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Background: Cox proportional hazard regression (CPH) model relies on the proportional hazard (PH)
assumption: the hazard of variables is independent of time. CPH has been widely used to identify prog-
nostic markers of the transcriptome. However, the comprehensive investigation on PH assumption in
transcriptomic data has lacked.
Results: The whole transcriptomic data of the 9,056 patients from 32 cohorts of The Cancer Genome Atlas
and the 3 lung cancer cohorts from Gene Expression Omnibus were collected to construct CPH model for
each gene separately for fitting the overall survival. An average of 8.5% gene CPH models violated the PH
assumption in TCGA pan-cancer cohorts. In the gene interaction networks, both hub and non-hub genes
in CPH models were likely to have non-proportional hazards. Violations of PH assumption for the same
gene models were not consistent in 5 non-small cell lung cancer datasets (all kappa coefficients < 0.2),
indicating that the non-proportionality of gene CPH models depended on the datasets. Furthermore,
the introduction of log(t) or sqrt(t) time-functions into CPH improved the performance of gene models
on overall survival fitting in most tumors. The time-dependent CPH changed the significance of log haz-
ard ratio of the 31.9% gene variables.
Conclusions: Our analysis resulted that non-proportional hazards should not be ignored in transcriptomic
data. Introducing time interaction term ameliorated performance and interpretability of non-
proportional hazards of transcriptome data in CPH.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
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Table 1
Proportions of hub and non-hub genes with non-proportional hazards in CPH model.

TCGA ID PH-Nhub PH-hub NPH-Nhub NPH-hub hub (NPH%) Nhub (NPH%) Chi-Square P

ACC 9161 5787 534 195 3.26% 5.51% <0.0001
BLCA 7787 5137 1302 649 11.22% 14.33% <0.0001
BRCA 7294 4889 1160 714 12.74% 13.72% 0.1
CESC 8535 5325 699 485 8.35% 7.57% 0.09
CHOL 9655 5845 575 344 5.56% 5.62% 0.8936
COAD 8686 5538 532 346 5.88% 5.77% 0.8075
DLBC 9235 5730 547 294 4.88% 5.59% 0.05758
ESCA 9423 5810 533 270 4.44% 5.35% 0.01128
GBM 8762 5074 1059 946 15.71% 10.78% <0.0001
HNSC 8211 5443 617 270 4.73% 6.99% <0.0001
KICH 8630 5264 926 663 11.19% 9.69% 0.003137
KIRC 8241 5114 547 601 10.52% 6.22% <0.0001
KIRP 8410 5346 679 433 7.49% 7.47% 0.9857
LGG 6209 3705 2763 2029 35.39% 30.80% <0.0001
LIHC 6622 3752 1955 1928 33.94% 22.79% <0.0001
LUAD 8410 5326 859 526 8.99% 9.27% 0.582
LUSC 8183 5197 1074 631 10.83% 11.60% 0.1506
MESO 9134 5705 753 351 5.80% 7.62% <0.0001
OV 8163 5239 1038 581 9.98% 11.28% 0.01339
PAAD 8732 5416 1054 652 10.74% 10.77% 0.9807
PCPG 8787 5635 566 274 4.64% 6.05% 0.000219
PRAD 8528 5506 257 182 3.20% 2.93% 0.3734
READ 7500 4505 2203 1529 25.34% 22.70% 0.0001699
SARC 8471 5429 949 487 8.23% 10.07% 0.0001544
SKCM 9010 5691 703 280 4.69% 7.24% <0.0001
STAD 8220 5326 1000 578 9.79% 10.85% 0.04084
TGCT 10,221 6113 136 72 1.16% 1.31% 0.4472
THCA 8390 5475 191 123 2.20% 2.23% 0.9562
THYM 9489 5840 294 145 2.42% 3.01% 0.03506
UCEC 9327 5712 528 310 5.15% 5.36% 0.591
UCS 10,226 6088 307 162 2.59% 2.91% 0.2389
UVM 8876 5651 345 186 3.19% 3.74% 0.07955

Note: PH, proportional hazards; NPH, non-proportional hazards; Nhub, non-hub; CPH, COX proportional hazards.

Table 2
Proportions of maxima Log-likelihood and minima AIC for non-proportional genes in CPH with different time functions.

TCGA ID Patient number Proportions of
gene CPH model
violated PH (%)

Maxima Log likelihood (Proportions %) Minima AIC (Proportions %)

Non-t t log(t) t^2 sqrt(t) exp^t Non-t t log(t) t^2 sqrt(t) exp^t

ACC 77 5.34% 0.00% 15.12% 36.36% 13.57% 14.09% 20.87% 0.00% 15.12% 36.36% 13.57% 14.09% 20.87%
BLCA 405 12.44% 0.00% 18.18% 40.87% 2.35% 36.48% 2.12% 0.19% 18.18% 40.76% 2.35% 36.40% 2.12%
BRCA 1077 13.33% 0.00% 12.06% 53.27% 6.70% 26.90% 1.06% 0.00% 12.06% 53.27% 6.70% 26.90% 1.06%
CESC 291 7.91% 0.00% 16.27% 37.30% 5.39% 36.28% 4.76% 0.06% 16.27% 37.30% 5.39% 36.22% 4.76%
CHOL 36 5.64% 0.00% 22.61% 24.32% 15.56% 19.21% 18.30% 0.00% 22.55% 24.32% 15.44% 19.21% 18.48%
COAD 282 5.87% 0.00% 27.59% 20.91% 23.61% 23.46% 4.42% 0.00% 27.59% 20.91% 23.61% 23.46% 4.42%
DLBC 46 5.59% 0.00% 20.55% 38.55% 20.82% 18.54% 1.54% 0.13% 20.28% 38.35% 21.36% 18.33% 1.54%
ESCA 181 4.82% 0.00% 37.12% 10.55% 16.83% 20.22% 15.28% 0.00% 37.12% 10.55% 16.83% 20.22% 15.28%
GBM 152 9.67% 0.00% 15.33% 25.33% 3.51% 45.51% 10.32% 0.04% 15.29% 25.33% 3.47% 45.27% 10.60%
HNSC 517 7.48% 0.00% 30.29% 15.55% 3.55% 49.86% 0.75% 0.07% 30.15% 15.55% 3.55% 49.80% 0.89%
KICH 65 10.92% 0.00% 4.46% 80.29% 3.16% 4.03% 8.06% 0.00% 4.43% 80.29% 3.16% 4.07% 8.06%
KIRC 528 7.61% 0.00% 16.00% 26.13% 14.15% 36.84% 6.88% 0.00% 16.00% 26.13% 14.15% 36.84% 6.88%
KIRP 285 8.68% 0.00% 16.50% 45.82% 12.71% 18.71% 6.25% 0.00% 16.50% 45.82% 12.71% 18.71% 6.25%
LGG 504 29.31% 0.00% 43.85% 5.43% 16.60% 27.45% 6.67% 0.00% 43.85% 5.43% 16.60% 27.45% 6.67%
LIHC 363 23.01% 0.00% 40.65% 8.29% 7.54% 41.69% 1.83% 0.00% 40.65% 8.29% 7.54% 41.69% 1.83%
LUAD 500 9.09% 0.00% 36.78% 10.04% 20.79% 29.14% 3.25% 0.15% 36.58% 10.04% 20.44% 29.04% 3.75%
LUSC 491 11.89% 0.00% 34.87% 10.56% 7.08% 45.43% 2.07% 0.00% 34.87% 10.56% 7.08% 45.39% 2.11%
MESO 85 7.79% 0.00% 28.74% 27.92% 16.19% 20.47% 6.68% 0.05% 28.69% 27.92% 16.05% 20.47% 6.82%
OV 418 11.31% 0.00% 49.54% 6.33% 17.55% 22.24% 4.34% 0.16% 49.42% 6.33% 17.55% 22.20% 4.34%
PAAD 177 10.75% 0.00% 30.10% 22.21% 15.03% 24.14% 8.52% 0.15% 30.10% 22.21% 15.03% 24.03% 8.48%
PCPG 177 5.56% 0.00% 10.65% 49.66% 27.22% 9.89% 2.59% 0.15% 10.27% 49.20% 27.83% 9.73% 2.81%
PRAD 495 3.66% 0.00% 6.29% 54.75% 5.89% 10.31% 22.76% 5.49% 5.76% 53.28% 5.22% 9.91% 20.35%
READ 91 19.22% 0.00% 26.04% 23.51% 10.34% 27.34% 12.76% 0.00% 26.04% 23.51% 10.34% 27.34% 12.76%
SARC 258 9.16% 0.00% 16.87% 36.01% 14.78% 20.16% 12.19% 0.00% 16.87% 36.01% 14.78% 20.16% 12.19%
SKCM 101 5.54% 0.00% 7.46% 50.71% 5.97% 5.40% 30.47% 0.00% 7.46% 50.71% 5.97% 5.40% 30.47%
STAD 388 9.32% 0.00% 22.51% 29.49% 0.90% 43.92% 3.18% 0.05% 22.51% 29.49% 0.90% 43.87% 3.18%
TGCT 132 1.41% 0.00% 17.26% 28.17% 43.91% 9.39% 1.27% 7.61% 14.21% 21.83% 36.29% 6.35% 13.71%
THCA 503 2.35% 0.00% 17.46% 17.67% 24.35% 11.64% 28.88% 2.16% 16.59% 17.46% 23.92% 11.21% 28.66%
THYM 118 3.14% 0.00% 5.05% 12.76% 19.01% 3.25% 59.93% 0.00% 5.05% 12.76% 18.77% 3.25% 60.17%
UCEC 178 6.15% 0.00% 19.62% 30.29% 14.25% 22.62% 13.23% 0.64% 19.55% 30.16% 13.74% 21.98% 13.93%
UCS 56 3.24% 0.00% 23.82% 33.89% 12.07% 22.04% 8.18% 0.10% 23.82% 33.89% 11.86% 21.93% 8.39%
UVM 79 4.26% 0.00% 19.62% 22.40% 19.43% 12.39% 26.16% 0.00% 19.62% 22.40% 19.43% 12.39% 26.16%
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1. Introduction

As sequencing costs decreased in recent years, transcriptomic
sequencing is an efficient and increasingly popular approach to
characterize complex biological pathways of tumors [1]. Numerous
studies have demonstrated the possibility of transcriptomic signa-
tures as prognostic markers, which is often achieved based on Cox
proportional hazard regression (CPH) [2-4].

The main premise of CPH is the proportional hazard (PH)
assumption [5,6]. Specifically, the model assumes that the hazard
of each covariate does not change over time. Violation of the PH
assumption may lead to misleading and erroneous scientific find-
ings [7,8]. If the hazard of variable increases or decreases over time,
the usual CPH model will ignore these time-dependent changes.
Bellera et al. found that the negative status of hormone receptors
increased the risk of metastasis at early stages but was protective
thereafter in breast cancer [9]. Moreover, Shintani et al. demon-
strated that time-fixed CPH could have a considerable bias in ana-
lyzing the relationship between delirium and ICU length of stay
[10].

However, verification of the PH assumption has not received
sufficient attention. Only a small proportion of studies relying on
Cox models have validated the PH assumption [8,11]. Unlike clini-
cal data, the transcriptomic data consisted of high-throughput RNA
signatures. Compliance with the PH assumption in transcriptomic
data is to be investigated. On the other hand, the CPH with the
time-dependent term can deal with the non-proportional hazards
of variables [5]. The effects of CPH with the time-dependent term
for transcriptomic data are still uncertain.

The Cancer Genome Atlas (TCGA) is one of the most comprehen-
sive tumor omics projects containing over 20,000 samples span-
ning 33 cancer types [12]. The high-quality sequencing data of
TCGA provide an opportunity to systematically characterize the
non-proportional hazards of each transcriptomic gene. This study
aimed to construct a CPH model for overall survival (OS) prediction
at the RNA level for each gene and answer the following 5 ques-
tions using TCGA cohorts: 1) What proportions of single-gene
CPH models violate the PH assumption in different tumors; 2)
How important are these genes with non-proportional hazards in
CPH; 3) Are these genes very different across cohorts of the same
tumors; 4) The CPH with the time-dependent term is an approach
to explain the non-proportional hazards of covariates. Which form
of the time-interaction term works better in time-dependent CPH;
5) Does the time-dependent CPH change the significance of the log
hazard ratio (HR) of genes compared with the usual CPH.
2. Material and methods

Assessing the association of RNA levels of genes in cancer
patients with survival times had important implications for the
prognostic markers’ identification. In this study, we aimed to fit
cancer patients’ OS (outcome variable) using univariate CPH. Mod-
els included only gene RNA level as an independent variable unless
otherwise specified.
2.1. Data collection and standardization

We collected 9,056 patients from 32 cohorts with complete RNA
sequencing (RNA-seq) of primary tumors and OS annotations (pa-
tients with 0 survival time were excluded) from TCGA [12]. The
RNA-seq of TCGA was normalized by TPM & log2(x + 1) and down-
loaded by Xena database [13]. We removed RNAs that had the
same expression values in more than 80% of the patients. Finally,
we included 38,154 RNAs in TCGA cohorts.
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Three independent transcriptomic datasets of NSCLC were col-
lected from the Gene Expression Omnibus (GEO) database:
GSE68465 (lung adenocarcinoma, LUAD, n = 442) [14], GSE37745
(non-small cell lung cancer, NSCLC, n = 196) [15], GSE50081
(NSCLC, n = 172) [16]. Their microarray data were normalized by
log2 RMA [17]. The basic information of included cohorts was
shown in Tab. S1.

2.2. Schoenfeld residual test

Schoenfeld residual test was an effective and widely used
method for the diagnosis of PH assumption [6,7]. The Schoenfeld
residuals were defined as the following functions [18]:

M b; tkð Þ ¼
X

s2Rs
Zs � eb�Zs=

X

s2Rs
eb�Zs

rk bð Þ ¼ Zk �Mðb; tkÞ
where Rs denotes the risk set at time tk, Zs is the covariate of the

patient with an event at time tk, b is the coefficient of Zs, Mðb; tkÞ is
the conditional weighted mean of covariate at time tk. Schoenfeld
residuals were scaled using the average variance matrix [19].
Under the assumption of PH, the scaled Schoenfeld residuals were
a mean of 0 and independent of time. We used R ’cox.zph’ function
to performed Schoenfeld residual test [19].

2.3. Time-dependent CPH model

Introducing a time-dependent variable in CPH provided a flexi-
ble method to evaluate non-proportionality [20]. In this study, we
constructed an interaction term between gene expression and time
function (t, log(t), t2, sqrt(t), or et) in time-dependent CPH:

hx tð Þ ¼ h0 tð Þ � eðbxþd�x�fðtÞÞ

Where hxðtÞ is the hazard of gene �, h0ðtÞ represents baseline
hazard, and f(t) is time function, b is the coefficient of �, and d is
the coefficient of time-interaction term. The CPH was performed
by R ’coxph’ function, and interaction term was realized by the
time-transform functionality of ’coxph’ [21].

2.4. Performance evaluation of CPH model

Log-likelihood and Akaike information criterion (AIC) were used
to assess the fitting capability of models. Log-likelihood was posi-
tively associated with favourable fitting performance, while AIC
was negatively linked to fitting performance. We used R ’logLik’
and ’AIC’ functions to calculate the Log-likelihood and AIC of CPH
models [22,23].

2.5. Protein-protein interaction network and node importance
assessment

STRING was a protein–protein interaction (PPI) database that
contained 7 kinds of interaction evidence (fusion evidence, neigh-
borhood evidence, co-occurrence evidence, experimental evidence,
textmining evidence, database evidence, and co-expression evi-
dence) [24]. We constructed PPI networks consisting of 17,399
genes overlapped with TCGA RNA signatures and 496,557 edges
with confidence greater than 0.6 from STRING.

Betweenness, closeness, and degree were indexes reflecting
node importance of PPI networks and calculated by R ’igraph’ pack-
age (https://igraph.org/). Betweenness was the proportion of the
shortest path through a certain node [25]. Closeness measured
the reciprocal distances to all other nodes. Degree measured the
number of directly connected nodes. Genes with all betweenness,

https://igraph.org/
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closeness and degree above the median were identified as hubs,
and others were non-hubs.
2.6. Exploring potential factors associated with non-proportionality in
CPH

For genes with non-proportional hazards in a CPH model, since
each patient corresponded to one survival time, there were 2
patient sets (corresponded to the 2-time sets) in which genes were
inversely related to prognosis. We first constructed the risk scores
for each patient using multivariable Cox regressions for fitting OS
from a random set of 2000 genes in each cohort. Next, we divided
the patients into two groups for each gene: group A, [rank(gene
expressions) - median(rank(gene expressions))] and [rank(risk
scores) - median(rank(risk scores))] have the same sign; group B,
[rank(gene expressions) - median(rank(gene expressions))] and
[rank(risk scores) - median(rank(risk scores))] have the different
sign. Hierarchical clustering of the matrix [genes, patient groups]
resulted in non-proportional related patient clusters. Hierarchical
clustering was realized by R ’hclust’ function [26].

MCPcounter was an algorithm for calculating microenviron-
mental cell infiltration scores based on ssGSEA [27]. We performed
statistical analysis to explore infiltration score related and clinical
factors associated with the above clusters. In order to identify
cluster-related genes, we performed differential expressed gene
analysis for each cluster vs. others via R ’limma’ package [28].
2.7. Concordance regression

Concordance regression (CON) was an algorithm that used all
available patient pairs (omit censored pairs) to model C’ [29].
The C’ was developed from the c-index to be generalized to contin-
uous data: c0 ¼ P Ti < Tj

� ��xi ¼ xj þ 1Þ
Where X is gene expression value, T is survival time, and i, j

were patients. We used R ’concreg’ package to construct CON
model [29].
2.8. Generation of simulated datasets

Simulated expression matrices for 10,000 genes *100 samples
were derived from a standard normal distribution via R ’rnorm’
function [30]. Generalized gamma distributions are flexible distri-
butions fitted to survival times that incorporate commonly used
distributions (exponential, Weibull, log normal, and gamma)
[31]. The mu, sigma, Q parameters were used to characterize the
survival curves, which were realized by R ’flexsurv’ package [32].
We performed 40 experiments with 8 typically shaped survival
curves using different parameters of the generalized gamma distri-
bution and 5 event rates (10%, 25%, 50%, 75%, and 90%).
2.9. Statistical analysis

All statistical analysis was performed by R 3.6.1. Survival anal-
ysis was performed by R ’survival’ package [21]. Randomly dis-
tributed P values were generated for each gene with the
following formula: rank(P)/gene number. The rank(P) is descend-
ing ranking of Schoenfeld residuals test P value. Kolmogorov-
Smirnov test was performed by R ’ks.test’ function [33]. The R
’pracma’ package was used to calculate the area under the curves
[34]. Fleiss’ kappa was calculated by R ’irr’ package [35]. R ’stats’
package was used to perform chi-square and analysis of variance
(ANOVA) tests. Parallel computing was performed by R ’parallel’
package [36]. Multiple tests were adjusted by Benjamini and Hoch-
berg method in gene enrichment analysis [37]. P < 0.05 was consid-
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ered as statistical significance in hypothesis tests. All the P values
were 2-sided.
3. Results

3.1. Landscapes of violations of the PH assumption for CPH with
transcriptome genes in TCGA pan-cancer cohorts

The study design was shown in Fig. 1. A total of 9,056 samples
with complete RNA-seq (TPM) and OS information from 32 cancers
were collected from TCGA. Overall, the mean follow-up time in
TCGA was 2.75 years, with death events observed in a total of
29.5% patients (Tab. S1). The verification of PH assumption was
based on Schoenfeld residual test, which identified the non-
proportional characteristic of variables in CPH models fitted OS.
Through the parallel strategy of R ’parallel’ package, Schoenfeld
residual test of univariate CPH for each gene was performed in dif-
ferent tumors, respectively. The distributions of Schoenfeld test P
values were left-skewed and light-tail in most tumors (Fig. 2A &
Fig. S1). In all tumors, an average of 8.5% gene CPH models violated
the PH assumption. The above proportions were the highest in LGG
(29.3%), LIHC (23.0%), and READ (19.2%) and the lowest in TGCT
(1.4%), THCA (2.4%), and THYM (3.1%). Furthermore, 66.2% of the
gene CPHmodels violated the PH assumption in at least one tumor,
but only 7% of the gene CPH models violated PH in more than 5
tumors (Fig. 2B). The Quantile-Quantile (QQ) plot revealed that
the p values from the Schoenfeld residual test were significantly
better than that from a random distribution in the 81.25%
(26/32) tumors (Fig. 2C), except PRAD, SKCM, TGCT, THCA, THYM,
and UCS. To explore potential factors, we analyzed the shape of the
tumor survival curve, median follow-up time, and number of
events as independent variables. The mu, sigma, Q parameters of
generalized gamma distributions were used to characterize the
survival curves. We included 5 variables (mu, sigma, Q, median
follow-up time and number of events) for multivariable linear
regression. Only median follow-up time and number of events
showed significant positive coefficients in linear models fitted
the area under the curve of the QQ plot and the proportion of p
value better than random distribution (log10(proportion*30000)),
respectively (Fig. 2D & E).

Scaled Schoenfeld residual plot (Fig. 2F-H) showed that the
prognostic effect of RPL7A varied significantly over time in KIRC,
KIRP, and LGG. For LGG, the residual plot showed a strong effect
of RPL7A expression in the first 2 years, and then the effect tends
to weaken.
3.2. Both hub and non-hub genes in the interaction networks possibly
had non-proportional hazards in CPH models

We used network analysis to assess the importance of genes
using PPI networks identified by STRING database. PPI networks
consisted of 17,399 genes overlapped with TCGA RNA signatures
and 496,557 edges with confidence greater than 0.6. In GBM, KIRC,
LGG, LIHC, and READ, genes with non-proportional hazards in CPH
models had higher betweenness, closeness, and degree, which
were linked to hub positions (Fig. 3A-C). However, the above rele-
vance was reversed in ACC, BLCA, HNSC, MESO, and SKCM.We next
defined hub genes as possessing betweenness, closeness, and
degree values above the median, and a total of 6357 hub genes
were identified. We similarly found that hub genes had a higher
proportion of non-proportional hazards in ACC, BLCA, ESCA, OV,
HNSC, PCPG, MESO, SARC, STAD, SKCM and THYM, whereas more
non-hub genes had non-proportional hazards in GBM, KICH, KIRC,
LGG, LIHC, and READ (Table 1).



Fig. 1. Study design. PH, proportional hazards; CPH, Cox proportional hazard regression; TCGA, The Cancer Genome Atlas; AIC, Akaike information criterion; GO, Gene
Ontology.
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The specific PPI networks in GBM and LGG were presented in
Fig. 3D & E. Next, we investigated genes from 5 Gene Ontology
(GO) terms[38] with important biological processes: DNA damage
checkpoint, apoptotic process, T cell activation, DNA-dependent
DNA replication, and cell cycle process (Fig. 3F). The 15/32 cancers
had a proportion exceeding 10% of gene CPH models that violated
the PH assumption in at least one important process. The above
results indicated that both hub or non-hub genes had the potential
to have non-proportional hazards.
3.3. The non-proportional hazards of genes varied widely across
cohorts of the same tumors

To investigate the consistency of non-proportional hazards of
genes in different datasets, we collected five NSCLC transcriptomic
datasets containing TCGA LUAD (n = 500), TCGA LUSC (n = 491),
GSE68465 (n = 442) [14], GSE37745 (n = 196) [15] and GSE50081
(n = 172) [16]. Violations of the PH assumption of CPH models fit-
ted survival times in these datasets ranged from 3.3% to 22%
(Fig. 4A). The matrix of Schoenfeld test P value was next converted
to a binary matrix (1, significant; 0 non-significant). However,
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overlapping patterns of the binary matrix in 5 datasets were scarce
(Fig. 4B). Violations of the PH assumption across the 5 datasets
were also highly inconsistent (Fig. 4C).

We next explored potential factors associated with non-
proportionality. Using our unique strategy (see methods, Fig. 4D),
patients were divided into the 2 groups for each non-
proportional gene in CPH (patient A and patient B, see methods)
and further clustered into different clusters. In TCGA LUAD, all
genes had positive significant beta value of univariate Cox regres-
sion in patient A group and negative value in patient B group
(Fig. 4E). Moreover, the 4 patient clusters had differentiated pat-
terns (Fig. 4F). Through the MCPcounter algorithm, we constructed
the cellular scores of microenvironment. However, the non-
proportionality related clusters were not related to microenviron-
ment scores (Fig. 4G). Furthermore, these clusters also were not
associated with clinical characters (gender, age, pathologic stage,
treatment outcome of first course, Tab. S2). At the transcriptome
level, the clusters also showed scarce differential genes (Fig. 4H).
In the other 4 NSCLC cohorts (TCGA LUSC, GSE68465, GSE37745
and GSE50081), the non-proportionality clusters were also inde-
pendent of clinical characters and microenvironment scores



Fig. 2. The landscape of violations of the PH assumption for transcriptome genes in TCGA pan-cancer cohorts. (A) Skewness and kurtosis of distribution of P values of
Schoenfeld residual test; (B) Plot of tumor numbers and numbers of non-proportional hazard genes; (C) QQ plot of Schoenfeld residuals test P value and expected P value. The
red dotted line represents y = x; (D) Multivariable linear regression fitted the area under the curve of the QQ plot; (E) Multivariable linear regression fitted the proportion of p
value better than expected value (log10(proportion*30000)); (F-H) Scaled Schoenfeld residual plot of RPL7A gene. QQ, Quantile-Quantile; PH, proportional hazard; AUC, area
under the curve. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(Fig. S2-5 & Tab. S3-6), which suggested that non-proportional
hazards may be due to other unknown causes.

3.4. CPH with the time-dependent variables allowed for a better fit of
OS

Introducing time-dependent variables was an effective method
to analyze non-proportional hazards in CPH. Introducing one of the
5 time functions (f(t) = t, log(t), t2, sqrt(t), et) of the time-dependent
variables increased the Log-likelihood value and reduced AIC of
CPH in all tumors (Fig. 5A). The et function performed worse than
the other 3 time functions. For gene CPH violated PH assumption,
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the CPH with log(t) function had the highest proportions of maxi-
mum Log-likelihood value in the 14/32 tumors (Table 2, Fig. 5B).
For instance, among the 5,086*6 CPH models composed of 5,086
genes with non-proportional hazards in BRCA, 53.3% of the genes
in log(t) function model had the largest Log-likelihood. Moreover,
the proportions of maximum Log-likelihood and minimum AIC in
different datasets were similar. However, CPH of the 7.6% gene
CPH models that violated the PH assumption fitted better without
time-dependent variable in TGCT. In general, for gene CPH violated
the PH assumption, introducing log(t), t, and sqrt(t) functions had a
superior performance in most tumors. In particular, for AIC, 60.2%
non-proportional CPH models in THYM benefited from et.



Fig. 3. Topological characteristics of proportional and non-proportional genes in TCGA pan-cancer cohorts. (A) Betweenness of proportional and non-proportional
genes; (B) Closeness of proportional and non-proportional genes; (C) Degree of proportional and non-proportional genes; (D & E) Gene interaction networks in GBM and LGG;
(F) Proportion of gene CPH model that assumption violated PH in the 5 important biological processes. CPH, Cox proportional hazard regression; PH, proportional hazard;
TCGA, The Cancer Genome Atlas.
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Concordance regression (CON) provided by Dunkler et al. [29]
was an alternative approach to survival analysis which was not
constrained by PH assumption. We constructed CPH with time
interaction term and CON models for each gene in the TCGA tumor
datasets, and used C-index as the evaluation index. We selected the
best performing time function in Table 2 for each tumor. More
gene CON models were inferior to CPH models with time-
interaction term, which may be influenced by high censoring rate
of real datasets (Fig. S6).

The et and t2 performed better in TGCT, THCA, THYM and UVM,
and these datasets were highly censored: 3% events in TGCT, 3.2%
events in THCA, 6.8% events in THYM, 27.8% events in UVM. In
order to explore the factors that influence the performance of the
time function, we performed 40 simulation experiments (8 sur-
vival curve shapes*5 event rates for 10,000 genes*100 patients,
see methods, Fig. S7). We found that highly censored datasets
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had unusually lower proportions of the log(t) and sqrt(t) function
with minimum AIC (Fig. S8 & Tab. S7).

3.5. CPH with the time-dependent variables changed the significance
of log HR of the genes with non-proportional hazards

Whether the introduction of time-dependent variables changed
the significance of gene variables in CPH was next examined. There
were 2 parameters (b and d) in time-dependent CPH model (see
methods). For b parameter (log HR), the changes of significance
in non-proportional hazard genes with different time-dependent
functions in BRCA were presented in Fig. 6A. The CPH with sqrt
(t) function had the highest proportion (74.5%) of significant
changes of log HR. The significant changes of gene log HR with a
time-dependent variable of CPH in different tumors were shown
in Tab. S8-12. For CPH model with t function, overall 39.8% of



Fig. 4. The non-proportional hazards of genes varied widely across cohorts of the same tumors. (A) The proportion of non-proportional in 5 NSCLC datasets; (B)
Overlapping patterns of non-proportional genes; (C) Kappa coefficient matrix of panel B; (D) Design of exploring potential factors associated with non-proportionality; (E)
Plot of beta value of univariate Cox regression in patient A and patient B groups (see methods); (F) The 4 patient clusters had differentiated patterns; (G) Boxplot of patient
clusters and cellular scores of microenvironment; (H) Differently expressed genes for each patient cluster. NSCLC, non-small cell lung cancer; LUAD,
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CPH models changed the significance of log HR, 46.4% of the non-
prognostic genes became significantly prognostic genes after intro-
ducing the time-interaction term in CPH, and 21.2% of the signifi-
cantly prognostic genes became non-prognostic genes. In terms
of other time functions (t, log(t), t2, sqrt(t), and et), there were sig-
nificant changes log HR in 15.3%, 22.4%, 52.3%, and 10.8% CPHmod-
els violated PH assumption, respectively. Furthermore, pooling
results across all time functions, a total of 31.9% genes’ log HR
changed significance, including 27.7% non-significant genes
became significant, while 4.2% genes were opposite. These results
suggested that non-time-dependent CPH may underestimate the
503
number of prognosis related transcriptome genes. For d parameter,
overall 26.5%, 70.7%, 56.8%, 42.3%, 76.5% and 8.8% of CPH models
with non-proportional genes had significant time interaction term
with t, ln(t), t^2, sqrt(t) and e^t functions, respectively (Tab. S13).

Next, we tentatively illustrated with 2 specific examples that
these significant changes in time-dependent CPH might be com-
patible with factual evidence. BCL2 was a BCL family member that
regulated apoptosis. A Meta-analysis [39] included 17 studies with
over 100 cases of breast cancer that showed that positive BCL2 was
significantly linked to a favourable prognosis. In this study, after
the introduction of the time-gene interaction term, BCL2 expres-



Fig. 5. CPH with the time-dependent variables allowed for a better fit of the prognosis. (A) The Log-likelihood and AIC of CPH with different time functions in TCGA pan-
cancer cohorts; (B) Proportions of max Log-likelihood value for gene CPH model violated PH assumption in CPH with different time functions. CPH, Cox proportional hazard
regression; AIC, Akaike information criterion.
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sion became a significant prognostic factor, and its positive prog-
nostic effects decreased in the first 4 years (Fig. 6B & C, Fig. S9),
which was consistent with the previous study [40]. Another exam-
ple was VEGFA, an important gene inducing angiogenesis and lym-
phangiogenesis, which was identified as an unfavourable
prognostic factor in BRCA [41]. In this study, VEGFA also had a
non-proportional effect in BRCA (Fig. 6D, Fig. S10), it was a signif-
icant prognostic factor in time-dependent CPH rather than general
CPH (Fig. 6E).
4. Discussion

Using the 32 TCGA cohorts, we investigated non-proportional
hazards of transcriptomic data. An average of 8.5% of single-gene
CPH models violated the PH assumption, and 66.2% of the models
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violated the PH assumption in at least one tumor, suggesting that
non-proportional hazards of transcriptome should not be over-
looked. Furthermore, according to the network analysis of PPI, both
hub and non-hub genes potentially had non-proportional hazards.
In at least one of the 5 important biological processes, more than
10% of the genes in 46.9% of cancers had non-proportional hazards
in CPH models.

Although the comprehensive investigation of non-
proportionality of gene-based CPH was lacking, some clinical stud-
ies provided examples of genes with non-proportional hazards.
Werdyani et al. found that GUSBP1 and PDLIM3 copy number vari-
ations were significantly associated with prognosis only within the
first 3 years after diagnosis in COADREAD [42]. Moreover, Candido-
dos-Reis et al. found that patients with BRCA1 mutation had better
short-term survival, this prognostic advantage was lost over time
and converted to the opposite direction after 5 years [43].



Fig. 6. CPH with the time-dependent variables changed the significance of logHR of the genes. (A) Changes of logHR significance in non-proportional hazard genes with
different time-dependent functions in BRCA; (B) Scaled Schoenfeld residual plot of BCL2 in BRCA; (C) CPH of BCL2 in BRCA; (D) Scaled Schoenfeld residual plot of VEGFA in
BRCA; (E) CPH of VEGFA in BRCA. CPH, Cox proportional hazard regression.
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Time-dependent CPH contributed to assessing non-proportional
hazards and quantifying hazards of the gene over time. In this
study, we compared the 5-time functions (t, log(t), t2, sqrt(t), et)
in time-dependent CPH. The log(t), and sqrt(t) functions performed
well in most tumors. Other strategies also could account for non-
proportionality. For instance, perform CPH by stratifying time-
dependent variables [44], however, gene expression was not the
stratified categorical variable. Moreover, the stratified CPH was
linked to lower power than the general CPH. Another strategy
was to use intervals of time to code time-dependent variables.
Quantin et al. proved that this piecewise model depended on the
number of time intervals and the specific parametric function
[45]. Furthermore, some non-Cox models could also consider
time-varying effects. Accelerated failure time model was a para-
metric model without considering the PH assumption. Some stud-
ies proved the effectiveness of accelerated failure time model in
survival analysis [46,47], but the model needed to specify the prob-
ability distribution of survival times. Moreover, additive model and
regression splines model were also the flexible and interpretable
prognostic models [48,49]. Still, CPH remained the most commonly
used prognostic model.
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The non-proportional risk of genes meant that the survival
curve may cross under a certain threshold. Therefore, the results
of Cox regression with time-interaction terms should be inter-
preted carefully. The optimal grouping threshold of variables under
nonproportional risk needs further studies.

In this study, we found that the genes’ CPH model that violated
the PH assumption in 5 NSCLC datasets had a very low kappa coef-
ficient (all < 0.2), suggesting that the non-proportionality of genes
in CPH models was dataset-dependent. The different time-varying
effects of genes might be explained by the heterogeneity of data-
sets. TCGA was next-generation sequencing, while GEO data were
microarrays based on different platforms (GSE68465, Affymetrix
Human Genome U133A Array; GSE37745, Affymetrix Human Gen-
ome U133 Plus 2.0 Array; GSE50081, Affymetrix Human Genome
U133 Plus 2.0 Array). Moreover, the clinical baseline might be
unbalanced in the 5 datasets. According to our results, the PH
assumption should be tested for gene expression data, even if this
gene had been tested in previous studies.

This study had some limitations. The main results of this study
were based on TCGA cohorts, and there was still no investigation of
other large cohorts. We did not investigate the non-proportionality
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of genes under multivariable CPH. In addition, the patient clusters
of non-proportional risk were not associated with clinical features
and microenvironment infiltration. The reason for non-
proportionality of genes in CPH models needed further study.

In this study, we didn’t perform multiple testing in Schoenfeld
residual test. Transcriptomic data were ultrahigh dimensional data
characterized by the dimension being much larger than the sample
size. The RNAs included in this study were greater than 30000, and
significant genes obtained using BH correction were very rare (zero
in 22/32 tumors, Tab. S14). There were extensive regulatory rela-
tionships and collinearity among genes, and perhaps not all tests
were independent. In addition, this paper was an exploratory
study, strict adjustment will reduce the sensitivity.

In summary, non-proportional hazards were widespread across
the transcriptome, and the tests of PH assumption in the transcrip-
tome were not only the statistical premise of CPH but also facili-
tated the exploration of specific temporal patterns of gene hazards.
5. Conclusions

This study was original to investigate the non-proportionality of
genes in CPH models fitted survival times using transcriptomic
data in TCGA pan-cancer cohorts. Non-proportional hazards were
widespread across transcriptomic genes. Introducing the time-
gene interaction term improved model performance and changed
the significance of gene variables in CPH model.
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