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Abstract
Background: In the facultative human pathogen Mycoplasma hominis, which belongs to the cell
wall-less Mollicutes, the surface-localised substrate-binding domain OppA of the oligopeptide
permease was characterised as the main ecto-ATPase.

Results: With the idea that extra-cellular ATP could only be provided by the infected host cells
we analysed the ATP release of HeLa cells after incubation with different preparations of
Mycoplasma hominis: intact bacterial cells, the membrane fraction with or without OppA,
recombinant OppA as well as an ATPase-deficient OppA mutant. Release of ATP into the
supernatant of the HeLa cells was primarily determined in all samples lacking ecto-ATPase activity
of OppA. In the presence of the ATPase inhibitor DIDS the amount of ATP in the OppA-containing
samples increased. This increase was maximal after incubation with fractions containing OppA
protein indicating that OppA is involved in ATP release and subsequent hydrolysis. Real-time PCR
analyses revealed that the proliferation of HeLa cells is reduced after infection with M. hominis and
flow cytometry experiments established that OppA induces greater apoptosis than necrosis of
HeLa cells whereas the preservation of ecto-ATPase activity of OppA induces apoptosis.

Conclusion: The OppA induced ATP-release and -hydrolysis induced cell death of M. hominis
infected HeLa cells was predominantly due to apoptosis rather than necrosis. Future work will
elucidate whether the induction of apoptosis is indispensable for survival of these non-invasive
pathogen.

Background
In contrast to common belief, nucleotides can be found in
significant concentrations outside cells [1]. Nucleotides,
such as ATP, ADP, UTP and UDP, and a variety of di-ade-
nosine polyphosphates act as extra-cellular signalling sub-
stances in virtually all tissues. Extra-cellular ATP has
profound effects on cellular functions: causing plasma
membrane depolarisation, Ca2+ influx, and cell death
[2,3]. The identification of two families of nucleotide

receptors (P2 receptors) enabled molecular analyses of
nucleotide signalling [4,5]. Nucleotides released to the
extra-cellular medium may exert their effects on other
cells in the vicinity of the secretion site and modulate bio-
logical processes by binding to specific cell surface recep-
tors [6].

The signalling of nucleotides is terminated by enzymes on
the extra-cellular surface which sequentially degrade nucl-
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eoside 5'-triphosphate to their respective nucleosides and
free phosphate or pyrophosphate. Adenosine itself can
modulate cellular functions (e.g. apoptosis) via specific
adenosine receptors [7] or enter the purine salvage after
re-uptake by plasma membrane-located adenosine trans-
porters [8]. Within the last decade enzymes that have the
potential to hydrolyse extra-cellular nucleotides have
been characterised in detail. ATPase activity was found in
association with various cell types in the circulating sys-
tem, nervous and other tissues and shown to impact on
several patho-pysiological processes [9]. Besides the mem-
bers of the ecto-nucleoside triphosphate diphosphohy-
drolases (E-NTPDase)-family found in eukaryotes, other
ecto-ATPases have been characterised in both eukaryotes
and prokaryotes, such as in streptococci [10] and in sev-
eral protozoan parasites including the genera Toxoplasma
[11], Leishmania [12-14], Entamoeba [15], Trichomonas
[16], Crithidia [17] and Trypanosoma [18-20]. Common to
all was the ecto-ATPase activity shown to be dependent on
divalent cations and to be inhibited by the impermeant
ATPase-inhibitor 4', 4', diisothiocyanostilbene 2'2'disul-
fonic acid (DIDS) [15] and suramin (an antagonist of P2
receptors and some ecto-ATPases) [21].

The ecto-ATPases and cell surface NTPDases hydrolyse all
nucleoside triphosphates at the external surface of the cell
membranes [22,23] whereas the differences in their abil-
ity to hydrolyse nucleoside diphosphates, the modes of
anchoring to membranes and their distribution in tissues
led to a grouping into distinct sub-families [23]. ATP can
also be hydrolysed by other specific ATPases (F-, P- or V-
type ATPases) or by nonspecific alkaline phosphatases.
Whereas these ATPases expose an internal ATP binding
site, thus not fulfilling the requirements of an ecto-
ATPase, external ecto-phosphatase activities have been
described eg. in malpighian tubules of Rhodnius prolixus
[24], Leishmania amazonensis [25] and Trypanosoma cruzi
[26].

Several hypotheses for the function of ecto-ATPases in var-
ious cell types have been proposed: (i) protection from
the cytolytic effect of extra-cellular ATP [3,27], (ii) regula-
tion of ecto-kinase substrate concentration [22], (iii)
involvement in signal transduction [28,29], and (iv)
involvement in cellular adhesion [30,31]. Extra-cellular
ATP was shown to be important in the activation of mac-
rophage surface-associated purine receptors and subse-
quent macrophage cell death, whereas in the presence of
an ecto-ATPase activity the ATP-induced cell death was
inhibited [32]. Cell death can either be the consequence
of a passive, degenerative process termed necrosis or the
result of an active process leading to apoptosis. When a
cell dies by necrosis the first changes occur on the plasma
membrane with signs of progressive discontinuity that
cause general cell hydration and swelling as well as

organelle disruption. In the case of apoptotic cell death
the nucleus appears greatly altered with a diffuse inter-
chromatin distribution compared to the normal perinu-
clear and perinucleolar dense heterochomatin pattern.
Plasma membrane and organelles are preserved longest
which characterises some apoptotic models. The most
common mechanism of apoptotic cell removal in vivo is
by phagocytosis, however it has been reported in vitro that
some apoptotic cells undergo a late process of secondary
necrosis. Analysing the role of apoptosis in bacterial
pathogenesis three pathogenic strategies appear to be
involved in programmed cell death:

i.) Activation of apoptosis to destroy host cells: Bacteria
such as Corynebacterium diphtheriae, Pseudomonas spp,
Actinobacillus actionomycetemcomitans and Bacillus anthracis
produce exotoxins which affect killing of macrophages
and thus protect against phagocytosis.

ii.) Utilisation of apoptosis to initiate inflammation: IL-
1β, the major pro-inflammatory cytokine is mainly pro-
duced by macrophages. Its expression is enhanced in
apoptotic macrophages.

iii.) Inhibition of host cell apoptosis: Several pathogens,
including herpes-, pox-, and baculoviridae have been
shown to inhibit host cell apoptosis. This is beneficial for
survival of intracellular pathogens.

In Mycoplasma hominis, a cell wall-less bacterium colonis-
ing the human uro-genital tract, we have identified a
cytoadhesive 100 kDa lipoprotein as OppA, the surface-
exposed substrate-binding domain of an oligopeptide
permease [33,34]. Computer analysis revealed an ATP-
binding loop in the C-terminal region of the polypeptide
chain consisting of Walker A and B motifs. ATP-binding
was confirmed by ATP-affinity chromatography and tryp-
tic digestion of OppA was protected by ATP and ADP but
not by GTP or CTP. We concluded that OppA binds ATP
and ADP but not GTP or CTP. The detection of ATPase
activity on the surface of M. hominis and the comparative
analysis of equimolar amounts of OppA in intact myco-
plasma cells and in its purified form showed that more
than 80 % of the surface-localised ATPase activity of M.
hominis is derived from OppA, implicating that OppA is
the main ATPase on the surface of mycoplasma cells [35].

Membrane interactions between the surface of myco-
plasma and their host are of critical importance for colo-
nisation and nutrition-up-take and therewith the survival
of the bacteria. The results presented in this study provide
evidence that OppA, the main ectoATPase of M. hominis is
involved in processes that induces ATP release from and
damage of the host cell.
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Results
Induction of ATP release from HeLa cells by OppA
OppA was characterised as the main ecto ATPase of M.
hominis. Presuming that external ATP could only be pro-
vided by the infected host cells we analysed the effect of
M. hominis cells, as well as different components of the
cell membrane, on the release of ATP from HeLa cells.
HeLa cells were incubated with (i) intact M. hominis cells,
(ii) the membrane protein fraction with or (iii) without
OppA, (iv) the purified OppA protein and (v) OppA∆P-

loop, an OppA variant with a mutation in the region of the
Walker A motif and therefore deficient ATPase activity (Fig
1; [35]). The protein pattern of the mycoplasma protein
samples is shown in Coomassie Blue staining (Fig. 2A)
and the presence or absence of OppA in Westernblot anal-
ysis using the OppA specific monoclonal antibody BG11
(Fig. 2B). The medium was supplemented with the
ATPase inhibitor 4', 4', diisothiocyano-stilbene 2'2'disul-
fonic acid (DIDS) to prevent degradation of ATP (Fig. 3A).
In the supernatant of uninfected HeLa cells the ATP con-
tent was not altered by the ATPase inhibitor DIDS (Fig.
3A/B; [K-]). Independent of the used protein sample, the
ATP concentration in the supernatant of the HeLa cells
reached a maximum after 24 hours. A 19- and 8-fold
increase was measured after incubation with M. hominis
cells and the membrane fraction (mem+), respectively.
The membrane proteins showed nearly the same result as
the purified OppA protein whereas incubation with the
OppA-depleted membrane fraction resulted in a 25 %
decrease of ATP release. Nevertheless, the OppA-depleted
membrane fraction and the OppA mutant (OppA∆P-loop)
which are unable to hydrolyse ATP, still led to a release of
ATP from the HeLa cells. This finding suggested that
OppA induces an ATP release from HeLa cells and that in
addition other, so far undefined components of the mem-
brane fraction also lead to ATP secretion.

In contrast, in the absence of an ATPase inhibitor, ATP
degradation was apparent in all supernatants of HeLa cells
incubated with OppA-containing proteins (mycoplasma
cells, the OppA containing membrane protein fraction

(mem+) and the purified OppA) whereas the incubation
with the OppA-depleted membrane protein fraction or
the OppA mutant resulted in a 5- to 6-fold increase of ATP
in supernatant.

These data provide evidence that M. hominis induces ATP
release from HeLa cells and that OppA is not only
involved in this process but in the subsequent ATP hydrol-
ysis.

Mycoplasma. hominis inhibited the growth of HeLa cells
Next, we analysed the effect of M. hominis on the growth
of HeLa cells by amplifying a part of the house keeping
gene glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) with real-time PCR as a quantitative measure-
ment of HeLa cells. As depicted in Figure 4 the number of
uninfected HeLa cells or HeLa cells incubated with the M.
hominis membrane fraction (mem+), purified OppA
(OppA) or the purified OppA mutant (OppA∆P-loop)
increased up to 72 h and then declined, whereas in HeLa
cells infected with M. hominis, the numbers barely
increased for 24 h before declining. These findings sug-
gested that an M. hominis infection has an inhibitory effect
on the growth of HeLa cells, whereas the protein prepara-
tions have no sustainable effect. Thus, we decided to char-
acterise the early event of infection and responses to the
different protein samples in detail by determining the cell
death of HeLa cells.

OppA-induced cell death
We analysed HeLa cells in the described infection assays
by flow cytometry for markers of apoptosis and necrosis.
Using Annexin-V-FITC which binds to negatively charged
phospholipids such as phosphatidylserine, these early
markers of apoptosis were detected. The vital dye 7-
amino-actinomysin (7AAD) was used as a marker for
necrotic cells as it binds to nucleic acids that are only
accessible when membrane integrity is lost such as occurs
in necrosis or the later stages of apoptosis.

Scheme of the OppA expressing vectorsFigure 1
Scheme of the OppA expressing vectors. The OppA and OppA∆P-loop-expressing regions of the pBX-vectors are sche-
matically shown with declaration of the original and mutated Walker A region.
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As shown in Figure 5 the proportion of dead cells in HeLa
cultures stimulated with M. hominis (Mhom) and mem-
brane fraction (mem+) was approximately 15 % and 17
%, respectively. In HeLa cells stimulated with the OppA-
depleted membrane fraction (mem-) or the OppA∆P-loop-
mutant, the quantity of dead cells corresponded to those
found in the uninfected negative control (K-). Interest-
ingly, the proportion of dead cells after incubation with
purified OppA increased up to 21 %.

Having a closer look at the dead HeLa cells, two distinct
Annexin-V-FITC positive populations became obvious,
one with a high 7AAD-density corresponding to the UV-
irradiated necrotic cells (K+) and one with a low 7AAD-
staining that most likely represent the apoptotic cells. As
encircled in Figure 5, the apoptotic cells only appeared in

those samples containing OppA with ecto-ATPase activity,
whereas incubation with the OppA-depleted membrane
fraction (mem-) or the OppA∆P-loop-mutant resulted in
only minimal apoptosis.

These results demonstrate that OppA induces both apop-
totic and necrotic cell death in HeLa cells whereas the
preservation of ecto-ATPase activity promotes apoptosis.

Discussion
For a long time, ATP was only regarded as the principal
molecule responsible for energy storage inside the cells. In
the last decade it has also been detected in nanomolar
concentrations in the extra-cellular space where it serves as
a signalling molecule. ATP is now known to be released
from a variety of eukaryotic cells including tumour cells

Release of ATP from M hominis infected HeLa cellsFigure 3
Release of ATP from M. hominis infected HeLa cells. 
HeLa cells were incubated with M. hominis (Mhom), mem-
brane proteins (mem+), membrane proteins without OppA 
(mem-), purified OppA and OppA∆P-loop-mutant for 1.5 to 48 
h as described in the Material and Methods section. Infection 
assays were done in the presence (A) or absence (B) of 500 
µM ATPase inhibitor 4',4', diisothiocyanostilbene 2'2'disul-
fonic acid (DIDS). The ATP concentration in the culture 
supernatants was measured using a luciferase assay (ATP 
Determination Kit). Results are expressed as means ± SD of 
triplicates.
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Protein preparations used in the infection assayFigure 2
Protein preparations used in the infection assay. A: 
The different mycoplasma samples; M. hominis (Mhom), mem-
brane proteins (mem+), membrane proteins without OppA 
(mem-), purified OppA and OppA∆P-loop-mutant; correspond-
ing to 0,5 µg/ml OppA, were separated by SDS-PAGE and 
subsequently stained with Coomassie Blue. B: Westernblot 
analysis of the protein samples immunostained with the 
OppA specific monoclonal antibody BG11.
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[36], neutrophils, degranulated platelets [1] and epithelial
cells colonised by bacteria [37], as well as in virtually all
tissues under conditions of hypoxia [38], ischemia,
inflammation [39] and cell necrosis [36].

Although much is known about eukaryote purinergic
receptors that bind released nucleotides and NTPDases
that hydrolyse released nucleotides, there are only few
descriptions of the molecules which influence or induce
the release of NTP, especially ATP. Endotoxin was shown
not to induce ATP release from a murine macrophage cell
line [40] whereas interleukin 1 beta (IL-1β) has been
reported to evoke ATP and adenosine release from rat hip-
pocampal slices [41]. ATP itself induces ATP release from
astrocytes [42] and endothelium [43]. Our studies pro-
vide evidence that OppA, the main ecto-ATPase of M.
hominis, induces ATP-release from HeLa cells followed by
subsequent hydrolysis due to its intrinsic ATPase activity.
Using OppA-deficient mycoplasma samples, the ATP
release was reduced but not completely inhibited, indicat-
ing that, in addition, other (membrane) proteins may
affect ATP-liberation. With our previous findings of an
additional ATPase activity which was not inhibited by
DIDS these data suggest that the ATP concentration
released from the HeLa cells may be higher than that
measured in the ATP-assay by the use of DIDS [35]. This
is to our knowledge the first description that a surface-
localised protein of Mycoplasma acts as an effector mole-
cule for ATP release from the host.

In contrast to the F- and P-type ATPases which both act
intra-cellularly the ATP-binding site of OppA was shown
to be extra-cellularly located as in E-type NTPDases. Like
E-NTPDases OppA requires Ca2+ or Mg2+ ions for maximal
activity to hydrolyse nucleoside triphosphates and, with a
subtype-specific potency, also nucleoside diphosphates
[9]. In contrast to OppA, which carries a P-loop structure
in the catalytic region, all NTPDases share five conserved
domains, called apyrase conserved region (ACR), that are
involved in the catalytic cycle. These findings indicate that
OppA is a member of a different ATPase family.

Degradation of the extra-cellular ATP to adenosine is
known to inhibit the growth of several types of cells
[44,45] and even to induce apoptosis [46]. The degrada-
tion products of ATP normally comprise ADP, AMP and
adenosine which are also known as components of the
extra-cellular milieu that stimulate purinergic receptors
[22,9]. In many cell types the stimulation of the receptors
leads to elevation of intracellular Ca2+ [47] and a variety of
physiological responses such as activation of caspases,
release of cytochrome C and apoptosis [48].

The data presented here demonstrate that Mycoplasma
hominis inhibits the growth of HeLa cells up to 72 h post
infection. The findings that neither the membrane frac-
tion, the purified OppA protein nor the OppA mutant
OppA∆P-loop seem to have a sustainable effect on the
growth of HeLa cells, may be due to degradation of the
mycoplasma proteins or dilution in relation to the prolif-
erating HeLa cells. By monitoring the cells within the first
24 hours post infection by FACS we detected that the ecto-
ATPase activity of OppA provokes apoptosis of the host
cells.

These findings are in accordance with the recently pub-
lished work of Zhang and Lo who showed that M. hominis
and M. salivarium, both surface-colonising species, accel-
erated apoptosis of 32 D cells and inhibited proliferation,
whereas the invasive mollicutes M. fermentans and M. pen-
etrans not only prevented 32D cell apoptosis but stimu-
lated cell proliferation [49]. A prolonged infection with
M. fermentans or M. penetrans infection for up to 5 weeks
induced malignant transformation of the 32D cells
[50,51]. Additionally, Gerlic and coworker reported in
2004 that vital M. fermentans cells protect against rather
than induce apoptosis [52]. Secreted ATP-utilizing
enzymes of Mycobacterium bovis prevent an ATP-induced
macrophage cell death [32] and also Lactobacillus rhamno-
sus secretes two proteins that regulate intestinal epithelial
cell anti-apoptotic responses and proliferation [53]. By
contrast Pseudomonas aeruginosa-secreted products pro-
voke macrophage-killing [54]. To date we do not really
know why some bacteria have an apoptotic effect whereas
others inhibit apoptosis, however one should bear in

TaqMan PCR to quantify HeLa cell countsFigure 4
TaqMan PCR to quantify HeLa cell counts. The HeLa 
cell counts of an infection assay after incubation with M. hom-
inis (Mhom), membrane proteins with (mem+) or without 
OppA (mem-), purified OppA and OppA∆P-loop-mutant were 
calculated by quantifying the copy numbers of the GAPDH-
gene using real-time PCR.
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Flow cytometric analysisFigure 5
Flow cytometric analysis. Flow cytometric analysis of (i) uninfected HeLa cells (K-), (ii) HeLa cells after UV irradiation (K+), 
(iii) incubation with M. hominis cells (Mhom), (iv) mycoplasmal membrane protein fraction (mem+), (v) membrane proteins 
without OppA (mem-); (vi) purified OppA protein (OppA) or (iv) OppA∆P-loop-mutant. HeLa cells (1 × 106/ml) were incubated 
at 37°C for 2h with 1 µg/ml OppA, then stained with Annexin-V-FITC and 7-AAD and subjected to flow cytometric analysis. 
Necrotic cells were Annexin-V-FITC (+) and 7AAD (+), whereas the apoptotic cells (marked by circle ) were Annexin-V-FITC 
(+) and 7AAD (-).
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mind that the prevention of apoptosis of the host cell
would be especially beneficial for intracellular pathogens.
Indeed, M. hominis, an extra-cellular bacterium provokes
apoptosis whereas M. fermentans, which is facultatively
intra-cellular, inhibits apoptosis. The potential of invasive
enteric pathogens to mediate cell death differs. Compared
to the invasive Salmonella and Shigella spp., the extra-cel-
lular bacterium Escherichia coli was much weaker in its
induction of cell death. Monack and coworker showed
that Salmonella typhimurium was able to kill between 70 to
90 % of the targeted macrophages, whereas E. coli killed
only 50 % of the host cells [55]. Shigella flexneri invaded
HeLa cells but did not cause apoptosis in these cells.

The ability of the M. hominis ecto-ATPase OppA to induce
the release of ATP from the host and to hydrolyse ATP
which ultimately leads to the induction of apoptosis cor-
relates well with the hypothesis of an extra-cellular colo-
nizing pathogen enhancing apoptotic cell death.

There are many differences between apoptosis and necro-
sis. Only single cells are affected by apoptosis whereas
groups of neighbouring cells undergo necrosis. The
plasma membrane of apoptotic cells maintains structural
continuity in contrast to the plasma membrane of
necrotic cells which shows an early lysis. For M. hominis,
as an extra-cellular parasite, the attachment to the host cell
is very important for survival. Thus the induction of apop-
tosis is less critical for the parasite as firstly, the single,
apoptotic cell dies which did not influence the neighbour-
ing cells and secondly, the surface of an apoptotic cell
remains intact for the attached mycoplasma enabling the
indispensable uptake of nutritional substances from the
host cell. In preliminary studies we demonstrated that a
colonisation with M. hominis induced the entry of Lucifer
yellow dye in HeLa cells which can only occur in the event
of increased membrane permeability (data not shown).
Steinberg described in 1987 that ATP induces the forma-
tion of plasma membrane pores that allow the influx and
efflux of larger molecules [56]. Further studies aim to elu-
cidate the molecular mechanism by which M. hominis and
especially OppA mediate host cell death and whether ATP
hydrolysis facilitates the nutritional uptake of the oli-
gopeptide permease for bacterial consumption [34] or
mere serves as an inducer of apoptosis by regulating the
extra-cellular ATP concentration. Many studies have dem-
onstrated that extra-cellular ATP interacts with the P2
purinergic receptors [57-59]. At high concentrations ATP
induces apoptosis through ligation of the P2X7 and P2Y1
receptors and conversely at lower concentrations it pro-
vokes cell proliferation suggested by its action via the P2Y2
receptors [60].

Not only ATP but also various ionic forms of ATP, such as
ATP4- or benzoyl-ATP, are agonists for P2Z receptor activa-

tion [61]. Zaborina and coworker postulated that the
secreted ATP-utilizing enzymes from P. aeruginosa convert
external ATP to various adenine nucleotides which
enhances macrophage cell death through increased P2Z
receptor activation [54]. Moreover, a mixture of
ATP+ADP+AMP+adenosine increased the cell death of
peritoneal macrophages in the presence of a clinical iso-
late of Burkholderia cepacia [62]. The work presented here
provides evidence that M. hominis mediates cell death by
both apoptosis and necrosis in HeLa cells, whereas the
ecto-ATPase activity of isolated OppA promotes apoptosis
only. The findings that the membrane fraction of M. hom-
inis depleted of OppA ATPase activity did not provoke
death of HeLa cells suggest, that mediated by OppA, one
of the degradation products of ATP induces apoptosis.
Further studies have to elucidate whether various adenine
nucleotides produced by the activity of the ecto-ATPase
OppA of M. hominis do in fact activate various purinergic
receptors thus modulating cell death.

Conclusion
This is the first description that OppA, the substrate-bind-
ing domain of the oligopeptide permease of Mycoplasma
hominis, induces ATP-release from HeLa cells. ATP hydrol-
ysis by the intrinsic ATPase-activity of OppA results in
apoptosis of the host cell which is proposed to guarantee
the nutrition uptake and survival of this extra-cellularly
colonising pathogen.

Methods
Mycoplasma culture, osmotic lysis, and separation of 
membrane and cytoplasmic proteins
The cultivation of Mycoplasma hominis strain FBG, osmotic
lyses of the mycoplasma cells as well as the membrane
protein preparation with OppA were performed as
described previously [35]. For the preparation of the
OppA deficient membrane fraction (mem-), the mem-
brane fraction was incubated for 8 h with a sepharose-
coupled anti-OppA antibody as previously described [33]
and the flow through was used. The purity was shown in
Western blot analysis demonstrating the absence of OppA
and the presence of P50, a surface located protein which
was used for quantifying the membrane protein prepara-
tions.

Expression and purification of recombinant proteins
Plasmids pXB and pBX (Roche Applied Science, Man-
nheim, Germany) were used as expression vectors for the
heterogeneous expression of ProteinC-tagged OppA and
OppA∆P-loop (Fig. 1). The plasmids were propagated in
Escherichia coli SG 13009 (Qiagen, Hilden, Germany) and
the recombinant proteins OppA and OppA∆P-loop were
purified as previously described [35].
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HeLa cell culture conditions
HeLa cells were cultured in IMDM supplemented with
10% fetal calf serum and 0.1% penicillin/streptomycin in
a humidified atmosphere of 5% CO2 in air at 37°C and
harvested by dispersing by a 1000 µl pipet and subsequent
low speed centrifugation (1200 rpm, 10 min). The pro-
portion of damaged cells was ascertained using trypan
blue staining.

Infection assays
HeLa cells were seeded in 24 well tissue culture plates with
5 × 105cells/ml. After 2 h at 37°C/5%CO2 they were incu-
bated with whole M. hominis cells (5 × 107cells/ml), the
membrane fraction (with (mem+) or without (mem-)
OppA) derived from 50 µg mycoplasma lysate, the recom-
binant OppA protein or the recombinant OppA∆P-loop

mutant [35]. After 2 h unbound cells or proteins were
removed by washing twice with medium and the HeLa
cells were further cultivated for 1.5, 10, 24, 33 and 48 h.
In these infection assays, the mycoplasma samples corre-
spond to approximately 0.5 µg/ml OppA protein for sub-
sequent ATP-measurement and 1 µg/ml OppA for the
apoptosis/necrosis assays. To prevent ATP-hydrolysis the
supernatant of the HeLa cells was supplemented with 500
µM ATPase inhibitor 4',4', diisothiocyanostilbene
2'2'disulfonic acid (DIDS), 1 h before the mycoplasma
protein samples were added. Untreated HeLa cells were
used as negative controls.

ATP-measurement in the culture supernatant
The amount of ATP-release in the supernatant of the dif-
ferent infection assays was measured using the ATP Deter-
mination Kit (Molecular Probes, Eugene, Oregon, USA)
according to the manufacturer's instructions.

Measurement of apoptosis and necrosis by flow cytometric 
analysis
Discrimination between apoptotic and necrotic cells was
performed by flow cytometric analysis in using the TACS™
Annexin-V-FITC Kit (Trevigen Inc., Netherlands) and 7-
amino-actinomysin D (7-AAD) (BD Biosciences Pharmin-
gen, San Diego, CA) following the manufacturers' instruc-
tions.

Briefly, HeLa cells of the infection assays were harvested
by repeated rinsing (3 times) in cold phosphate-buffered
saline, PBS, pH 7,4 and subsequent low-speed centrifuga-
tion (1200 rpm, 10 min). The cell pellets were resus-
pended at 1 × 106 cells/ml in binding buffer (10 mM
HEPES, pH 7.4, 150 mM NaCl, 5 mM KCl, 1 mM MgCl2,
1,8 mM CaCl2) and 100 µl fractions were then incubated
for 15 min with 125 ng Annexin-V-FITC or 10 min with
250 ng 7-AAD at room temperature in the dark. After the
addition of 400 µl binding buffer the samples were ana-
lysed by flow cytometry within one hour. As a positive

control for apoptotic cells HeLa cells were irradiated with
ultraviolet (UV) light of 312 nm wavelength for 2 min.
Flow cytometric analysis was performed using an FACS-
Calibur and CellQuest software from BD Immunocytom-
etry Systems (San Jose, CA).

TaqMan PCR for quantifying HeLa cells
HeLa cells of an infection assay were harvested, washed
with Tris-buffered saline, TBS (50 mM Tris/HCl, pH 7.5,
100 mM NaCl), sedimented for 10 min at 1200 rpm and
resuspended in 100 µl TBS supplemented with Proteinase
K (100 µg/ml). The cell samples were incubated for 60
min at 56°C followed by 30 min inactivation of the Pro-
teinase K at 95°C. After a short centrifugation, the cell
lysates were ready to be used in PCR. If not tested imme-
diately, they were stored at -20°C.

To determine the HeLa cell count within each sample, the
copy numbers of the single-copy house-keeping gene
encoding the glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) were verified in real-time PCR. The GAPDH-
real-time PCR was carried out in a total volume of 25 µl
consisting of 1 × Eurogentec MasterMix without ROX, 5
mM MgCl2, Amperase, 300 nM each primer: Gap-for (5'-
CCA CCC ATG GCA AAT TCC-3') and Gap-rev (5'-ATG
GGA TTT CCA TTG ATG ACA AG-3'), 200 nM Gap-probe
(5'-FAM-TGG CAC CGT CAA GGC TGA GAA CG-3'
TAMRA) and 2,5 µl of the DNA containing cell lysate.
Thermal cycling conditions were as follows: 1 cycle at
50°C for 10 min, 1 cycle at 95°C for 10 min followed by
45 cycles at 95°C for 15 sec and 60°C for 1 min. Each
sample was analysed in duplicates. Cycling, fluorescent
data collection and analysis were carried out with an iCy-
cler from BioRad according to the manufacturer's instruc-
tions.
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