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Cutaneous microvascular function can be assessed by skin blood flow (SBF) response

to thermal stimuli. Usually, the activities of the regulatory mechanisms are quantified by

means of spectral analysis of the response. However, spectral measures are unable

to characterize the nonlinear dynamics of SBF signal. Sample entropy (SampEn) is a

commonly used nonlinear measure of the degree of regularity of time series. However,

SampEn value depends on the relationship between the frequency of the studied

dynamics and sampling rate. Hence, when time series data are oversampled, SampEn

may give misleading results. We modified the definition of SampEn by including a

lag between successive data points of the vectors to be compared to address the

oversampled issue. The lag could be chosen as the first minimum of the auto mutual

information function of the time series. We tested the performance of modified SampEn

using simulated signals and SBF data in the young and old groups. The results indicated

that modified SampEn yields consistent results for different sampling rates in simulated

data, but SampEn cannot. Blood flow data showed a higher degree of regularity during

the maximal vasodilation period as compared to the baseline in both groups and a higher

degree of regularity in the older group as compared to the young group. Furthermore,

our results showed that during the second peak the more regular behavior of blood

flow oscillations (BFO) is mainly attributed to enhanced cardiac oscillations. This study

suggests that the modified SampEn approach may be useful for assessing microvascular

function.

Keywords: aging, skin blood flow, complexity, sample entropy, blood flow oscillations

INTRODUCTION

The aging process causes both structural and functional changes in the cardiovascular system
(Marin, 1995). These changes may attenuate microvascular reactivity in response to environmental
stimuli (Holowatz et al., 2010). It has been well known that elevated skin temperature is a major
cause factor of pressure ulcers in older people due to prolonged sitting or bedrest (Fisher et al., 1978;
Jan and Brienza, 2006). The increased skin temperature raises the metabolic demands of local cells
and tissues on the order of 10% for every 1◦C (Jan et al., 2012). The inability of skinmicrocirculation
to remove excessive heat and meet the metabolic needs by increasing skin blood flow (SBF) can
result in tissue ischemia of weight-bearing soft tissues, thus increasing risk of pressure ulcers (Jan
et al., 2009; Liao et al., 2013). Therefore, SBF response to local heating may be used to assess the risk
of pressure ulcers in older people.
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SBF response to local heat has been found to depend on the
temperature, rate, and duration of heat (Minson et al., 2001; Jan
et al., 2009; Johnson and Kellogg, 2010). When local temperature
is rapidly increased to 42◦C and maintained at that level, SBF
shows a biphasic response characterized by an initial increase (the
first peak) followed by a brief nadir, and then a slowly developing
rise to a plateau (the second peak; Minson et al., 2001). The
first peak is mediated predominantly by local sensory nerves,
and the second peak/plateau is mediated predominantly by nitric
oxide (Johnson and Kellogg, 2010;Minson, 2010). In this context,
cutaneous vascular conductance and biphasic thermal index are
commonly used to characterize the response (Minson et al., 2002;
Jan et al., 2009). Furthermore, more sophisticated techniques
such as wavelet-based spectral analysis have been utilized to
explore the underlying mechanisms of the response (Jan et al.,
2009). Wavelet analysis of blood flow oscillations (BFO) in
human skin has revealed six frequencies in the frequency area
below 2.0Hz (Stefanovska et al., 1999; Geyer et al., 2004; Kvandal
et al., 2006). The oscillations around 1.0 and 0.3Hz are originated
from heart beats and respiration, respectively; the oscillations
around 0.1, 0.04, 0.01, and 0.007Hz are associated with the
myogenic activity of vascular smooth muscle, the neurogenic
activity of the vessel wall, and two different mechanisms of
vascular endothelial function, respectively (Stefanovska et al.,
1999; Geyer et al., 2004; Kvandal et al., 2006). It is hypothesized
that the oscillations around 0.01 and 0.007Hz involve nitric oxide
and endothelium-derived hyperpolarizing factors, respectively
{Stefanovska, 2007 #99}. Recent studies by our group have shown
that decreased vasodilation with age during local heating is
associated with diminishedmetabolic, neurogenic, andmyogenic
activities (Jan et al., 2009).

Although wavelet analysis of BFO provides a straightforward
interpretation of the active state of the regulatory mechanisms of
SBF, spectral measures are unable to characterize the nonlinear
dynamics of BFO {Liao et al., 2013 #14}. Nonlinear properties
of BFO have been probed by applying methods based on fractal
theory and nonlinear dynamics (Humeau et al., 2008; Liao
et al., 2010; Shiogai et al., 2010; Jan et al., 2011; Liao and Jan,
2011). Among these methods, sample entropy (SE) developed
by Richman and Moorman (2000) can be easily applied to
short and noisy time series data (Richman and Moorman,
2000). Although SE has been demonstrated to have important
advantages over approximate entropy (AE) (Ping and Johnson,
1992), we observed that for SBF data, SE also depends on the
relationship between the frequency of the studied dynamics
and the sampling rate. As a consequence, when data series is
oversampled, i.e., the sampling frequency is much higher than
the frequency of the studied time series, SE may give misleading
results.

A possible approach for resolving the above problem is to
include a lag between successive data points of the vectors to be
compared. This idea has been proposed by Richman et al. (2004)
and Govindan et al. (2007) but, to our knowledge, has not been
applied to SBF data. Govindan et al. (2007) suggested that since it
is difficult to choose an optimal lag for long-range correlated data,
one may consider the increment of the data, for which the time
lag will be 1. However, the increment basically contains the high

frequency components of the data. Such a transform may not be
appropriate for SBF data, because the low frequency components
of BFO are associated with the local control mechanisms of SBF
(Stefanovska et al., 1999; Kvandal et al., 2006). We found that for
both simulated deterministic and SBF data, the first minimum of
the automutual information (MI) function is a good choice of the
lag.

In this paper, we modify the SE algorithm by using time-
lagged vectors in the calculation of the conditional probability
that two vectors are similar form points remaining similar at the
next point. The lag was chosen as the first minimum of the MI
function. We systematically test the performance of the modified
SE approach using simulated signals, including sine wave and
time series from Rössler attractor, and SBF data. Next, we applied
SE and modified SE to SBF data from healthy young and older
adults during the baseline and local heating-induced second peak
period.We hypothesized that modified SE would be able to reflect
the degree of regularity of BFO regardless of sampling rate.

METHODS

Subjects
Seventeen healthy young subjects and 13 older subjects were
recruited into this study. The young group included 8 males
and 9 females, age 25 ± 5.6 years (mean ± SD), and body
mass index 23.6 ± 2.8 kg/m2; the older group included 6
males and 7 females, age 72.3 ± 5.8 years, and body mass
index 25.1 ± 2.4 kg/m2. The exclusion criteria included any
diagnosed cardiopulmonary diseases, smoking history, or use of
any medication that may affect cardiopulmonary function. All
participants gave written informed consent to participate in this
study, which was approved by the Institutional Review Board of
the University of Oklahoma for human subject research.

Data Collection
The experiments were conducted in a university research
laboratory. Room temperature was maintained at 24 ± 2◦C.
All subjects stayed in the lab at least 30min prior to the
experiment to become acclimated to the room temperature and
to achieve a steady baseline blood flow. When the subject was in
a prone position, a combined probe of heating and laser Doppler
flowmetry (LDF) (Probe 415-242 & PF5010, Perimed AB) was
used to heat the sacral skin to 42◦C in 2min and to maintain that
temperature level (Jan et al., 2009). Skin blood flow was recorded
by LDF at a sampling rate of 32Hz. The protocol included a 10-
min baseline, a 50-min heating period, and a 10-min recovery
period. Figure 1 shows typical SBF responses in a young subject
and an older subject and the results of normalized SBF at the
initial peak, nadir, and second peak in two groups.

Sample Entropy Algorithm
Given a time series of length N, {x(i), i = 1, . . . , N}, the
sample entropy algorithm is computed as follows (Richman and
Moorman, 2000).

1) Consider vectors of length m: xm (i) = {x
(

i+ k
)

, 0 ≤

k ≤ m − 1}, 1 ≤ i ≤ N − m. The distance
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between two such vectors is defined as d
[

xm (i) , xm

(

j
)]

=

max?{
∣

∣x
(

i+ k
)

− x
(

j+ k
)∣

∣ , 0 ≤ k ≤ m− 1}.
2) For a given vector xm (i), let nmi (r) be the number of

vectors xm

(

j
)

that are within a tolerance r of xm (i), i.e.,
d

[

xm (i) , xm

(

j
)]

≤ r, where j 6= i. Thus, Cm (r) =
1

N−m

∑N−m
i=1 nmi (r) represents the probability that any vector

xm

(

j
)

is within r of the vector xm (i).
3) Likewise, calculate the probability that any two vectors

xm+1 (i) and xm+1

(

j
)

are within r of each other, Cm+ 1 (r),
where j 6= i.

4) Finally, sample entropy is defined as

SE (m, r) = lim
N→∞

−ln
Cm+ 1(r)

Cm(r)
, (1)

which is estimated by the statistic

SE (m, r,N) = −ln
Cm+ 1(r)

Cm(r)
. (2)

The tolerance r is usually set to be r × SD, where SD is the
standard deviation of the time series. Throughout this work, all
time-series data were normalized to have SD=1 when computing
entropy.

In the SE algorithm, the constraint condition j 6= i excludes
self-matches, which are included in the AE algorithm. Thus,
SE has reduced bias compared to AE (Richman and Moorman,
2000). Furthermore, SE is largely independent of record length
and shows relative consistency under conditions where AE does
not (Richman and Moorman, 2000). However, we observed
that for temporally correlated data, SE is dependent on the
relationship between the frequency of the studied time series and

FIGURE 1 | (A) Sacral skin blood flow (SBF) in response to a rapid local

heating to 42◦C in a young subject and an older subject. pu, perfusion unit.

(B) Normalized SBF at the initial peak (P1), nadir, and second peak (P2,

51–60min). Values are means± standard errors. * indicates a significant

difference between two groups (p < 0.05, Wilcoxon rank sum test).

the sampling rate. To demonstrate this point, we calculated SE for
numerically simulated deterministic signals and SBF data. As for
deterministic signals, we considered the sine wave sin(2π · 0.1t)
and the variable x1 of Rössler attractor

dx1/dt = −x2 − x3,

dx2/dt = x1 + 0.2x2,

dx3/dt = 0.2+ x3(x1 − 5.7). (3)

As shown in Figure 2, for the sine wave and Rössler attractor, SE
values can be different for δt = 0.0313, δt = 0.0625, and 0.125 s,
where δt is the sampling interval (Figures 2A,B). With increasing
m values, the difference in SE due to different sampling intervals
becomes smaller. For the SBF signals shown in Figure 1A during
1–10min (older subject), SE values are distinctly different for
different sampling rates (Figure 2C).

The dependence of SE on sampling rate is mainly attributed to
the correlation in time series. Given a correlated signal, when data
points are sampled at a higher sampling rate, values of successive
data points are more close to each other and hence two vectors
within r for m points likely remain within r at the next point. In
this case, the conditional probability Cm+ 1(r)/Cm(r) (Equation
2) will be assigned a larger value and thus a smaller value of SE
will be obtained. In contrast, a lower sampling rate leads to a
larger value of SE. Because physiological signals, e.g., SBF signals,
usually possess long-range correlations, the dependence of SE on
sampling rate may cause a series of problems. One problem is
that different sampling rates can lead to different interpretations
of the same process in terms of “regularity.” Later we will show

FIGURE 2 | Sample entropy, SE (m, r,N), for numerically simulated

signals and SBF data, where r = 0.2 and N = 4800. (A) Values of

SE (m, r, N) for sin (2π · 0.1t) sampled at δt = 0.125, 0.0625, and 0.0313 s,

respectively, where δt is the sampling interval. (B) Values of SE (m, r, N) for the

variable x1 of Rössler attractor (Equation 3) sampled at δt = 0.125, 0.0625,

and 0.0313 s, respectively. (C) Values of SE (m, r,N) for SBF signals from all

the subjects during 1–10min (baseline). The sampling rate fs was chosen as 8,

16, and 32Hz, respectively. The results are shown as mean values, 5th

percentiles, and 95th percentiles.

Frontiers in Physiology | www.frontiersin.org 3 April 2016 | Volume 7 | Article 126

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Liao and Jan Aging-Associated Microvascular Dysfunction

that if SBF data are oversampled, SE may not be able to reflect
changes in spectrum of BFO in the frequency area below 2Hz.

Modified Sample Entropy Algorithm
The influence of sampling rate on SE estimation may be
eliminated by using a lag between the successive data points of
the vectors to be compared. This procedure is similar to the
reconstruction of dynamics from a time series for computing
correlation dimension and Lyapunov exponents (Stam, 2005).
We make two alterations to the original SE algorithm. First, we
use time-lagged vectors, which have the following form

x
τ
m(i) = {x

(

i+ kτ
)

, 0 ≤ k ≤ m− 1}, 1 ≤ i ≤ N −mτ, (4)

where τ is the lag. The condition1 ≤ i ≤ N − mτ ensures that
x
τ
m+1(i) will be defined when i = N−mτ . Second, when counting
the number of xτ

m(j) that are within r of xτ
m(i), we consider only

the vectors xτ
m(j) satisfying

∣

∣j− i
∣

∣ > τ ; likewise, for each vector
x
τ
m+1(i), we consider only the vectors x

τ
m+1(i) satisfying

∣

∣j− i
∣

∣ >

τ . This constraint condition is aimed to minimize the influence
of the correlation on entropy estimation.We denote the modified
sample entropy as SE(m, r, τ,N).

A critical step in the SE(m, r, τ,N) algorithm is to determine a
lag τ . In previous studies on this topic, time lag has been chosen
as the first zero crossing of the autocorrelation function C(τ )
(Cellucci et al., 2003), the time point where the autocorrelation
function drops to 1/e or 1 − 1/e of its initial value (Rosenstein
et al., 1993; Stam, 2005), or the first minimum of the MI function
MI(τ ) (Kantz and Schreiber, 1997). The first zero crossing of
C(τ ), τ0, means that, on average, the observation x(i) and x(i+τ0)
will be lineally independent. Abarbanel (1996) argued that the
first minimum of MI(τ ) is a more appropriate choice of the lag
because MI(τ ) can be viewed as a nonlinear analog of C(τ ).
Bradley and Kantz {Bradley and Kantz, 2015 #100} suggested
that the first minimum of MI(τ ) represents a more general form
of independence compared with the first zero crossing of C(τ ).
On the other hand, C(τ ) often results in overestimates of the
time delay when applied to nonstationary time series {Clemson
and Stefanovska, 2014 #45}. Cellucci et al. {Cellucci et al., 2003
#101} performed a comparative study of embeddingmethods and
concluded that the best value of delay can be identified byMI(τ ).

To compare the performance of the first minimum of MI(τ )
and that of the first zero crossing of C(τ ) in the calculation
of SE, we performed the following experiment. We simulated
the Rössler attractor (Equation 3) 10 times for each of the step
size 1/16 and 1.32 s using different initial conditions. Then we
analyzed the time series composed of 4800 samples from the
steady-state portion of the variable x1. The results are shown
in Figure 3. Using the first minimum of MI(τ ) as the lag τ , SE
yields almost identical values for different step sizes, whereas
when using the first zero crossing of C(τ ) as the lag τ , SE yields
distinctly different values for different step sizes. These results
suggest that the first minimum of MI(τ ) is a more appropriate
choice of the delay for computing sample entropy.

Regarding SBF signals, we observed that during the baseline
period (1–10min), the first zero crossing of C(τ ) yields a very
large value (Figure 4A) or does not exist at all; during the second
peak (51–60min), it yield a much smaller value (Figure 4C).

FIGURE 3 | (A) Autocorrelation function C(τ) of the time series derived from

simulated Rössler attractor (Equation 3). The Rössler attractor was simulated

10 times for each of the step sizes δt = 1/16 and δt = 1/32 s using different

initial conditions. The time series were composed of 4800 samples from the

steady-state portion of the variable x1. The first zero crossing of C(τ ) is around

20 for δt = 1/16 and 45 for δt = 1/32. (B) Mutual information function MI(τ ) of

the time series. The first minimum of MI(τ ) is around 12 for δt = 1/16 and 30

for δt = 1/32. (C) Values of SE presented as mean ± standard deviations.

Using the first minimum of MI(τ ), SE yields almost identical values for different

step sizes, whereas when using the first zero crossing of C(τ ) as the lag τ , SE
yields distinctly different values for different step sizes.

This observation suggests that the lag τ estimated by the first
zero crossing of C(τ ) is dubious when applied to SBF signals.
Unlike C(τ ), the first minimum of MI(τ ) yields a moderate value
during the baseline and a smaller value during the second peak
(Figures 4B,D). On the other hand, because the optimal lag in
time is a constant, the first minimum of MI(τ ) of the data series
is usually proportional to sampling rate. This feature ensures a
constant degree of dependence between successive data points
of the vectors to be compared regardless of sampling rate. In
addition, if the first minimum of the MI function is unobvious
when the signal is sampled at a higher sampling rate, e.g., 32Hz,
it would be easier to determine the lag by checking the MI(τ ) of
a downsampled version of the signal.

Validity of Modified Sample Entropy
We systematically evaluated the performance of SE(m, r, τ, N)

using both numerically simulated and SBF data. We first
examined whether SE(m, r, τ, N) depends on sampling rate. As
shown in Figures 5A,B, for the sine wave and Rössler attractor,
SE(m, r, τ, N) is independent of sampling rate for m from 2 to 8.
For SBF signals during 1–10min, SE (m, r, τ, N) is independent
of sampling rate for m ranging from 2 to 5 (Figure 5C).We noted
that whenm>5, the probabilities Cm (r) and Cm+ 1 (r) (Equation
2) are too small that SE(m, r, τ, N) becomes unreliable.

We next tested whether SE(m, r, τ, N) and SE(m, r, N) are
able to reflect changes in structural properties of BFO with
frequencies below 2Hz. As mentioned earlier, SBF signals in
human skin have been found to contain at least six characteristic
frequency components in the frequency area below 2Hz, each
of which corresponds to a specific underlying mechanism
(Stefanovska et al., 1999; Kvandal et al., 2006). We performed the
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FIGURE 4 | Values of τ for the SBF signals determined by the autocorrelation function C(τ ) and mutual information function MI(τ ). The sampling rate was

32Hz. (A) Examples of C(τ ) of SBF signals during 1–10min and 51–60min. S1and S2 denote two subjects. (B) Examples of MI(τ ) of the SBF signals during 1–10min

and 51–60min. (C) Values of τ determined as the first zero crossing of C(τ ). (D) Values of τ determined as the first minimum of MI(τ ).

FIGURE 5 | Modified sample entropy, SE (m, r, τ,N), for numerically

simulated signals and SBF data, where r = 0.2 and N = 4800. (A) Values

of SE (m, r, τ, N) for sin (2π · 0.1t) sampled at δt = 0.125 and 0.0625, and

0.0313 s, respectively. The values of τ are 2, 4, and 8 respectively. (B) Values

of SE (m, r, τ, N) for the variable x1 of Rössler attractor (Equation 3) sampled

at δt = 0.125, 0.0625, and 0.0313 s, respectively. The values of τ are 8, 16,

and 32 respectively. (C) Values of SE (m, r, τ, N) for SBF signals from all the

subjects during 1–10min. The sampling rate fs was chosen as 8, 16, and

32Hz, respectively. The parameter τ = 12 was used based on the distribution

of τ values for all the subjects (Figure 4D). The results are shown as means,

5th percentiles, and 95th percentiles.

following experiment. For the SBF signals sampled at 32Hz, we
calculated SE(m, r, τ, N) and SE(m, r, N) for the 1–10min and
51–60min segments before and after removing the components
with frequencies higher than 2Hz. The parameters m = 2 and 3

and r= 0.2 were used. Figure 6 presents the results for the signals
from all the subjects. For the original signal, SE(m, r, N) of the
51–60min segments is much lower than that of the 1–10min
segments, whereas for the filtered signals, values of SE(m, r, N)

of the 1–10min segments are similar to those for the 51–60min
segments (Figure 6C). However, by using wavelet analysis, it can
be seen that the 1–10min and 51–60min segments of the filtered
signals contain distinctively different frequency components. As
shown in Figures 6A,B, wavelet analysis reveals an augmentation
of the cardiac component (0.4–2Hz) and an attenuation of

the myogenic component (0.05–0.15Hz) during 51–60min as

compared to the 1–10min segment. This implies that when SBF
data are sampled at 32Hz, SE(m, r, N) is unable to reflect the

structural properties of BFO with frequencies below 2Hz. The

difference in SE(m, r, N) between two segments of the original

data is largely attributed to the components with frequencies
higher than 2Hz. In contrast, SE(m, r, τ, N) shows distinct

differences between two segments for both the original data

and filtered data, suggesting that this measure is able to reflect
changes in structural properties of BFO below 2Hz (Figure 6D).

An important expected feature of SE(m, r, τ, N) is relative
consistency. It has been demonstrated that SE(m, r, N) shows
relative consistency (Richman and Moorman, 2000). That is, for
two time series X1and X2, if SE(m1, r1) (X1) ≤ SE (m1, r1) (X2),
then SE(m2, r2) (X1) ≤ SE (m2, r2) (X2). This means that if the SE
value of X1 is lower than that of X2 for one pair of parameters m
and r, it is expected to do so for all pairs of parameters. In most
studies of sample entropy, values of m of 2 or 3 and values of r
between 0.1 and 0.25 have been used (Richman and Moorman,
2000; Lake et al., 2002). The results presented in Figure 5
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FIGURE 6 | (A,B) Wavelet amplitude spectra of a SBF signal during 1–10min and 51–60min before and after filtering. Here, wavelet amplitudes are averaged

absolute values of the wavelet transform over time. The Morlet wavelet was used to implement continuous wavelet transforms. (C,D) Values of SE (m, r,N) and

SE (m, r, τ, N) for 1–10min and 51–60min segments of SBF signals from all the subjects before and after removing the components with frequencies higher than

2Hz. The sampling rate was 32Hz and the parameter r = 0.2, τ = 12, and N = 4800 were used. The results are shown as means, 5 percentiles, and 95 percentiles.

indicate that for sine wave, Rössler attractor, and SBF signals,
SE(m, r, τ, N) holds relative consistency for varying parameter
m and fixed parameter r. Figure 5 shows that SE(m, r, τ, N)

value of the sine wave is lower than that of Rössler attractor for
values of m between 2 and 7 and r = 0.2; Figure 6D show that
SE(m, r, τ, N) of SBF data 1–10min is higher than that of SBF
data during 51–60min for values of m = 2, 3 and r = 0.2. To
examine whether SE(m, r, τ, N) shows consistency for varying
values of r and fixed values of m, we calculated SE(m, r, τ, N)

for the simulated signals and SBF data using the parameters m
= 2, 3 and r from 0.1 to 0.25. We also calculated SE(m, r, N) of
the same signals using the same parameters. Figure 7 shows the
results form= 3, which are similar to those form= 2. Obviously,
for both the simulated signals and SBF data, SE(m, r, τ, N) shows
relative consistency for varying parameter r between 0.1 and 0.25
and fixed parameter m. It should be noted that the larger range
of SE(m, r, τ, N) values compared to that of SE(m, r, N) values
is mainly due to the more distinct difference in SE(m, r, τ, N)

values between the young and old groups.

Application of SE(m, r, τ,N) to SBF Data
We applied the SE(m, r, τ, N) algorithm to the SBF data
described earlier. Because P2/baseline shows significant
difference between two groups (Figure 1B), we calculated
SE(m, r, τ, N) for the SBF data during the baseline (1–10min)
and second peak (51–60min). The parameters m = 3, r =

0.2, and τ = 12 were used. The reasons for choosing the

parameters are as follows. First, for most of our data sets, when
using 3 ≤ m ≤5, SE(m, r, τ, N) yields almost identical values
(Figure 5C); when m>5 the probabilities Cm (r) and Cm+ 1 (r)
(Equation 2) are too small that SE(m, r, τ, N) may become
unreliable. Second, given a value of m, SE(m, r, τ, N) shows
relative consistency for varying values of r (Figure 7D). That
is, if SE(m, r, τ, N) of a data set is lower (higher) than that of
another data set for a value of r, it will do so for other values of
r. We therefore adopted a commonly used value r = 0.2. Third,
the use of τ = 12 was based on the distribution of τ values
for the SBF signals from all the subjects during the 1–10min
period (Figure 4D). Although the values of τ for the 51–60min
segments are smaller than those for the 1–10min segments and
are slightly different between two groups, we also used τ = 12
for the 51–60min segments. We also calculated SE(m, r,N) for
the SBF data using the same parametersm, r, and N.

To further understand the results of SE(m, r, τ, N), we
performed wavelet analysis on the SBF signals during the
1–10min and 51–60min periods. The Morlet wavelet was
used to implement continuous wavelet transforms. The relative
wavelet amplitude of the metabolic (0.0095–0.02Hz), neurogenic
(0.02–0.05Hz), myogenic (0.05–0.15Hz), respiratory (0.15–
0.4Hz), and cardiac (0.4–2Hz) components are defined as
Af1,f2/A0.0095,2. Here, [f 1, f2] is the frequency range of a specific
frequency component, and Af1,f2 is the averaged absolute value
of the wavelet transform over time and over the frequency
range.
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FIGURE 7 | Validation of the consistency of SE (m, r, τ,N) for varying parameter r and fixed parameter m. The sine wave, the variable x1 of Rössler attractor,

and the SBF signals from all the subjects were used. All series were sampled at δt=0.0313 s or fs = 32Hz and had a length of N = 4800. The parameters m = 3 and r

between 0.1 and 0.25 were used. (A) SE (m, r,N) for the sine wave and Rössler attractor. (B) SE (m, r, τ, N) for the sine wave and Rössler attractor. (C,D) Values of

SE (m, r,N) and SE (m, r, τ, N) for the SBF signals. The results are shown as means, 5 percentiles, and 95 percentiles. The larger range of SE (m, r, τ, N) values

compared to that of SE (m, r, N) values is mainly due to the more distinct difference in SE (m, r, τ, N) values between the young and old groups.

The Wilcoxon rank sum test was used to examine the
difference between the young and old groups. All statistical tests
were performed using SPSS 16 (SPSS, Chicago, IL) and the
significant level was set at 0.05.

RESULTS

Figure 8 compares the results of SE(m, r, τ, N) and SE(m, r, N)

for two groups. For the sampling rate of 32, 16, and 8Hz,
SE(m, r, τ, N) shows almost identical results (Figures 8D–F). In
both groups, SE(m, r, τ, N) of BFO during the second peak is
significantly lower than that during the baseline (p < 10−3,
Wilcoxon signed rank test). Although SE(m, r, τ, N) of BFO
during the baseline does not show significant difference between
two groups (p > 0.05), during the second peak it shows
significantly lower values in older adults compared to young
adults (p < 10−3).

Although SE(m, r,N) also shows significant differences
between the baseline and second peak in two groups and
between two groups during the second peak (Figures 8A–C),
these differences depend on the sampling rate. Furthermore,
these differences are likely attributed to changes of BFO fast
than 2Hz rather than changes in the characteristic frequencies
associated with the underlying mechanisms of SBF regulation
(see Figure 6).

Figure 9 shows the results of wavelet analysis of the SBF
signals during the baseline and second peak. It is obvious that
local heating induced a significant augmentation of the cardiac
component in both group, particularly in old subjects, and a
significant attenuation of the myogenic component.

DISCUSSION

In this paper, we ultilize a modified sample entropy approach for
the assessment of SBF dynamics. The new measure reflects the
degree of regularity of time series regardless of sampling rate,
whereas the original sample entropy depends on the relationship
between the frequency of the studied dynamics and sampling
rate. We applied the new approach to SBF data from healthy
young and older adults during local heating-induced second peak
and observed a significant difference between the baseline and the
second peak and between two groups.

The algorithm of SE relies on the assumption that the vectors
to be compared are independent of one another (Richman
and Moorman, 2000). However, there might be many pairs of
matched vectors that are dependent because of the correlation
of the data and overlapping pairs of matches with points in
common. As a direct consequence, SE depends on sampling rate.
In the modified SE algorithm, any two successive data points
of the vectors are separated by a lag τ . Our simulation results
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FIGURE 8 | Results of SE (m, r,N) and SE (m, r, τ,N) for the two groups. The parameters m = 3, r = 0.2, and τ = 12 were used. The stars indicate a significant

difference in entropy between 1–10min and 51–60min period (p < 10−3, Wilcoxon signed rank test); the plus indicates a significant difference in entropy for

51–60min period between two groups (p < 10−3, Wilcoxon rank sum test). (A–C) Results of SE (m, r, N) for fs = 32, 16, and 8Hz, respectively. (D–F) Results of

SE (m, r, τ, N) for fs = 32, 16, and 8Hz, respectively.

FIGURE 9 | Relative wavelet amplitudes of the metabolic

(0.0095–0.02Hz), neurogenic (0.02–0.05Hz), myogenic (0.05–0.15Hz),

respiratory (0.15–0.4Hz), and cardiac (0.4–2Hz) components in two

groups during the baseline (1–10min) and second peak (51–60min).

*p < 0.05, **p < 10−2 (Wilcoxon signed rank test); +p < 0.05, ++p < 10−2,
+++p < 10−3(Wilcoxon rank sum test).

(Figure 3) suggest that the first minimum of MI(τ ) is a more
appropriate choice of the lag as compared to the first zero
crossing of the autocorrelation function C(τ ). Furthermore, we
observed that for SBF signals the first zero crossing of C(τ ) may
yield a very large value or does not exist at all (Figure 4A). Thus,

we chose the first minimum of MI(τ ) as the lag. Because the lag
in time is a constant, the first minimum of the MI function is
usually proportional to the sampling rate. This feature ensures
a constant degree of dependence between successive data points
of the vectors to be compared when different sampling rates are
used.

A great difficulty of analyzing BFO is the extremely low
frequencies of the oscillatory components associated with the
local control mechanisms of SBF. The characteristic frequency
of the cardiac component (∼1Hz) is about 100 times the
characteristic frequency of the endothelial-related metabolic
activity (∼0.01Hz). Thus, any sampling rate that is appropriate
for the cardiac component may be too high for the metabolic
component. As we demonstrated earlier, when using a sampling
rate of 32Hz, SE(m, r, N) does not reflect changes of BFO with
frequencies below 2Hz (Figure 6C), whereas when using a lower
sampling rate, e.g., 16Hz or 8Hz, changes of BFO below 2Hz
indeed result in changes in SE(m, r, N) because SE(m, r, N) and
SE(m, r, τ, N) yield similar results when using a sampling rate
of 8Hz (Figures 8C,F). Therefore, when applying SE(m, r, N) to
SBF data considerations need to be given as to what sampling
rate should be used and cautions should be taken in interpreting
the results. Our results show that the modified sample entropy,
SE(m, r, τ, N), can yield consistent results regardless of sampling
rate (Figures 5C, 8D–F).

Our results indicate that during the second peak (51–60min)
BFO were more regular compared to the baseline in both groups,
especially for older adults, and that BFO were more regular in
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older adults compared to young adults (Figure 8). Using wavelet
analysis, we observed that local heating induced a significant
increase in energy of the cardiac component and a significant
decrease in energy of the myogenic component in both groups
(Figure 9) Furthermore, we observed more pronounced changes
in energy of the cardiac and myogenic components in old adults.
These results are consist with a study by Sheppard et al. (2011),
in which local heating induced a significant absolute increase
in spectral energy of all characteristic frequency components
except the myogenic one and that the most pronounced increase
in energy was that of the cardiac component. The authors
suggested that this response was due to reduced resistance caused
by vasodilation. These results can be intuitively understood
by observing the SBF signal segments shown in Figure 10.
Obviously, during baseline (Figures 10A,C) cardiac component
was obscured by some components with higher frequencies;
during the second peak, these high frequency components largely
disappeared and thus the cardiac rhythm became more distinct,
contributing to a decrease in entropy. On the other hand, during
the second peak the cardiac frequency in the old subject seemed
to becomemore regular as compared to that in the young subject.
This further contributed to a lower value of entropy.

To verify whether the more regular behavior of BFO during
the second peak was attributed to enhanced cardiac oscillations,
we performed the following experiment. The SBF signal was
decomposed using a technique known as ensemble empirical
mode decomposition {Wu and Huang, 2009 #103}. Then, a

new signal was reconstructed from the intrinsic mode functions
excluding those with frequencies higher than 0.4Hz. Next, we
calculated SE(m, r, τ, N) for the new signal using the same
parameters, i.e., m = 3, r = 0.2, τ = 12. The results are shown
in Figure 11. By comparing Figure 8D and Figure 11, it can be
deduced that during the second peak the more regular behavior
of BFO is mainly attributed to enhanced cardiac oscillations.

Vascular aging are characterized by functional and structural
alterations of endothelium and smooth muscle cells that form the
vessel wall, as well as alterations of the communication routes
between these two cell layers {El Assar et al., 2013 #97}. It has been
suggested that two main mechanisms are responsible for aging-
related endothelia dysfunction: oxidative stress and inflammation
{El Assar et al., 2013 #97}. Both increased oxidative stress and
proinflammatory activity compromise NO bioavailability. In this
study, we employed a fast local heating protocol to induce a
biphasic blood flow response (Figure 1). It is generally accepted
that the second peak is predominantly mediated by NO {Johnson
and Kellogg, 2010 #96} {Minson, 2010 #11}. NO has direct
effects on smooth muscle activity and possibly play a role in
inhibiting vasoconstrictor response {Johnson and Kellogg, 2010
#96}. Our results indicate that local heating induced changes
in both amplitude and structures of BFO. The power of the
characteristic frequencies of BFO is commonly used to reflect
the activities of the regulatory mechanisms {Stefanovska, 2007
#99}, whereas structural changes of BFO are often neglected.
Our results indicate that in both groups more regular behaviors

FIGURE 10 | Waveform profiles of SBF signal segments during the baseline and second peak. The values of SE (m, r, τ, N) were calculated using the

parameters m = 3, r = 0.2, τ = 12, and N = 4800. (A,B) SBF signal segments from a young subject during the baseline (A) and second peak (B), respectively. (C,D)

SBF signal segments from an old subject during the baseline (C) and second peak (D), respectively.
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FIGURE 11 | SE (m, r, τ,N) of SBF signals after removing the cardiac

component. The SBF signal (fs = 32Hz) was decomposed by utilizing a

technique known as ensemble empirical mode decomposition and a new

signal was reconstructed using the intrinsic mode functions excluding those

with frequencies higher than 0.4Hz. In the calculations of entropy, the

parameters m = 3, r = 0.2, and τ = 12 were used. In young group, SBF signal

after removing the cardiac component is more regular during the baseline

(1–10min) (Wilcoxon signed rank test).

of BFO during the second peak were attributed to augmented
cardiac component. After removing the cardiac component, SBF
signal in young adults was more irregular during the second
peak compared with the baseline (p < 0.01), while SBF signal
in old adults showed similar degrees of regularity between the
baseline and second peak (Figure 11). This is probably due to
diminished interactions among the underlying mechanisms of
SBF regulation in old adults.

Considering the results shown in Figures 8, 9, 11 and
the waveform profiles presented in Figure 10, it seems that
SE(m, r, τ, N) of SBF data is mainly attributed to high
frequency components, i.e. the cardiac component. Because the
characteristic frequency of the cardiac component (∼1Hz) is
much higher than that of other components, e.g., metabolic and

neurogenic components, any time scale that is appropriate for the
cardiac component may be too short for observing oscillations of
these components. Since SBF is regulated by multiple processes,
each of which has its own temporal scale, to fully characterize the
dynamics of BFO using the modified sample entropy, multiple
time scales might need to be take into consideration.

CONCLUSION

We modified the SE algorithm by including a lag between
successive data points of the vectors to be compared and
the lag was chosen as the first minimum of the auto mutual
information function of the time series. The new measure was
able to reflect the degree of regularity of time series regardless
of sampling rate where the original SE cannot. We applied the
new approach to SBF data from healthy young adults and older
adults and observed a significant difference between the baseline
and the maximal vasodilation periods and between young and

older adults. BFO were more regular during the maximal
vasodilation period compared to the baseline period in two
groups and were more regular in older adults compared to young
adults. However, the more regular behavior of BFO during the
maximal vasodilation period was mainly attributed to augmented
cardiac component. This study suggests that the modified
SampEn approach may be useful for assessing microvascular
function.
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