathways, which have 
yet to be fully understood [17, 90].

Of interest, the low-density lipoprotein receptor-related 
protein (LRP) has been observed to modulate neuroserpin 
levels by mediating the internalisation of both neuroserpin 
and neuroserpin–tPA complexes across the cell membrane 
in neuronal cultures and fibroblasts. The regulation of neu-
roserpin internalisation by LRP is postulated to regulate 
localised proteolytic activity in synaptic regions [102]. LRP 
regulates many cellular signalling pathways [2, 66, 70], and 
it is hypothesised that neuroserpin may interact with LRP to 

Fig. 2  Neuroserpin crosstalk with cellular signalling pathways. 
A Neuroserpin is involved in cell adhesion via the regulation of 
N-cadherin expression. B Neuroserpin interacts with LRP (lipopro-
tein receptor-related protein) and may regulate localised proteolytic 
activity, cell adhesion, vascular permeability and neuronal protection 
against cell injury and death (dotted lines). C VLDL (very-low-den-
sity-lipoprotein) receptors have been shown to endocytose neuroser-
pin. It is hypothesised that neuroserpin may mediate reelin signalling 
leading to the activation of disabled-1 protein (Dab1). Dab1 interacts 
with the LDL (low-density lipoprotein) receptor and promotes intra-

cellular tyrosine kinase signalling in brain and retina. D In stressed 
conditions, neuroserpin plays an important role in the activation of 
the Akt signalling, suppression of cell death (reduced lactose dehy-
drogenase release), prevention of apoptotic pathways induced by oxi-
dative stress in neurons, and the activation of anti-apoptotic proteins. 
E Neuroserpin has been suggested to interact with NMDA (N-methyl-
d-aspartate) receptors leading to reduction in  Ca2+ influx and sup-
press excitotoxicity in neurons. Dotted lines in the figure indicate 
hypothesised functions, that have not been demonstrated experimen-
tally
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maintain a fine equilibrium of its cellular actions (Fig. 2b) 
[100]. Both neuroserpin and LRP have been identified to be 
localised in synaptic regions and their co-localisation sug-
gests a potential role in collectively modulating proteolytic 
turnover. Of note, although LRP has been shown to mediate 
neuroserpin endocytosis, the protein was observed to not 
directly bind to LRP, suggesting that there might be another 
interacting partner required for neuroserpin internalisation. 
Further studies in cells lacking plasminogen activators estab-
lished that this additional interacting partner is not tPA, sug-
gesting that there might be another protein or co-factor that 
is involved in facilitating neuroserpin binding to LRP in vivo 
and its subsequent internalisation [102]. These additional 
interacting partners can be investigated by immunoprecipita-
tion of neuroserpin and LRP using specific antibodies fol-
lowed by proteomics analysis. As such, the identification 
of one or more of these factors will help dissect molecular 
mechanisms underlying the non-protease inhibitory actions 
of neuroserpin. It is important to highlight that generally, 
cells uptake serpins as a complex with cognate proteases 
for clearance and therefore LRP mediated endocytosis of 
neuroserpin seems to be an exception [146]. Future studies 
should investigate whether neuroserpin undergoes revers-
ible conformational changes or a certain degree of oligom-
erisation in cultured conditions, which might alter its affin-
ity with LRP or with other interacting partners as possible 
explanations.

Another related receptor, very-low-density lipoprotein 
receptor (VLDLR) that is expressed in neurons, has also 
been identified to facilitate neuroserpin uptake in cells. This 
receptor interestingly, mediates endocytosis of neuroserpin 
alone and not in its complex form with tPA, suggestive 
of its different affinity towards the molecule compared to 
LRP-1 [102]. VLDLR participates in reelin signalling in 
the brain that induces activation of the disabled-1 protein 
(Dab1). Dab1 protein in turn interacts with LDL receptors 
and stimulates several tyrosine kinase signalling networks 
[45]. Thus, it is postulated that neuroserpin may indirectly 
participate in and control signalling downstream of VLDLR, 
reelin and Dab1 by regulating their interactions [37]. These 
interactions will likely lead to activation or inhibition of spe-
cific biochemical cascades in the brain and retina in a tis-
sue- and cell-specific manner (Fig. 2c). Neuroserpin has also 
been observed to mediate several cellular effects through 
its crosstalk with neurotrophins. For example, nerve growth 
factor (NGF)-induced neurite extension was increased in 
response to reduced neuroserpin expression in vitro using 
PC12 cell lines [121]. Later investigations established the 
activity-dependent release of precursor NGF in vivo. Here, 
neuroserpin was shown to regulate proteolytic processing 
of the neurotrophin within the cortical extravascular space 
of rat cortices and enabled its conversion from precursor 
to mature NGF [16]. Neuroserpin has also been shown to 

protect hippocampal neurons against oxidative stress, even 
in the absence of tropomyosin receptor kinase (Trk) recep-
tors, suggesting that the serpins role in oxidative stress 
is not mediated through these receptors [22]. In contrast, 
TrkA receptors could hypothetically be indirectly stimulated 
through neuroserpin and neuroserpin:tPA complex interac-
tions with LRP [22, 91]. Similar activation of protein kinase 
B (Akt) and Trk receptors by α2 macroglobulin and tPA 
binding with LRP has been reported previously [140]. Given 
that Trk receptor activation is closely involved in regulat-
ing neuronal survival and the inhibition of apoptosis, these 
changes acting in tandem can promote cellular survival 
(Fig. 2d) [55, 56]. This is consistent with the reported neu-
roprotective effects of neuroserpin, albeit this hypothesis has 
yet to be demonstrated experimentally and warrants further 
investigations. Moreover, neuroserpin indirectly modulates 
the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) 
pathway which promotes neuroprotection. However, the 
mechanisms underlying this activation are unclear. Recent 
studies have detailed that exogenous neuroserpin treatment 
of hippocampal neurons in culture, imparted protection 
against oxidative stress induced damage through its effects 
on Akt signalling, whereas PI3K inhibitor treatment sup-
pressed the neuroprotective effects of neuroserpin [22]. The 
serpin treatment was also shown to enhance neuronal sur-
vival and suppress apoptosis and LDH release, as well as 
modulate the expression of apoptotic pathway-associated B 
cell lymphoma 2 (Bcl-2) and caspase-3 proteins in mito-
chondria. As such, neuroserpin treatment was effective in 
enhancing the expression of anti-apoptotic protein Bcl-2, 
which was initially suppressed upon exposure to oxidative 
stress in hippocampal cultures. Rather significantly, the 
exacerbation of caspase-3 levels in these cells in response 
to oxidative stress was reduced by neuroserpin. Together, 
these observations strengthen the hypothesis that the protec-
tive effects of neuroserpin in neuronal cells might be medi-
ated through its downstream effects on Bcl-2 and caspase-3 
signalling [22].

Likewise, neuroserpin promoted the survival of cells that 
were exposed to oxygen–glucose deprivation [158]. Here, 
while p65 and p-IKKBα/β expression was elevated upon 
withdrawal of oxygen and glucose, the stress response was 
diminished consequent to neuroserpin treatment. These neu-
roprotective effects are attributed to downstream alterations 
in tumour necrosis factor-alpha (TNFα), NO and NFκB lev-
els and due to the inhibition of the mitogen-activated pro-
tein kinase (MAPK) signalling pathways [158]. In particular, 
some of the neuroserpin modulatory effects on astrocytic 
morphology and neuroprotection were lost upon NFκB inhi-
bition, signifying that the downstream protective effects of 
the serpin might in part be induced via NF-κB signalling 
[158].
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The neuroserpin protein also possesses approximately 20 
methionine (Met) residues, which could possibly play a role 
in mediating its antioxidant potential and resultant neuropro-
tective effects [108]. We observed that neuroserpin under-
goes increased oxidation at the active site Met residue in 
glaucoma conditions in the retinas of both human and animal 
model tissues [55]. This observation was further validated 
in superoxide dismutase (SOD) mutant mice, where neuro-
serpin deactivation was associated with increased oxidative 
stress [55]. As such, further understanding of the cellular 
signalling networks regulating neuroserpin actions might 
offer new opportunities to target this molecule in stroke and 
chronic neurodegenerative conditions of the brain and retina, 
such as Alzheimer’s disease (AD), Familial encephalopathy 
with neuroserpin inclusion bodies (FENIB) and glaucoma.

Neuroserpin implications in Alzheimer’s 
disease pathology

Alzheimer’s disease (AD) is one of the most prevalent forms 
of dementia, characterised by progressive mental and cog-
nitive deficits, particularly in ageing populations [81]. The 
progression of AD pathogenesis is believed to be driven at 
least in part by the accumulation of toxic extracellular amy-
loid-beta (Aβ) protein in the brain [41]. Aβ fibrillary struc-
tures and plaques have been shown to contain the neuroser-
pin protein, which was demonstrated to form a 1:1 binary 
complex with N-terminals of Aβ peptides [84].

Chiou et al. [24] investigated neuroserpin-Aβ interac-
tions using the single molecule fluorescence method and 
demonstrated that the attachment of Aβ into the β-sheets 
of neuroserpin accelerates its interaction, with the forma-
tion of a polymerogenic neuroserpin monomer, followed by 
Aβ displacement [24]. This suggests that Aβ could act as a 
facilitator for neuroserpin polymerisation, further pointing 
towards an important, yet unelucidated role for neuroserpin 
in neurogenerative disease [24]. However, there is conflict-
ing evidence to suggest whether neuroserpin activity within 
AD is neuroprotective, or conversely plays a role in dis-
ease progression. Initial studies have shown an increased 
level of neuroserpin in cerebrospinal fluid (CSF), as well as 
brain tissue of AD patients, when compared to controls [39, 
114]. This was in contrast to the normal expression of other 
serpin family members’ plasminogen activator inhibitor-1 
(PAI-1) and protease nexin-1 (PN-1) [39]. Further, neuro-
serpin levels were positively correlated with tau biomarkers 
in the CSF [114]. Later studies also corroborated these find-
ings and reported a significant upregulation of neuroserpin, 
alongside plasminogen in the CSF of patients with mild 
cognitive impairment (MCI), in comparison to subjective 
cognitive impairment (SCI) subjects. However, these studies 
also showed that neuroserpin and plasminogen expression in 

AD patients was not significantly different to those with SCI 
[62]. In human post-mortem studies, neuroserpin mRNA 
was reported as significantly decreased in the frontal and 
temporal cortices of AD patients [6]. The neuroserpin pro-
tein levels were also shown to decline as the Braak staging 
increased, suggesting that neuroserpin levels may decrease 
in the advanced stages of AD, following extensive neuronal 
loss. On the other hand, studies in AD transgenic mice with 
neuroserpin gene ablation have demonstrated rapid clearance 
of Aβ40 and Aβ42 levels, as well as a decrease in Aβ plaque 
burden, and more active tPA interaction with the plaques. 
These animals also manifested an overall improvement in 
behavioural testing performance compared to AD mice with 
neuroserpin, suggesting that increased amyloid clearance in 
neuroserpin ablated AD mice may be due to more efficient 
action of tPA or plasmin on Aβ oligomers [38]. Collectively 
these studies highlight a complex and not yet fully under-
stood role of neuroserpin in AD pathogenesis. The specific 
increase of neuroserpin levels within CSF in MCI, however, 
indicates its potential novel applications as a biomarker for 
the early detection of AD pathology [62, 114].

Among the several enzymes that are involved in Aβ 
degradation, plasmin plays a critical role in cleaving Aβ 
and facilitating its clearance [152]. Previous studies have 
reported reduced plasmin proteolytic degradation and clear-
ance of amyloid precursor protein (APP)/Aβ within AD 
brains. Correspondingly, increased levels of neuroserpin are 
associated with decreased tPA activity, resulting in reduced 
Aβ clearance in AD [39]. Concurrently, AD brains show 
drastically reduced plasmin/tPA activity when compared to 
age-matched controls. Hence, it is plausible that neuroserpin 
upregulation may initially protect the CNS by binding with 
Aβ, yet inadvertently result in a reduction of plasmin proteo-
lytic propensity to clear neuroserpin-Aβ complexes (Fig. 3a) 
[39]. However, it is still unclear as to what extent neuroser-
pin upregulation, neuroserpin–plasmin interaction and con-
sequent inhibition of plasmin may affect normal biochemi-
cal and disease processes where plasmin would be deemed 
beneficial, such as in the clearance and degradation of Aβ 
(Fig. 3b) [7, 36]. In addition to the above, the disruption of 
the NGF metabolic cascade due to the inability of plasmin 
to convert precursor proNGF to mature NGF may contribute 
to AD pathophysiology [75]. Lee et al. [92] has suggested 
that increased neuroserpin expression in brain may be the 
result of uncontrolled neuronal excitation and toxicity [92, 
97]. Recent studies have indicated that stimulation of thyroid 
hormone binding to its receptor thyroid hormone receptor 
1-β (THR1β) might be responsible for up-regulation of neu-
roserpin in AD [148]. Additionally, autophagy impairment 
has gained considerable attention in recent years in AD and 
other neurological disorders associated with accumulation of 
misfolded proteins in the cells [32]. While the endoplasmic 
reticulum-associated degradation (ERAD) pathway has been 
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mainly implicated for degradation of mutant neuroserpin, 
autophagy was shown to mediate degradation and turnover 
of both wild type (WT) and mutant forms of neuroserpin 
[86]. These observations may provide insights into reasons 
underlying elevated neuroserpin levels in AD brain tissue 
throughout the development and progression of the disease.

Neuroserpin roles in the retina

Early studies identified the presence of neuroserpin as 
an axonally secreted protein in embryonic chicken retina 
[145]. Small quantities of the neuroserpin transcript were 
detected in E14 embryonic chicken retina utilising north-
ern blotting [117]. The expression of neuroserpin was fur-
ther detected in the ganglion cell and inner nuclear layers 
of the embryonic retina, with maximum expression prior 
to and following hatching. This expression was found to 
be evident at stage 36 of development (as per the chick 
developmental stages documented by Hamburger and 
Hamilton), with retinal projections reaching the optic tec-
tum [156]. Strong cellular signals of neuroserpin pointed 
towards its role in early-stage embryonic synaptogenesis 
and at this stage of development, retinal projections start 
developing synaptic connections, which may provide clues 
on the role of neuroserpin as a modulator for retinal syn-
aptogenesis and remodelling [117].

The mRNA transcripts of neuroserpin are also detect-
able in both the ganglion cell layer (GCL) and inner nuclear 
layer (INL) in adult retinas. However, little to barely detect-
able expression of neuroserpin was evident in the deeper 
plexiform layers or in the photoreceptors at this point [117]. 
More recently, wide distribution of neuroserpin expression 

throughout the retina, with strong expression throughout 
the GCL and down to the nuclear and plexiform layers of 
healthy control mice has been reported [55]. Neuroserpin is 
also abundantly present in the optic nerve head and vitreous 
under normal physiological conditions [55]. These observa-
tions suggest that the serpin might be playing a more broader 
role in regulation of serine protease activity in the retina 
[116].

There are reports which implicate the involvement of 
plasminogen activators in excitotoxicity-induced dam-
age to the retinal neurons in glaucoma conditions [23, 
103]. Enhanced plasminogen immunoreactivity has been 
reported in glaucomatous retinas, particularly within the 
plexiform layers and surrounding ECM regions [23]. Our 
group has shown that neuroserpin and plasmin interact 
under glaucomatous conditions resulting in protease inhib-
itor complex formation, which was observed to be signifi-
cantly increased or alternatively stabilised under ocular 
hypertensive conditions in both human and animal tis-
sues [55]. Retinal immunoprecipitation analysis indicated 
that this complex is detected as a higher molecular mass 
band in the human glaucoma samples and in rat models of 
experimental glaucoma. The expression of the neuroserpin 
protein however was not altered in the retina, optic nerve 
head or vitreous of human control and glaucoma samples. 
Similarly, no intraocular pressure (IOP)-induced changes 
in neuroserpin and plasmin expression or their localisa-
tion within the retina were identified in animal models 
of glaucoma. In contrast, the plasmin inhibitory activity 
of neuroserpin was significantly diminished in glaucoma 
samples from both human retina and in animal models. 
Consequently, in the absence of an effective proteolytic 
inhibitory mechanism, human glaucoma retinal samples 

Fig. 3  Neuroserpin involvement in regulating amyloid β pathology. 
Schematic figure showing A neuroserpin binding to amyloid β fibrils 
leading to neuroserpin-Aβ complex formation. This neuroserpin-Aβ 
complex is resistant to plasmin proteolytic action and reduces the 

clearance of amyloid β deposits. B Increased neuroserpin binds to 
plasmin and makes the proteolytic enzyme unavailable to mediate 
clearance of amyloid β fibrils from the neuronal tissue
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exhibited enhanced plasmin amidolytic activity, when 
compared to the controls. Similarly, glaucoma retinal tis-
sues from rat model also showed significantly enhanced 
plasmin activity. The protein expression analysis of human 
samples revealed no significant changes for plasmin, tPA 
or uPA, suggesting that apparent increase in plasmin pro-
teolytic activity, was due to the chronic loss of neuroserpin 
protease inhibitory activity [55].

Furthermore, studies from our group and others have 
shown evidence of ECM degradation around the optic nerve 
head region that coincided with enhanced plasmin activ-
ity [54, 68]. This was supported by increased collagen and 
laminin degradation products identified in the human and rat 
retinal tissues exposed to glaucoma [55]. Complementary 
findings have been reported in ischemic stroke mouse mod-
els where tPA or plasmin impairment effectively blocked 
degradation of laminin and protected the neurons [21].

The primary structure of the neuroserpin protein includes 
20 Met residues, which are susceptible to oxidation and can 
become oxidised into methionine sulfoxide. This provides 
an ancillary anti-oxidant mechanism inherent to the mol-
ecule [108]. Application of recombinant neuroserpin to hip-
pocampal neurons in vitro indeed attenuated H2O2 induced 
oxidative stress effects [22]. Increased methionine sulfoxide 
immunoreactivity was observed in human glaucoma retinal 
samples. An increase in methionine sulfoxide reactivity was 
also evident in the rat glaucomatous retinas. In both cases, 
methionine sulfoxide staining was predominantly localised 
to the GCL and INL regions [55]. An important feature of 
neuroserpin is that it contains a Met residue at its reactive 
site loop and oxidation may render the molecule inactive, 
paving way for unregulated plasmin proteolytic actions 
[108]. Increased methionine sulfoxide reactivity coupled 
with reduced inhibitory activity, suggests oxidative inacti-
vation of neuroserpin at its reactive site loop Met residues 
under glaucoma conditions [55].

The propensity of the neuroserpin molecule to undergo 
oxidative inactivation was also evident from observations 
in superoxide dismutase 1 (SOD1)-deficient mice. Super-
oxide dismutase (SOD) mutant mice are characterised by 
increased oxidative stress; and the neuroserpin molecule 
demonstrated increased methionine sulfoxide reactivity and 
loss of inhibitory activity in these animals [55]. This also 
corresponded with enhanced plasmin proteolytic activity in 
their retinal tissues. These observations are substantiated by 
the fact that SOD1-deficient mice display progressive loss 
of retinal electrophysiology amplitudes, swollen or degener-
ated mitochondria and thinning of the retinal ganglion cell 
(RGC) layer, highlighting a potential mechanistic role of 
neuroserpin inactivation in retinal phenotypes associated 
with SOD1 loss [63].

Neuroserpin has also been shown to impart functional and 
retinal laminar structural protection in ischemic models of 

retinal ganglion cell damage [50]. Endogenous neuroserpin 
levels increased immediately following ischemic reperfusion 
injury and a sustained elevation of the protein was observed 
up to 24 h, particularly within the GCL [50]. Eyes treated 
with exogenous recombinant neuroserpin showed recovery 
of electroretinogram (ERG) b-wave amplitudes at seven days 
post injury, suggesting a neuroprotective role for neuroser-
pin in the disease model. Further, exogenous neuroserpin 
was able to significantly attenuate the number of apoptotic 
TUNEL-positive cells throughout the GCL, INL and outer 
nuclear layer (ONL) within 24 h of ischemic reperfusion 
injury, supporting its key role in inner retinal protection [50].

The protective effects of neuroserpin were reinforced by 
observations in  tPA−/− mice, where neuroserpin adminis-
tration imparted protection against ischemic reperfusion 
injury. This was evidenced by restoration of the b-wave 
amplitudes seven days post injury, as well as evidence of 
reduced TUNEL-staining in neuroserpin-treated mice eyes 
24 h post injury [50]. A marked decline in the expression of 
cleaved caspase-3 and poly-(adenosine diphosphate ribose) 
polymerase (PARP) was also noted subsequent to neuroser-
pin treatment. These observations implicate that neuroserpin 
imparts retinal neuroprotection in both a tPA-dependent and 
-independent manner, likely due to the inhibition of cas-
pase-3 and caspase-9 cell death signalling pathways [50]. 
It is important to mention that neuroserpin may accomplish 
tPA-independent protective effects due to the inhibition of 
plasmin-induced excitotoxicity and apoptosis, and indeed 
recent studies have established that neuroserpin can inhibit 
plasmin activity and that the two proteins interact in the 
retina [55]. Gu et al. [50] discussed the possibility of neu-
roserpin being less protective in the absence of tPA, since 
the effect of neuroserpin was noticed to be less beneficial 
in  tPA−/− mice, albeit non-significantly [50]. Future studies 
should aim to identify the key cellular signalling pathways 
affected upon neuroserpin loss, as well as the neuroprotec-
tive pathways that are stimulated upon administration of the 
protein in the retina.

Neuroserpin polymerization and FENIB

Familial encephalopathy with neuroserpin inclusion bod-
ies (FENIB) is caused by mutations that typically result 
in opening of the β-sheet-A of neuroserpin molecule. The 
molecular basis for FENIB manifestation was initially sug-
gested to be based on a loop–sheet model, which proposed 
that the RCL of one mutant neuroserpin molecule, inserted 
into the β-sheet-A of another mutant neuroserpin molecule, 
resulting in the formation and accumulation of loop–sheet 
polymeric structures within the endoplasmic reticulum 
(ER) of neuronal cells [30, 107]. However, the formation 
of serpin polymers is currently hypothesised to be mediated 
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by domain-swapping of the carboxyl-terminal ends of the 
mutant serpin molecules [26, 40, 169]. Yet despite these 
developments, the crystal structure of polymerised neuro-
serpin remains to be established for a better understanding 
of FENIB neuropathology. The mutant neuroserpin protease 
inhibitor has been shown to interact poorly with tPA and 
lead to the rapid formation of polymers [9, 11]. Various 
FENIB mutations have also previously been linked to the 
development of phenotypic effects, such as progressive myo-
clonus epilepsy (neuroserpinosis) [132]. Earlier studies have 
highlighted the association of unregulated tPA excitotoxic-
ity with the propagation of seizures in wild-type Sprague 
Dawley rats subjected to intracerebral kainic acid injection 
[172, 173]. However, a link between the regulation of tPA 
proteolytic activity by mutant neuroserpin and seizures has 
yet to be proven in the context of FENIB pathology. Other 
clinical manifestations of FENIB include progressive cogni-
tive deficits and dementia [14, 30, 132].

The histopathology of FENIB-afflicted individuals was 
noted by Davis et al. [28, 30] to include mutant neuroserpin 
inclusion bodies, initially termed Collins bodies, which were 
distributed throughout the grey matter of the cerebral cortex 
and to a lesser extent in the subcortical nuclei. These bod-
ies were particularly dispersed amongst the neuropil region 
and within vacuoles. However, all inclusion bodies were 
found within neuronal cells and gross examination of these 
cells showed displaced nuclei and seemingly no cytoplasm 
[28]. Analysis of both human and transgenic FENIB-mice 
neuronal tissue also noted that neuroserpin inclusion body 
formation preceded neurodegeneration and cognitive deficits 
[29, 44]. Further, brain tissues available from either biopsy 
or autopsy were analysed and established that the onset 
and severity of FENIB-associated neurodegeneration and 
dementia, was directly correlated with the rate of mutant 
neuroserpin formation and its retention [29, 106]. However, 
the mechanisms behind its accumulation, or decreased clear-
ance are still poorly understood. FENIB patients exhibit cog-
nitive deficits, such as reduced attention, the loss of oral 
fluency, concentration, and response regulation function. 
Magnetic resonance imaging (MRI) studies reveal frontal 
and frontal subcortical deficits, showing moderate cognitive 
degeneration, while severe cases demonstrated global corti-
cal atrophy. Furthermore, it is suggested that neuroserpin 
polymer formation at the neuronal synapse may give rise to 
chronic localised inflammatory changes, thus participating 
in the loss of synaptic plasticity in FENIB-associated neu-
rodegeneration [14]

FENIB pathophysiology is characterised by the accu-
mulation of mutant neuroserpin in the neuronal ER, trig-
gering an ER overload response, with the protein overload 
potentially activating an altogether different set of stress 
signalling pathways in diseased conditions, such as NFκB 
activation, as was observed in the cells in culture [27]. The 

proteinase inhibitory activity of the serpin and its ability 
to be secreted is also affected under such conditions [9, 
11, 73]. The expression of polymerogenic mutant forms 
of neuroserpin has been shown to induce the upregulation 
of antioxidant defence mechanisms in neural cell cultures 
derived from mice brain, and the disruption of these anti-
oxidant mechanisms was shown to promote pro-apoptotic 
pathways [52]. The detrimental effects of mutant neuro-
serpin overexpression were also evident in mice where 
the formation of inclusion bodies within ER was observed 
in vivo, along with concomitant neuronal loss in various 
brain regions [44]. The expression of mutant neuroserpin 
was also recently established to mediate dysregulation of 
ER morphology in yeast, similar to that observed in mam-
malian cells expressing mutant neuroserpin [155]. Further-
more, studies in C. elegans expressing mutant neuroserpin 
homolog SRP-2, demonstrated perturbations in heat shock 
response and unfolded protein response (UPR) signalling 
pathways (Fig. 4). In these studies, the transient activation of 
three branches of UPR (inositol-requiring enzyme 1, IRE1; 
activating transcription factor 6, ATF6; and protein kinase 
R-like endoplasmic reticulum kinase, PERK) was evident in 
C. elegans and mice models overexpressing mutant forms 
of neuroserpin at a young age, before the polymers began 
to accumulate exponentially [137]. The mutant neuroser-
pin monomers that escape polymerisation are subjected to 
ER-associated degradation (ERAD) via ligases Hrd1 and 
gp78, which assist in their ubiquitination, translocation 
and proteasomal degradation [86, 176]. Overexpression of 
Hrd1 and gp78 in human embryonic kidney (HEK293) and 
mouse neuroblastoma (N2a) cells, decreased the level of 
mutant neuroserpin through the ERAD pathway. In contrast, 
knockdown of the E3 ubiquitin ligase led to enhancement 
of G392E aggregates [176]. Further studies have shown that 
the overexpression of ER-lectin OS-9 (osteosarcoma ampli-
fied 9) may lead to the clearance of mutant neuroserpin via 
ERAD degradation [138]. Ultimately, the significant intra-
cellular accumulation of polymeric neuroserpin elicits an 
ER overload response, which activates NFκB-mediated cell 
death signalling (Fig. 4). This NFκB activation is seemingly 
independent of IRE1, ATF6, and PERK mediated UPR that 
generally reflects associated ER stress [27]. Similar, NFκB 
activation independent of UPR effects has previously been 
observed with polymeric accumulation of another mutant 
serpin, alpha-1 anti-trypsin [123]. NFκB activation directly 
correlates with intracellular  Ca2+ as its depletion is associ-
ated with reduced NFκB levels [27]. NF-κB signalling is 
implicated in regulating neurite growth and the molecule is 
suggested to play a role in several chronic neurodegenerative 
conditions [57]. The development of drugs that may restrict 
propagation of neuroserpin aggregates will be a major thera-
peutic step forward, as well as enhance our understanding of 
the biological mechanisms underlying the disease process.
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An inverse correlation between cholesterol levels within 
cell membranes and neuroserpin aggregation, even in the 
absence of genetic mutation has been observed [49]. Neu-
roserpin aggregation in the brain was enhanced in response 
to statin treatment and inhibition of the sterol regulatory 
binding-element protein (SREBP) [49]. Roussel et al. [133] 
demonstrated that intracellular cholesterol biosynthetic path-
ways interact with the neuroserpin mutant G392E polymer, 
during SREBP-induced activation. A reduced ubiquitination 
of G392E neuroserpin was observed in vitro, further cor-
roborating a relationship between cholesterol biosynthesis 
and mutant neuroserpin clearance [133]. N-linked glycosyla-
tion of N157 and N321 sites in the molecule has been impli-
cated in attenuating protein polymerisation through their 
effect on folding and maintaining a functional conforma-
tional state [110]. These findings were corroborated in vitro 
where glycosylated wild-type neuroserpin demonstrated a 
significantly reduced response to heat-induced polymeri-
sation, whilst non-glycosylated forms were susceptible to 

aberrant intracellular polymer accumulation and rapid con-
formational changes when expressed in eukaryotic LEXSY 
systems and purified [157].

Neuroserpin exhibits significant tertiary structural homol-
ogy to PAI-1 and given an overlap of interacting proteases 
between the two molecules, knowledge gained from PAI-1 
can potentially help us to design novel neuroserpin ligands 
for therapeutic applications in FENIB [95]. Embelin is a 
small molecule antagonist with a molecular weight of 
294.39 Da, that interacts with PAI-1; it has also been shown 
to attenuate neuroserpin polymerisation, without under-
mining the serpin folding and its tPA proteolytic inhibitory 
activity [135]. Furthermore, unlike as observed in the case of 
PAI-1, embelin was able to bind with neuroserpin configu-
rations in native, polymeric, latent, and cleaved states with 
a particular effect against polymeric and latent conformers 
that are indicated in FENIB patients. These findings suggest 
that the interacting motifs of neuroserpin remain unaffected 
upon polymerisation or C-terminal cleavage. In addition, 

Fig. 4  Activation of ER signal-
ling pathways in FENIB. Neu-
roserpin gene mutations have 
been associated with inducing 
endoplasmic reticulum stress 
response signalling. (1) Mutant 
neuroserpin polymers stimulate 
 Ca2+ efflux from ER leading 
to I-kB activation and NF-kB 
mediated pro-inflammatory 
signalling. (2) Mutant neuro-
serpin is in part degraded by 
autophagy pathways through 
the formation of autophago-
somes and their interaction with 
lysosomes. (3) Endoplasmic 
reticulum-associated degrada-
tion (ERAD) is able to eliminate 
mutant neuroserpin through 
proteasomal degradation (4) 
Mutant neuroserpin accumu-
lation may lead to enhanced 
ER stress and activation of 
the unfolded protein response 
(UPR). These signalling 
mechanisms eventually lead to 
either the activation of protein 
degradation mechanisms or 
programmed cell death
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neuroserpin polymers were also found to disaggregate when 
incubated with embelin, while native neuroserpin oligom-
erisation at high temperatures was limited to 2–8 molecules 
and no formation of latent configuration was evident. Fur-
ther, while the native neuroserpin/embelin interactions were 
observed to form oligomers, these remained stable over time 
and highly soluble. Therefore, these oligomers could hypo-
thetically be secreted and degraded more efficiently by cells. 
As such, this study proposed that embelin could potentially 
control neuroserpin polymerisation and find applications in 
disorders associated with its activation and excessive accu-
mulation in neuronal cells [135]. However, it is acknowl-
edged that while this study demonstrates proof-of-principle 
for future therapeutic strategies, a greater understanding of 
these mechanisms and hypothesised cellular degradation 
pathways in vivo is warranted. Further investigations will 
enhance our understanding about the roles of neuroserpin 
in physiological and FENIB disease processes.

Stroke and neuroprotective effects 
of neuroserpin

Cerebral ischemic stroke results in the imbalance of energy 
demand and vascular nutrient supply. Within the cerebral 
ischemic core, irreversible damage to neurons occurs result-
ing in tissue necrosis [35]. However, the peripheral regions 
of the ischemic core, are often the target of many neuro-
protective studies, due to the fact that the penumbra may 
be salvaged via gradual reperfusion from collateral vessels 
[8]. As such, the current standard of care involves intrave-
nous administration of recombinant tPA to stroke patients, 
to rapidly reinstate perfusion and increase the therapeutic 
prospects [1]. This approach employs the intrinsic function 
of tPA in degrading the fibrin matrix of thrombo-embolic 
clots to achieve arterial recanalisation [1]. Yet, the caveat is 
that tPA is subject to a narrow therapeutic window in stroke; 
and the protein being able to permeate the blood–brain bar-
rier, may promote intracerebral haemorrhage, and induce 
excitotoxicity damage [12, 79, 174].

The excitotoxic role of tPA in neurodegeneration was 
initially postulated in studies where both tPA-deficient and 
wild-type mice were subjected to intra-hippocampal injec-
tions of the glutaminergic agonist kainic acid. tPA-deficient 
mice exhibited increased resistance to neuronal degeneration 
and seizure, concomitant with attenuated neurotoxic gluta-
mate signalling and microglial activation [151]. The signifi-
cance of these findings led to the hypothesis that tPA excito-
toxicity may lead to extravascular deleterious effects within 
the brain parenchyma during and following the ischemic 
stroke [12, 160]. Further, tPA potentiates NMDA receptor-
mediated calcium influx, which contributes to excitotoxic 

neuronal apoptosis [113, 151, 160]. This was conversely 
exemplified in studies whereby immunotherapeutic preven-
tion of tPA interactions with NMDA receptors was able to 
reduce cerebral edema and decrease both neuronal apoptosis 
and microglial activation [43]. Thus, considering the pref-
erential inhibitory activity of neuroserpin on tPA, studies 
have been investigating the potential neuroprotective role 
of neuroserpin, as well as the effects of its administration 
during and following ischemic stroke.

Seminal studies established the rapid increase of neu-
roserpin immunoreactivity within the ischemic penumbra 
as early as 6 h after stroke [175]. This was supported by 
reports that neuroserpin immunoreactivity was completely 
lost within the ischemic core, and preceded the loss of 
neuronal marker microtubule-associated protein (MAP)-2 
[179]. In a rat model of middle cerebral artery occlusion 
(MCAO), neuroserpin levels peaked 48 h post ischemia and 
remained elevated for up to one week [175]. This potentially 
represents an innate neuroprotective response to ischemia-
induced neuronal depolarisation and tPA-dependent exci-
totoxic cell death [175]. Further, exogenous neuroserpin 
administration was shown to lead to a significant decrease 
in the volume of stroke damage and reduced cell death, 
suggesting increases in neuroserpin levels is protective in 
ischemic stroke [175]. The intra-cortical administration of 
neuroserpin was also demonstrated to reduce the extent of 
laminin degradation induced by microglial activation [175]. 
A growing body of evidence has since corroborated these 
findings and exemplified that the role of neuroserpin within 
the brain parenchyma is indeed associated with neuroprotec-
tion, via the attenuation of various excitotoxic and inflamma-
tory factors, mainly mediated by tPA [25]. Transgenic mice 
overexpressing neuroserpin demonstrated a 30% decrease 
of cerebral infarct volumes following MCAO induction. 
Immuno-histochemical analysis and in situ hybridisation of 
the tissues in this study have revealed diminished microglial 
activation and reduced levels of plasminogen activators, tPA 
and uPA [25].

Neuroserpin levels in the brain during ischemic stroke 
are paralleled by an exacerbated pro-inflammatory path-
way response due to microglial activation [47]. The role of 
microglial activation following ischemic stroke is multifac-
eted and has been implicated to play both a neurotoxic and 
neuroprotective role [170]. Microglial activation is instru-
mental in the phagocytosis of debris, ECM remodelling and 
the secretion of immunomodulatory cytokines/trophic fac-
tors, which are essential for tissue repair following ischemia 
[170]. Conversely, microglial-induced imbalance of regen-
erative mechanisms, render neurons susceptible to further 
neurotoxic injury and cell death [88]. The pro-inflammatory 
role of microglial activation is also associated with enhanced 
glutamate, superoxide, nitric oxide, TNFα and matrix metal-
loproteinase levels [19, 72, 150]. Serpin deficiency was also 
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associated with larger infarct size and worsened neurological 
outcomes in the mouse model [47].

The detrimental effects of neuroserpin deficiency have 
also been identified in stroke co-morbidity with diabetes, 
where diabetic rats following MCAO induction exhibited 
an increased susceptibility to ischemic injury [94, 161]. 
Diabetes concomitant to ischemic stroke is associated with 
evidence of enhanced infarct size, oedema, blood–brain bar-
rier (BBB) dysfunction [80], and is believed to be mediated 
via sustained exposure to hyperglycaemia induced oxidative 
stress,  Ca2+ toxicity, matrix metalloproteinase-9 (MMP-9) 
activation and the increased expression of the inflamma-
tory marker intracellular adhesion molecule-1 (ICAM-1) 
[33, 80, 178]. Evidently, other studies noted that decreased 
neuroserpin levels were inversely correlated with ICAM-1, 
interleukin 6 (IL-6), MMP-9 and cellular fibronectin (cFn) 
expression [131]. Moreover, mRNA levels of plasminogen 
activators tPA, uPA and serpins PAI-1 and neuroserpin were 
elevated in normal mice following reperfusion. However, 
neuroserpin levels were significantly reduced in diabetic 
mice [94]. Thus, it was hypothesised that the exacerbated 
injury in diabetic mice is linked to reduced fibrinolytic 
activity, and in later stages aggravated by reduced neuro-
serpin levels and leakage of tPA into the parenchyma [94]. 
Accordingly, while neuroserpin potentially displays a neu-
roprotective effect by limiting tPA-mediated glutaminergic 
signalling, it has also been implicated in modulating BBB 
permeability during stroke [131]. The importance of early 
therapeutic intervention is critical to the survival of neurons 
not only in ischemic stroke, but also in traumatic brain injury 
(TBI), which is often linked to haemorrhagic stroke. Inter-
estingly, increased levels of neuroserpin and its enhanced 
binding with tPA were observed in rat models of acute TBI 
that were subjected to treatment with progesterone (PROG). 
These findings suggest a potential role for neuroserpin in 
mediating the neurotoxic effects of tPA in both ischemic and 
haemorrhagic stroke [154]. Subsequent studies demonstrated 
that PROG/allopregnanolone administration may attenuate 
dysfunction of BBB permeability and reduce infarct size 
and tPA-mediated inflammation in ischemic stroke animal 
models [74]. Taken together, the above studies highlight a 
complex interaction of neuroserpin with tPA proteolytic 
activity throughout the therapeutic window following stroke.

Cumulative evidence has established that tPA adminis-
tered one hour after MCAO induction significantly reduced 
infarct size and increased neurological outcomes [78], in 
comparison to late tPA-induced thrombolysis which was 
associated with larger infarct size, BBB leakage and edema 
within the ischemic core [179]. The intra-cisternal admin-
istration of neuroserpin three hours post ischemia signifi-
cantly reduced this deleterious effect, and widened the tPA 
therapeutic window, possibly by inhibiting the pleiotropic 
extravascular effects of tPA within the brain parenchyma 

[179]. Additionally, the excitotoxicity effects of tPA are 
associated with ionotropic NMDA receptor perturbations, 
that lead to  Ca2+ toxicity and induce superoxide-mediated 
oxidative stress in neurons [89, 128]. Neuroserpin selectively 
restricts NMDA receptor mediated intracellular  Ca2+ influx 
and its toxic effects, but not α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) induced excitotoxicity 
[89]. Thus, neuroserpin administration may exert neuro-
protection due to its inhibitory effects on NMDA-induced 
toxicity and resultant tissue necrosis (Fig. 2e). Accordingly, 
neuroserpin-mediated inhibition of NMDA receptors led 
to increased neuronal survival throughout the cortex and 
striatum of MCAO-induced mice. Neuroserpin adminis-
tration also reduced lesion size in mice by attenuating tPA 
glutaminergic signalling, and intra-neuronal  Ca2+ spiking. 
Similar effects were observed in neuronal cultures, which 
revealed diminished NMDA-mediated  Ca2+ influx subse-
quent to neuroserpin treatment [89]. Of interest is that, neu-
roserpin inhibition of NMDA receptor has also been shown 
to involve a component that is independent of tPA-mediated 
effects suggesting that there may be an alternative plasmin 
regulatory mechanism [165]. This is supported by the obser-
vations that plasmin-mediated excitotoxicity was minimised 
upon either neuroserpin or NMDA receptor antagonist 
Dizocilpine (MK-801) administration, suggesting a regula-
tory role of neuroserpin in plasmin-induced excitotoxicity 
mechanism [165]. The neuroprotective effects of neuroser-
pin were also evident from tPA knockout mice studies that 
demonstrated an increased neuroprotection in the absence 
of tPA, in a sub-lethal injury model of bilateral common 
carotid artery occlusion [165]. Such injury was shown to be 
accompanied by an increase in neuroserpin levels in the hip-
pocampal CA1 layer and cerebral cortex, which may induce 
tolerance to ischemic injury in neuronal cells [165]. The 
exact dynamics of neuroserpin alterations, region-specific 
localisation and in vivo concentrations are largely unknown 
at present, and this remains a challenge to achieve the thera-
peutic potential of the molecule. Exogenously administered 
neuroserpin at possibly high concentrations could promote 
non-specific interactions with other serine proteinases 
leading to non-discriminate and toxicity effects [92, 165]. 
However, it is important to highlight that while excitotoxin-
induced apoptosis by tPA is plasminogen-dependent [151], 
tPA may also act independent of the proteolytic enzyme in 
ischemic-induced cell damage [112]. LRP facilitates trans-
endothelial transport across the BBB [31], and this protein 
is shown to interact with and internalise endogenous tPA 
[174]. Thus, tPA regulation via LRP is suggested to play a 
role in the regulation of vascular permeability during stroke 
[174]. Neuroserpin has been shown to inhibit the effects of 
tPA-mediated permeabilisation and break down of the BBB, 
and consequently reduces tPA-induced vasogenic edema [3, 
174] in the event of uncontrolled tPA internalisation [174].
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Molecular participation of neuroserpin 
in cellular proliferation and cancer

A growing body of evidence has implicated a role for neu-
roserpin in mediating tumour growth, metastasis, and cel-
lular survival pathways. The serpin was demonstrated to be 
upregulated in poorly differentiated prostate cancer tissue, 
in comparison to the healthy and well differentiated prostate 
cancer. Elevated neuroserpin expression was associated with 
lower survival rates and increased recurrence [65]. Simi-
larly, in lung and breast carcinoma which had metastasised 
to the brain, neuroserpin expression was found to be elevated 
approximately three-fold [153]. It is recognised that the plas-
min proteolytic axis is involved in multiple metastatic-sup-
pressive mechanisms, particularly through its involvement in 
the degradation of the axonal pathfinding L1 cell-adhesion 
molecule (L1CAM). L1CAM is specifically expressed by 
metastatic cancer cells during their invasion of the brain 
parenchyma and capillaries. Utilising the reactive stromal 
signals, plasmin activates Fas ligands (FasL) into a paracrine 
death signal for proliferating cells. However, in response to 
increased neuroserpin-mediated protease inhibitory activity, 
these metastatic-suppressive mechanisms are lost within the 
brain parenchyma [153]. Alterations in neuroserpin expres-
sion were shown to significantly correlate with extent of 
lung adenocarcinoma metastasis to the brain [126]. In a 
study comprising 438 non-small cell lung cancer (NSCLC) 
patient tissues, neuroserpin and adhesion protein L1CAM 
expression signified correlation with pathological features 
but did not impinge on the overall survival rates [126, 153]. 
Rather, neuroserpin overexpression was associated with 
increased tumour size, tissue necrosis, and pleural cavity 
invasion. Here, increased L1CAM overexpression was also 
concomitant with tumour stage, as well as blood and lymph 
vessel invasion [126]. Previous reports corroborate these 
findings and suggest that alterations to L1CAM expression 
was associated with exacerbated tumorigenicity, metastasis, 
chemoresistance and ultimately a poor prognosis [34, 177]. 
Additional evidence of neuroserpin involvement is evident 
in squamous cell carcinoma of the head and neck (SCCHN), 
where transcription factor p63 was suggested to regulate the 
neuroserpin expression [51]. p63 participates in cellular pro-
liferation, differentiation and adhesion, and is also conjoined 
with aggressive and poor prognostic phenotypes [96, 122]; 
its correlation with neuroserpin may provide a molecular 
frame-work in regulating cellular migration and metastasis 
[51].

Cumulative evidence from genetic studies has revealed 
the existence of a cancer-related gene cluster at the SER-
PINI1 locus that codes for neuroserpin, at the 3q26 chro-
mosomal band [18]. This is supported by data emanating 
from populational studies where variations in neuroserpin 

genetic region are associated with enhanced risk of adult 
glioblastoma [125]. Of note, a downregulation of neuro-
serpin expression has been observed in brain tumour tissue 
and U-87 MG glioblastoma and H4 neuroglioma cells [18]. 
Studies have also shown that neuroserpin levels were nega-
tively correlated with tumour progression using northern 
blot analysis [20]. Later studies investigating the effects of 
hyper-methylation on cancer-gene silencing have provided 
evidence that H4 cells treated with de-methylating agents 
demonstrate increased neuroserpin mRNA levels in a dose-
dependent manner [20]. Altogether, this suggests that DNA 
methylation may be involved in the regulation of neuroser-
pin transcription, and subsequently aberrant effects of DNA 
methylation may alter the roles of neuroserpin in cancer 
metastasis [20].

Neuroserpin mRNA levels have also been shown to 
increase in childhood brain malignancy atypical teratoid/
rhabdoid tumours (AT/RT) [99, 125]. Microarray analysis 
has revealed a fivefold increase of neuroserpin mRNA in 
AT/RT when compared to early-stage neuro-ectodermal 
tumour/medulloblastoma, with which it is frequently mis-
diagnosed [99]. Recent whole exome sequencing of primary 
breast tumour and matched brain metastasis patient samples 
has provided supporting evidence that amongst all serpin 
family genes, neuroserpin is the most frequently mutated 
gene implicated in brain metastasis [130], suggesting its role 
in regulating brain tumorigenesis.

The tumour suppressant roles of neuroserpin have been 
described in gastric adenocarcinoma and pancreatic cancer 
[168, 180]. In consideration of that, an inverse correlation 
between oncogenic microRNA-21 (miR-21) and neuroser-
pin expression in gastric cancer has been suggested [168]. 
miR-21 upregulation has been identified in gastric cancer 
[168], and it is believed to act primarily by decreasing the 
target RNA levels including that of the neuroserpin expres-
sion [53]. Neuroserpin was detected at much lower levels in 
cancerous stomach tissue, when compared to the controls. 
Supporting these findings, MKN-28 human gastric carci-
noma cells expressing neuroserpin presented a diminutive 
growth curve, compared to the control cells by inducing 
vigorous arrest of gap phase 1, during the synthesis phase 
(G1/S) of the cell cycle [168]. This could suggest that neuro-
serpin exerts an anti-proliferative effect in these cells. Since 
cell cycle dysregulation at the gap phase 1 (G1) checkpoint 
results in the aberrant cell multiplication typical to cancer 
[168], the modulation of neuroserpin expression may rep-
resent a promising mechanism-based strategy to moderate 
cell proliferation [164].

Neuroserpin was also shown to have an antagonistic effect 
on pancreatic cancer cell growth, via inhibition of uPA and 
its receptor (uPAR)-mediated inflammatory response [180]. 
The anti-inflammatory activity of neuroserpin was initially 
demonstrated using aortic allograft models for transplant 
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vasculopathy [111]. Neuroserpin administration revealed 
similar anti-inflammatory effects by decreasing the infil-
tration of tumour-associated macrophages, leading to the 
attenuation of pancreatic cancer cell proliferation in xeno-
graft implants [124, 180]. Thus, a key role of macrophage-
mediated tumour angiogenesis and metastasis might be con-
strained by the inhibitory effects of neuroserpin on ECM 
metalloproteinases, tPA/uPA and plasmin, enzymes which 
are pivotal to facilitate the immune cell migration and adhe-
sion [180].

Notwithstanding the attenuating effects of neuroserpin 
on gastric and pancreatic cancers described above, microar-
ray analysis has demonstrated that neuroserpin overexpres-
sion is linked with cases of human hepatocellular carcinoma 
(HCC), where significantly increased neuroserpin expres-
sion was observed in advanced stage HCC specimens [77]. 
Notably, neuroserpin is also elevated in patients with normal 
serum a-fetoprotein (AFP). While high AFP remains a com-
mon biomarker in HCC, normal AFP levels are observed in 
30–40% of patients in conjunction with the poor detection 
of early-stage HCC, which contributes to delayed diagnosis 
and decreased survival rates in HCC patients [77, 149]. The 
significance of these findings is that apart from traditional 
AFP serum biomarker detection, increased neuroserpin 
expression may serve as an additional early biomarker for 
HCC. These findings are also corroborated by more recent 
studies that have identified differential expression of neuro-
serpin in HCC [143]. Significantly increased neuroserpin 
levels within the peripheral blood of HCC patients, when 
compared to cirrhotic and hepatitis C patients has also been 
reported [134]. Although this particular study could not 
establish the high specificity and sensitivity of neuroserpin 
observed in normal level AFP patients as reported by Jia 
et al. [77],the differences could be attributed to ethnic het-
erogeneity of the selected cohorts [77, 134].

Studies investigating liver metastasis in colorectal carci-
noma have also highlighted a role for neuroserpin in mediat-
ing cancer metastasis and cellular adhesion [5]. Here, highly 
metastatic KM12SM colorectal cancer cells demonstrated 
significantly increased expression of neuroserpin, when 
compared to the poorly metastatic parental KM12C cell line 
[5]. Of note, subsequent neuroserpin gene silencing culmi-
nated in a threefold loss of cellular adhesion competency 
and cell proliferation potential [5]. This may be ascribed to 
the role of neuroserpin in promoting epithelial-mesenchy-
mal transition (EMT) in vivo, as was demonstrated using 
orthotopically implanted colorectal cancer models [104]. 
Metastatic cells are marked by the loss of epithelial cell 
molecular markers such as E-cadherin and express mesen-
chymal-like metastatic markers, such as N-cadherin, vimen-
tin and B-catenin [76]. Neuroserpin expression is signifi-
cantly increased in EMT phenotypic cells when compared 
to epithelial cells and particularly at the invasive tumour 

boundaries, when compared to central cancer regions [104]. 
Other studies have shown that neuroserpin also regulates 
the cellular adhesion molecule N-cadherin in pheochromo-
cytoma PC12 cells, independently of tPA [90]. This sug-
gests that neuroserpin can promote metastasis independent 
of its interactions with plasminogen activators [153]. This 
was supported by the observations that expression of both 
wild-type neuroserpin as well as its mutant form that lacks 
tPA inhibitory activity, led to cluster formation phenotype 
in PC12 cells [90]; whereas the cells that had a reduced neu-
roserpin expression consistently grew distinctively as single 
cells. Evidently, the highest levels of N-cadherin are local-
ised to regions of cell–cell contact at the plasma membrane 
in neuroserpin overexpressed cell lines [90].

Collectively, these studies implicate a key role of neuro-
serpin in regulating cellular proliferation and metastasis in 
a cell- and tissue-specific manner. These roles may be medi-
ated via the effects of neuroserpin on plasmin proteolytic 
axis but also seem to be mediated in part through cellular 
signalling networks that are independent of this proteolytic 
pathway. Further investigations will elucidate the crosstalk 
of neuroserpin with its cellular adhesion interaction part-
ners. This will help understand neuroserpin roles in cancer 
pathophysiology and potential targeting of the molecule for 
the development of new anti-proliferative therapies. Finally, 
neuroserpin may also serve as a candidate biomarker gene 
in various forms of cancers with applications to improve 
disease diagnosis and leading to better clinical outcomes.

Conclusion and future perspectives

In summary, key pathological mechanisms underlying vari-
ous neurological disorders remain indeterminate, and this 
has led to limited progress in our ability to therapeutically 
manage these conditions. Therefore, an in-depth understand-
ing of various aspects of the disease pathology, and novel 
diagnostic and treatment strategies are needed. Neuroserpin 
inactivation and protein polymerisation leading to the loss 
of protein function have been implicated in multiple disor-
ders [30, 47, 55]. Such biochemical aberrations may lead 
to the suppression of neuroserpin activity below a certain 
threshold necessary for the protein to impart its protective 
effects. On the other hand, neuroserpin overexpression as 
observed in various types of cancer and mutations in neu-
roserpin, as reported in brain metastasis, are also pathologi-
cal effects associated with the molecule [99, 130, 153]. The 
consequences of the mutation have yet to be elucidated, but 
it can be postulated that the loss of neuroserpin activity, 
may lead to a gain of biological function in such conditions. 
Future research should examine neuroserpin augmentation 
therapy, either in the form of protein infusions or gene ther-
apy to reinstate the protein function in various neurological 
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conditions associated with this protein in the retinal and 
brain tissues. In recent times, advances in computational 
biology and drug designing have made it feasible to screen 
small molecule libraries. The ligands that may bind to serpin 
hydrophobic pockets and restrict its polymerisation, or mol-
ecules that interact with protein reactive site and promote 
its inhibitory activity will be helpful in drug development 
[10, 119]. Another potential strategy could be to target the 
downstream effects of the neuroserpin impairment, rather 
than the polymerised or oxidatively inactivated protein itself 
in FENIB, glaucoma, or other disorders associated with the 
protein. Our ability to achieve selectivity when targeting 
neuroserpin reactive site loop or other motifs in the molecule 
will be a major challenge in this direction.
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