
R E S E A R CH A R T I C L E

High-precision magnetoencephalography for reconstructing
amygdalar and hippocampal oscillations during prediction of
safety and threat

Athina Tzovara1,2,3,4 | Sofie S. Meyer3,5 | James J. Bonaiuto3 | Aslan Abivardi1,2 |

Raymond J. Dolan3,6 | Gareth R. Barnes3 | Dominik R. Bach1,2,3,6

1Department of Psychiatry, Psychotherapy,

and Psychosomatics, University of Zurich,

Zurich, Switzerland

2Neuroscience Centre Zurich, University of

Zurich, Zurich, Switzerland

3Wellcome Centre for Human Neuroimaging,

Institute of Neurology, University College

London, London, United Kingdom

4Helen Wills Neuroscience Institute,

University of California, Berkeley, California

5UCL Institute of Cognitive Neuroscience,

University College London, London,

United Kingdom

6Max Planck UCL Centre for Computational

Psychiatry and Ageing Research, University

College London, London, United Kingdom

Correspondence

Athina Tzovara, Helen Wills Neuroscience

Institute, University of California, 132 Barker

Hall Berkeley, CA 94720-3190.

Email: athina.tz@gmail.com

Funding information

BBSRC, Grant/Award Number:

BB/M009645/1; Medical Research Council

and Engineering and Physical Sciences

Research Council, Grant/Award Number:

MR/K6010/86010/1; Medical Research

Council UKMEG, Grant/Award Number:

MR/K005464/1; Swiss National Science

Foundation, Grant/Award Numbers:

320030_1449586/1, IZK0Z3_168980/1,

P300PA_174451; UCL Neuroscience/Zurich

Neuroscience Centre collaboration grant;

Wellcome Centre for Human Neuroimaging,

Grant/Award Number: 203147/Z/16/Z;

Wellcome Trust Principal Research Fellowship,

Grant Number: 202805/Z/16/Z

Abstract

Learning to associate neutral with aversive events in rodents is thought to depend on

hippocampal and amygdala oscillations. In humans, oscillations underlying aversive

learning are not well characterised, largely due to the technical difficulty of recording

from these two structures. Here, we used high-precision magnetoencephalography

(MEG) during human discriminant delay threat conditioning. We constructed genera-

tive anatomical models relating neural activity with recorded magnetic fields at the

single-participant level, including the neocortex with or without the possibility of

sources originating in the hippocampal and amygdalar structures. Models including

neural activity in amygdala and hippocampus explained MEG data during threat con-

ditioning better than exclusively neocortical models. We found that in both amygdala

and hippocampus, theta oscillations during anticipation of an aversive event had

lower power compared to safety, both during retrieval and extinction of aversive

memories. At the same time, theta synchronisation between hippocampus and amyg-

dala increased over repeated retrieval of aversive predictions, but not during safety.

Our results suggest that high-precision MEG is sensitive to neural activity of the

human amygdala and hippocampus during threat conditioning and shed light on the

oscillation-mediated mechanisms underpinning retrieval and extinction of fear mem-

ories in humans.
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1 | INTRODUCTION

One core function of the amygdala is to store associations between

neutral and aversive events in a process often termed ‘threat condition-

ing’ or ‘fear conditioning’, as demonstrated by a body of rodent litera-

ture (LaBar & LeDoux, 1996; LeDoux, 2000; Likhtik & Paz, 2015;

Maren & Quirk, 2004; Stujenske, Likhtik, Topiwala, & Gordon, 2014). A

distributed network of cortical and subcortical brain regions contributes

to the creation and recall of this type of memory, including hippocam-

pus, sensory, and prefrontal cortical areas (Herry & Johansen, 2014;

Likhtik & Paz, 2015; Stujenske et al., 2014). These latter areas are

directly connected to subnuclei of the amygdala (Abivardi & Bach,

2017; Felix-Ortiz et al., 2013; Janak & Tye, 2015; Lithari, Moratti, &

Weisz, 2016; Sah, Faber, Armentia, & Power, 2003) and communicate

with amygdala through synchronised firing of neuronal populations

(Fries, 2015), which in the case of threat conditioning occurs mainly in

the theta range (Adhikari, Topiwala, & Gordon, 2010; Likhtik & Paz,

2015; Paz, Bauer, & Paré, 2008; Seidenbecher, Laxmi, Stork, & Pape,

2003; Stujenske et al., 2014). In particular, theta oscillations are

increased in the rodent amygdala and hippocampus during anticipation

of threat compared to safety (Seidenbecher et al., 2003; Stujenske

et al., 2014) and decreased during states of relative safety, compared to

threat (Lesting et al., 2013; Likhtik & Paz, 2015; Stujenske et al., 2014).

Investigating these oscillations in humans has remained a chal-

lenge until today, despite advances in neuroimaging technology. While

functional magnetic resonance imaging signal is influenced by coordi-

nated neural oscillations (Boorman et al., 2015; Hutchison, Hashemi,

Gati, Menon, & Everling, 2015; Scheeringa, Koopmans, van Mourik,

Jensen, & Norris, 2016), it does not allow any direct inference on the

functionally relevant time–frequency structure (Lisman & Jensen,

2013). On the other hand, noninvasive electrophysiological methods

such as magnetoencephalography or electroencephalography

(MEG/EEG), have found it difficult to isolate signals from amygdala,

due to its small size and deep location. Indeed, most previous threat

conditioning studies using MEG did not analyse or report the temporal

dynamics of signals specifically emanating from the amygdala (Chien

et al., 2017; Kluge et al., 2011; Moses, Bardouille, Brown, Ross, &

McIntosh, 2010; Moses, Martin, Houck, Ilmoniemi, & Tesche, 2005;

Rehbein et al., 2014; Tesche et al., 2007), while a few reported

evoked responses in amygdala (Balderston, Schultz, Baillet, &

Helmstetter, 2014; Moses et al., 2007), or indirect evidence of

amygdalar contributions to a wider network underlying threat condi-

tioning (Lithari et al., 2016; Lithari, Moratti, & Weisz, 2015). Thus, to

date, there is no direct characterisation of amygdala oscillations during

human threat conditioning. Nevertheless, simulation studies have

demonstrated the feasibility of reconstructing oscillatory activity origi-

nating from the amygdala with an appropriate head model (Attal,

Maess, Friederici, & David, 2012; Dumas, Attal, Dubal, Jouvent, &

George, 2011). Here, we sought to provide a proof-of-principle of this

possibility, by demonstrating that neural oscillatory signals during

threat conditioning and extinction can be detected with high-precision

MEG, and making plausible that the detected signal does indeed

emanate from the amygdala rather than other, potentially con-

founding, sources.

The amygdala, despite its small size relative to surrounding struc-

tures, has a neuronal density up to five to six times higher than neo-

cortex (Dumas et al., 2013; Pakkenberg & Gundersen, 1997;

Schumann & Amaral, 2005). Thus, an activated volume as small as

0.2–0.3 cm3 could suffice to generate a measurable MEG signal

(Dumas et al., 2011, 2013), a volume that corresponds to the size of

amygdala nucleus groups in humans (Abivardi & Bach, 2017; Bach,

Weiskopf, & Dolan, 2011), underlining the feasibility of amygdala

source reconstruction. Similarly, the hippocampus has a relatively high

source density, at least two times higher than that of the neocortex

(Meyer, Rossiter, et al., 2017; Murakami & Okada, 2006). Simulation

studies are providing converging evidence on the feasibility of record-

ing hippocampal activity with MEG (Attal & Schwartz, 2013; Mills,

Lalancette, Moses, Taylor, & Quraan, 2012; Quraan, Moses, Hung,

Mills, & Taylor, 2011; Stephen, Ranken, Aine, Weisend, & Shih, 2005)

in particular under a sufficiently low signal-to-noise ratio (SNR) and

coregistration error (Meyer, Rossiter, et al., 2017), or when the source

signal is particularly pronounced, such as for epileptic discharges

(Pizzo et al., 2019). Nevertheless, the majority of the available evi-

dence regarding reconstruction of hippocampus/amygdala sources

remains theoretical, and/or simulation-based, where ground truth is

known.

The ill-posed nature of the source reconstruction problem indeed

makes it difficult to corroborate that the detected sources correspond

to actual neural sources (Lopez, Litvak, Espinosa, Friston, & Barnes,

2014). This is because different solutions to the problem—that is, dif-

ferent reconstructed sources—could have generated the same, or a

very similar, sensor-level signal. Source-reconstruction techniques

typically use constraints on the prior distribution of sources and on

the structure of noise to find a unique solution (Lopez et al., 2014),

such that different constraints can lead to different solutions. Here,

we address this problem by varying the anatomical forward model—

the region in space where sources are allowed. By completely remov-

ing, or shifting in space, the location of the amygdala or hippocampus,

we analyse whether the best solution under this altered forward

model explains the sensor-level data as well as with the

amygdala/hippocampus location included. To avoid that a specific set

of reconstruction constraints is responsible for our findings, we repeat

this analysis with two common source reconstruction algorithms and

under different implementations.

To achieve an optimal SNR for this approach, we minimised two

major sources of imprecision, head movement, and coregistration

errors, with a recently introduced high-precision MEG technique,

where participant-specific flexible headcasts stabilise their head inside

the MEG system and limit head movement within, and between,

sessions (Meyer, Bonaiuto, et al., 2017; Troebinger, López, Lutti,

Bradbury, et al., 2014). Simulation studies have demonstrated the

potential for headcast-based MEG recordings to discriminate cortical

layers (Bonaiuto, Meyer, et al., 2018; Troebinger, Lopez, Lutti,

Bestmann, et al., 2014) and reconstruct hippocampal neural activity

(Meyer, Bonaiuto, et al., 2017), but there is no experimental evidence
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yet for the feasibility of this technique to localise oscillations from

subcortical structures. Furthermore, instead of scanning a large num-

ber of participants, we sought to minimise noise on the within-

participant level, by choosing a large number of trials, which is a stan-

dard approach in nonhuman primate electrophysiology (Klavir, Genud-

Gabai, & Paz, 2013) and precision functional mapping (Gordon et al.,

2017). Specifically, we tested the hypothesis that theta and gamma

oscillations in human amygdala and hippocampus during maintenance

and extinction of aversive memories can be detected with high-

precision MEG. Moreover, we performed exploratory analyses on

how theta and gamma oscillations originating from the hippocampus

and amygdala are modulated by states of threat versus safety in

humans.

2 | MATERIALS AND METHODS

2.1 | Participants

We recruited five volunteers (two females), aged 21 to 31 years old

(mean age ± SD: 27 ± 5 years old). All volunteers reported no history

of neurological or psychiatric disorder and normal or corrected to nor-

mal vision and hearing. Participants gave their written informed con-

sent prior to their participation. The study, including the form of

taking consent, was approved by the University College London (UCL)

research ethics committee (project ID: 6649/001).

2.2 | Experimental procedure

The experiment consisted of five sessions, conducted on three

consecutive days (Figure 1). Session 0 was an acquisition session, dur-

ing which participants were exposed to the conditioned stimuli/

unconditioned stimulus (CS/US) association outside the MEG scanner.

Sessions 1–4 (maintenance and extinction) took place in the MEG

scanner.

In each session, participants were presented with one of two dif-

ferent CSs for 4 s, which were a red and blue rectangle. In acquisition

and maintenance phases, one of the two CS (CS+) coterminated on

50% of the trials with an US, while the other CS (CS−) was always

presented without a US. In the extinction phase, no US was pres-

ented. US were 500 ms, 95 dB white noise bursts. We used noise

bursts rather than other commonly used US (i.e., mild electric shocks),

as they have been suggested to elicit more stable conditioned

responses in experiments involving repetitions over a large number of

trials (Sperl, Panitz, Hermann, & Mueller, 2016). US started 3.5 s after

CS onset and coterminated with the CS. They were presented via in-

ear pneumatic headphones during all MEG sessions, and with over-

head headphones during the acquisition (non-MEG) phase.

Trials were presented in a random order with a 7–11 s intertrial

interval. In the maintenance and extinction phases, participants were

presented with blocks of 40 trials, lasting approximately 10 min each.

In acquisition Session 0, preceding MEG, participants were presented

with two blocks of 80 trials each. This resulted in 160 acquisition tri-

als, 400 maintenance trials, and 400 extinction trials. Participants

were instructed to attend to the visual stimuli and indicate, via button

press, the colour of the stimulus that was presented to them on each

trial, irrespective of whether a US was present or not. Association

between CS and colour/key was randomised over participants, but

was kept unchanged within sessions of each individual participant.

2.3 | Extraction of anatomical information

Prior to MEG sessions, participants underwent two Magnetic Reso-

nance Imaging (MRI) scanning protocols during the same visit: one to

generate the scalp image for production of the headcast, and a second

one used for MEG source localization. Structural MRI data for all par-

ticipants were acquired on a Siemens Tim Trio 3T system (Erlangen,

Germany) in supine position, as described previously (Meyer,

Bonaiuto, et al., 2017).

F IGURE 1 Experimental
setup. The experiment consisted
of three phases, on three
consecutive days. In Phase
0, participants were trained on
the CS/US association outside
MEG. Phase 1 (maintenance) and
Phase 2 (extinction) took place
inside an MEG scanner, and were
split into 10 sessions each. CS,
conditioned stimuli; MEG,
magnetoencephalography; US,
unconditioned stimulus [Color
figure can be viewed at
wileyonlinelibrary.com]
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The first protocol was used to generate an accurate image of the

scalp for headcast construction (Meyer, Bonaiuto, et al., 2017). A

radiofrequency (RF) and gradient spoiled T1 weighted three-

dimensional (3D) fast low angle shot (FLASH) sequence was used,

with 1 mm3 resolution (1 mm slice thickness), field-of view 256, 256,

and 192 mm along the phase (A–P), read (H–F), and partition direc-

tions, as in previous high-precision MEG studies (Bonaiuto, Meyer,

2018; Meyer, Bonaiuto, et al., 2017). For this protocol, data were

acquired with a 12-channel head coil. Acquisition time was 3 min 42 s,

plus a 45 s localizer sequence.

The second protocol was a quantitative multiple parameter map-

ping (MPM) protocol, and it was used to extract cortical, amygdalar,

and hippocampal surfaces. This consisted of three differentially

weighted, RF, and gradient spoiled, multiecho 3D FLASH acquisitions,

with whole-brain coverage at 800 μm isotropic resolution, as

described previously (Bonaiuto, Meyer, 2018). For this protocol, data

were acquired with a 32-channel head coil to increase SNR. A T1

image was also acquired from the MPM protocol, with the 32-channel

coil and it was then used to align the MPM volumes to the 1 mm iso-

tropic scan. The flip angle for the T1 weighted acquisition was 21�,

and the field of view was set to 224, 256, and 179 mm along the

phase (A–P), read (H–F), and partition (R–L) directions, respectively

(Bonaiuto, Meyer, et al., 2018). Total acquisition time for all MRI scans

was less than 30 min.

Quantitative maps of proton density (PD), longitudinal relaxation

rate (R1 = 1/T1), magnetization transfer saturation, and effective

transverse relaxation rate (R2* = 1/T2*) were subsequently calculated

according the procedure described in Weiskopf et al. (2013). All quan-

titative maps were coregistered to the scan used to design the

headcast, using the T1 weighted map, and were then used to extract

cortical surface meshes using FreeSurfer (see below).

2.3.1 | Headcast construction

For headcast construction, scalp surfaces were extracted from the

first T1-weighted image using SPM12 (http://www.fil.ion.ucl.ac.uk/

spm/). These were then converted to a standard template library

format, which is suitable for 3D printing, and were combined with a

3D model of the fiducial coils as described previously (Meyer,

Bonaiuto, et al., 2017). This 3D model was placed inside a virtual

version of the scanner dewar helmet, by minimising the sensor-to-

head distance. The resulting head model was 3D printed and placed

inside a replica of the dewar helmet. The headcast was then con-

structed by pouring liquid resin between the 3D head model and

dewar-helmet replica.

2.3.2 | Extraction of cortical and hippocampal
surfaces

To extract cortical and hippocampal surfaces from the MRI data of all

participants, we used FreeSurfer v5.3.0 (Fischl, 2012) as described

previously (Bonaiuto, Meyer, et al., 2018; Bonaiuto, Rossiter, et al.,

2018; Meyer, Rossiter, et al., 2017; Troebinger, Lopez, Lutti,

Bestmann, et al., 2014). In particular, an in-house FreeSurfer surface

reconstruction procedure (Bonaiuto, Meyer, et al., 2018), using the

PD and T1 maps as inputs, was used to extract cortical and hippocam-

pal surfaces for the special case of multiparameter maps, as these

might lead to localised tissue segmentation failures under standard

procedures, because the boundaries between the pial surface, dura

mater, and Cerebrospinal fluid (CSF) show different contrasts in these

images with respect to that assumed within FreeSurfer (Lutti, Dick,

Sereno, & Weiskopf, 2014). Hippocampal surfaces were generated by

extracting isosurfaces, using the isosurface function in MATLAB (ver-

sion 2015A; MathWorks, Natick, MA), from the subcortical segmenta-

tion created by FreeSurfer v5.3.0. downsampling the resulting meshes

by a factor of 10 to match the cortical surface.

2.3.3 | Extraction of amygdalar surfaces

To account for its relative small size, amygdala boundaries were

traced manually as opposed to coarser automated methods. Manual

segmentation of the participants' amygdalae was implemented in

FSLView (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012)

by comparing individual T1-weighted images with schematic illustra-

tions of the anatomical atlas by Mai, Majtanik, and Paxinos (2015), fol-

lowing the protocol described in Bach, Behrens, et al. (2011) and

Abivardi and Bach (2017). Crucially, we used the hippocampus, optical

tract, temporal horn of the lateral ventricle, and sulcus semiannularis

as guiding landmarks to delineate outer amygdala borders, advancing

from posterior to anterior in coronal slices. The resulting masks were

subsequently corrected in sagittal, axial, and one more time in coronal

orientation. Particular care was taken not to include any hippocampal

voxels in the segmentation. In a final step, amygdala masks were auto-

matically smoothed with the SPM functions spm_erode and

spm_dilate (SPM12, [http://www.fil.ion.ucl.ac.uk/spm/software/spm/

]). Both functions use a standard 3 × 3 × 3 binary voxel kernel.

Smoothing was applied to minimise irregular 3D mask shape arising

from the manual segmentation procedure using three planes

(axial/coronal/sagittal), as in our previous work (Abivardi & Bach,

2017; Bach, Behrens, et al., 2011).

The mean volume of the extracted hippocampal volumes across

participants was 3,819 ± 154 mm3 and 3,900 ± 255 mm3 for the left

and right hippocampi, respectively. For the amygdalae, the mean vol-

ume across participants was 975 ± 42.3 mm3 and 980 ± 40.7 mm3 for

the left and right amygdalae, matching closely previous results on a

different group of participants, using the same technique (Abivardi &

Bach, 2017). We subsequently approximated the surface of the hippo-

campi and amygdalae with triangular meshes. The vertex-to-vertex

distance of the extracted meshes, which is indicative of the mesh res-

olution, was matched across participants/regions and was on average

4.52 ± 0.06 mm for cortical meshes, 4.42 ± 0.09 mm for amygdala

and 3.45 ± 0.01 mm for hippocampus. In total, these meshes con-

tained an average number of 8,196; 57; and 480 vertices, for the cor-

tex, amygdala, and hippocampus, respectively.
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2.4 | Acquisition of MEG data

All MEG recordings were performed in a magnetically shielded room,

using a 275-channel Canadian Thin Films system with sup-

erconducting quantum interface device-based axial gradiometers.

Data were acquired with a hardware anti-alias filter of 150 Hz cutoff

frequency and sampling rate of 600 Hz. Prior to entering the scanners,

participant-specific flexible headcasts were placed on participants

heads and head positioning coils were attached inside the headcasts,

at the nasion and left and right auricular sites, using indentations in

the headcast with known MRI-space coordinates. Positioning coils

were used for continuous head localization and anatomical cor-

egistration. CS was displayed through a projector on a screen, posi-

tioned at 0.8 m from the participants' eyes. US was presented to

participants through in-ear pneumatic headphones.

2.5 | Preprocessing of MEG data

We used SPM 12 (Statistical Parametric Mapping; Wellcome Centre

for Human Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/

spm) for analysis of MEG data. Continuous data from each session

were notch filtered around 50 Hz and downsampled to 300 Hz. Peri-

stimulus epochs were extracted from −1 to 4 s poststimulus onset.

Eyeblinks were detected automatically on frontal MEG sensors

(‘MZF01’) and their onset was marked in the MEG files. This relied on

eyeblink artefact rejection utilities implemented in SPM, by filtering

the data at 1–15 Hz, detecting outliers in single-trial data and marking

outliers that exceeded 4 standard deviations of the trial-by-trial data

distribution. Eyeblinks were then visually inspected to ensure their

successful detection. As our analyses did not change qualitatively by

excluding trials with detected eyeblinks, we kept all trials for subse-

quent analyses. Moreover, the relative location of three fiducial coils

(LPA, RPA, and nasion) during each session was extracted to estimate

head movement for all sessions/participants (Supporting Informa-

tion 1).

2.6 | Source localisation

To increase precision in source localization, we constructed anatomi-

cal models for each individual participant, by combining the meshes

that were obtained by segmenting their MRI scans. In particular, for

each participant, we constructed four anatomical models: the first

only contained a cortical mesh and the remaining models a cortical

together with either amygdala or hippocampus mesh, or all three

meshes combined.

To reconstruct neural activity, we used a multiple sparse priors

(MSP) algorithm (Friston et al., 2008), which strives to maximise the

explained variance in the measured data using the minimal number of

sources. MSP has been previously shown to recover simulated data

from deep sources originating in the hippocampus with higher likeli-

hood compared to other inversion schemes, such as beamformers and

minimum norm estimates (Meyer, Rossiter, et al., 2017). We addition-

ally employed an Empirical Bayesian Beamformer (EBB) (Belardinelli,

Ortiz, Barnes, Noppeney, & Preissl, 2012), which effectively weights

an empirical prior distribution of sources—assuming only local

covariance—against a uniform sensor noise distribution and uses the

covariance at sensor level to form a prior of the covariance at source

level (Supporting Information 2). In total, we performed four model

inversions per participant and algorithm, one for each head model.

For both algorithms, we computed source localization using all sin-

gle trials, from both experimental conditions (CS+/−) of the mainte-

nance phase, across the whole anticipatory interval from CS onset, up

to US onset or omission (i.e., 0–3,500 ms post-CS onset) and used a

broadband frequency range of 1–120 Hz. We used the maintenance

phase for model selection, as we expected to have stronger responses

in the hippocampus and amygdala during this phase, compared to the

extinction. We additionally report model selection results for the

extinction phase (Supporting Information 6 and Supplemental

Figure 6). Before inversion, MEG data are decomposed through singu-

lar value decompositions by reducing them to a number of orthogonal

channels (spatial modes) and time points (temporal modes). We kept

the number of spatial and temporal modes constant, and equal to the

default values (N = 120 and 4, respectively). In the inversions, each

single trial contributed to a running average of the sensor level covari-

ance matrix, which was then approximated (through the Bayesian

scheme) with an expanded source level covariance matrix (based on a

mixture of MSP components) plus a sensor level noise term.

For all MSP inversions, we used the same head model, including

meshes for the cortex, hippocampus, and amygdala, but we changed

the way that the source priors are distributed across these meshes. As

we were interested in localising very sparse sources, we only included

100 priors for all inversions and these were distributed

pseudorandomly, such that the exact location of priors on a given

mesh was always randomly set, but their proportion on each mesh

(i.e., cortical, hippocampal, amygdalar), was fixed. The exact total num-

ber of priors in our models is not informative of the underlying neural

processes and thus is of little interest for the present analysis; what is

important is that we kept the number of priors the same for all exam-

ined models, so that all models have the same complexity. Indeed,

inclusion of a higher number of priors (N = 500 priors), did not change

the pattern of results (Supporting Information 5 and Supplemental

Figure 5). Across different models, priors were placed either all on ran-

dom locations on the cortex (for Model C), or were split among ran-

dom locations on the cortex and the bilateral hippocampal (Model H)

(10%) and amygdala (Model A) (10%) meshes, or over all meshes (80%

on the cortex, 10% in the amygdala, and 10% in the hippocampus—

model HA) (see Figure 2 for an overview of all models and patch loca-

tions for one exemplar participant). To ensure convergence of the

MSP algorithm, we implemented an iterative version, by initiating the

set of random patches 16 times and retaining the one that maximised

the Free Energy across iterations (Lopez et al., 2014).

For the EBB algorithm, we used its standard implementation in

SPM12. For each inversion, we estimated as many sources as the total

number of vertices that were included in the head model. These

ranged between 8,196, for the standard cortical only mesh, plus the

additional vertices that would result from amygdala and hippocampal
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meshes, if present. The subcortical meshes were nested inside the

cortical mesh, and for both EBB and MSP inversions, the meshes con-

strain the source locations and orientations to be at the mesh vertices

and normal to the mesh surface (see Section 4 for further details on

how cell morphology and organisation relates to the models).

2.7 | Model selection

In order to select the model that is more likely, given the recorded

MEG data, we approximated model evidence by the negative free

energy (F) as a variational Bayes approximation to model evidence

(Friston, Mattout, Trujillo-Barreto, Ashburner, & Penny, 2007; Lopez

et al., 2014; Meyer, Rossiter, et al., 2017; Troebinger, Lopez, Lutti,

Bestmann, et al., 2014). Like other approximations to model evidence,

free energy provides a tradeoff between model accuracy and model

complexity (accuracy is rewarded, complexity is penalised to minimise

overfitting). F is on the scale of log-likelihood, and higher values

reflect higher model evidence or ability to fit the data with more parsi-

monious models. We considered an F difference between the com-

bined model (cortex + amygdala and/or hippocampus) and cortical

model of 3 (or ~20 times more likely) or more as decisive, in line with

Bayesian conventions (Penny, Stephan, Mechelli, & Friston, 2004).

2.8 | Time–frequency analysis

Having established a winning model based on the task period data

exclusively, we re-estimated the source reconstruction for this model,

but by extending the extracted window to cover also 1 s of baseline

interval, to minimise the influence of potential edge effects. We

extracted the time courses corresponding to the source (per region

and participant) with the maximum estimated current, on average,

across all experimental conditions. We repeated all analyses by con-

sidering the average time course of activity per region across all

sources, and results were qualitatively similar.

For each reconstructed time course, we computed a time–

frequency decomposition using Morlet wavelets, in a temporal win-

dow of −1,000 to 3,500 ms poststimulus onset with 3 ms resolution,

and a frequency window of 1–120 Hz, with 1 Hz resolution, similar as

in a previous study using MEG to reconstruct hippocampal oscillations

(Khemka, Barnes, Dolan, & Bach, 2017). The frequency for the wave-

lets was derived from previous studies using similar paradigms in

rodents (Stujenske et al., 2014), while taking into account the equiva-

lent of rodent theta in humans (Jacobs, 2014).

We performed both exploratory and hypothesis-driven analyses

on the time–frequency decomposed signals, at group and single-

participant level (Supporting Information 3). For the former, we con-

trasted oscillatory power between CS+ and CS− trials, for each time

and frequency point, seeking differences that were time locked to the

CS occurrence. For the latter, we focused on three predefined fre-

quency bands, derived from previous studies of threat conditioning in

rodents (Stujenske et al., 2014) and their homologous bands in

humans (Jacobs, 2014). These were theta (1–8 Hz), low gamma

(30–70 Hz), and high gamma (70–120 Hz). For this part of the analy-

sis, we considered the mean power over the whole poststimulus inter-

val (0–3,500 ms), including evoked and induced oscillatory activity.

2.9 | Phase locking analysis

We assessed patterns of neural synchrony between the hippocampus

and amygdala using the phase lag index (PLI) (Stam, Nolte, &

Daffertshofer, 2007), which quantifies consistent phase differences

between two signals of interest. Compared to other metrics of neural

synchrony, the PLI is less prone to volume conduction confounds

from common sources (Kaplan et al., 2012; Stam et al., 2007) and has

been previously used as an index of neural synchrony between the

hippocampus and other brain areas, using MEG (Guitart-Masip et al.,

2013; Khemka et al., 2017).

We filtered the time series extracted from the hippocampus and

amygdala in the theta frequency band (1–8 Hz) using a fourth-order

bidirectional Butterworth filter. The instantaneous phase φi(t, n) of the

filtered time series for each region (n), time point (t), and trial (i) was

derived using the Hilbert transform. The PLI was calculated using the

formula:

F IGURE 2 Distribution of sparse sources for one exemplar
participant, obtained with four generative models, after multiple
sparse priors optimization. All models contain 100 sources, distributed
either on the cortex (C) only (blue dots), or on the cortex and
hippocampus (H) (grey dots), and/or amygdala (A) (green dots) [Color

figure can be viewed at wileyonlinelibrary.com]
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PLIi =
1
T

XT

t =1

sign φi t,Hð Þ−φi t,Að Þ½ �
�����

�����

where H and A denote time series derived from the hippocampus and

amygdala, respectively. PLI ranges from 0, for no coupling, to 1, for a

constant phase difference across the two time courses of interest,

which is indicative of synchrony.

2.10 | Statistical analysis

We first performed exploratory analyses in all time points and fre-

quency bands, to identify potential time-locked effects of threat con-

ditioning. To this end, we computed post hoc t tests between CS+

and CS− trials, on the logarithm of the power for each time–

frequency bin. Correction for multiple comparisons across time and

frequency was performed at the cluster level, using a random permu-

tation test on the trial labels with 1,000 iterations (Maris &

Oostenveld, 2007).

Additionally, we contrasted differences in power in a priori

defined frequency bands on the single-trial level, using linear mixed

effect (LME) models (package nlme) in R (www.r-project.org; version

3.2). Given our experimental design, we considered three fixed

effects factors: CS (CS±), region (amygdala/hippocampus), and time

(number of blocks). The random effect structure was established

using model selection (Westfall, Nichols, & Yarkoni, 2017)

(Supporting Information 4 for more details). Specifically, we included

into our model, a random intercept and a random region factor over

participants, to account for interparticipant variance. We used the R

model formula:

Power < −1+CS×Time×Region,random= � 1+Regionð Þ jParticipant

The same model but without the factor ‘Region’ was used to test

effects of CS and time on the PLI:

PLI < −1 +CS×Time,random= �1 jParticipant

F IGURE 3 Comparison of generative
models. (a) Free energy (F) increases by
including sparse priors on either the
hippocampal (H) or amygdalar (A) surface
meshes, or both (HA), compared to a

baseline model containing only cortical
sources (C). The solid line displays the
threshold for a significant increase in
F values with respect to Model C
(i.e., ΔF = F–FC), while the dashed line
denotes a significant decrease with
respect to the model with the highest
F value (Model A, i.e., FA-3). For Models A
and HA, there is a significant increase in
model evidence, compared to baseline
Model C (FA–FC = 34.56, FHA–FC = 32.56).
All F values are summed across
participants, as is typically done in a fixed
effects design. (b,c) Change in F values as a
result of displacing the hippocampus and
amygdala meshes along the anterior–
posterior (B), or inferior–superior (C) axes
(depicted to the left of each plot). A
displacement of 3 mm is sufficient to
result in a significant decrease in F. This is
defined as a decrease by more than three
log units with respect to the original model
(solid line). The plots to the left illustrate
the displaced meshes, colour coded
according to the change of F values across
participants. Grey meshes depict the
original MRI-derived locations [Color
figure can be viewed at
wileyonlinelibrary.com]
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When plotting results of LME models (Figures 6b and 7), we addi-

tionally display a linear fit of the mean responses over time, derived

with R function ‘stat_smooth()’, with method = ‘lm’. Results from this

analysis were Bonferroni corrected to account for the multiple com-

parisons across frequency bands.

3 | RESULTS

3.1 | Model comparison

We investigated whether a generative biophysical model allowing

sources in hippocampus and/or amygdala described the MEG data bet-

ter than a model that permitted cortical sources only. This spatial selec-

tivity was encoded in Bayesian priors (Mattout, Phillips, Penny, Rugg, &

Friston, 2006). We reasoned that if the deeper sources are indeed con-

tributing to the measured signal, then including them in our generative

model should better describe the data at the sensor level.

We used two different algorithms for model inversion, MSP,

(Friston et al., 2008), an algorithm which combines and prunes possi-

ble priors in order to maximise the evidence of a model in explaining

the measured data and EBB (Belardinelli et al., 2012), which gener-

ates an empirical prior source level distribution based on the

assumption that sources are predominantly locally covariant. We

compared four different generative models per participant (cortex

only [Model C], cortex and hippocampus [Model H], cortex and

amygdala [Model A], and cortex and both amygdala and hippocam-

pus [Model HA]) (Section 2.6). We found that using MSP, MEG data

were best explained under Model A, followed by model HA

(Figure 3a). The evidence for these two best models was not signifi-

cantly different (FA–FHA = 2.00), but for both models, evidence was

significantly higher than for the baseline Model C, in accordance

with our hypothesis (FA–FC = 34.56, FHA–FC = 32.56). This suggests

that sensor-level MEG data, at 1–120 Hz were significantly better

explained by a generative model including sources in both hippocam-

pus and amygdala, compared to a model with no deep sources, in

turn suggesting that an apparent contribution of deep sources can-

not be explained by confounding cortical sources alone. These

results were largely replicated with a less sparse implementation

of MSP including 500 priors (Supporting Information 5), and with

a different inversion algorithm, EBB (Supporting Information 2).

Moreover, model selection at the group level was in line with model

selection results obtained for single participants, which showed that

adding priors in the hippocampus and/or amygdala resulted in a deci-

sively better model for all but one participants using MSP, and for all

participants with EBB (see Supporting Information 3 for single-

participant analyses).

Next, we evaluated spatial sensitivity to underlying brain anat-

omy, assessing the precision in localisation of deep sources. To

assess this, we displaced the bilateral hippocampal and amygdala

meshes along the anterior–posterior and inferior–superior axes (into

one direction at a time to avoid displacements outside the brain) and

repeated the source reconstruction while keeping the same initial

locations for the sources relative to the mesh (which thus move spa-

tially when the meshes are moved). Results from this analysis

showed that model evidence decreased markedly when the sources

used to explain the data were moved in space (Figure 3b,c). A dis-

placement of 3 mm of the hippocampal/amygdalar mesh was suffi-

cient to result in a significant decrease in model evidence (Figure 3b,

c) which reflects the spatial sensitivity of our approach. This also

suggests that the HA model is not simply explaining unrelated

sources of variance from nearby meso-temporal structures or arte-

facts. We repeated the same analysis with EBB, which resulted in a

similar pattern of results, but a poorer spatial resolution (Supporting

Information 2). From here onwards, we therefore report results

obtained using MSP and the full model, HA.

3.2 | Neural oscillations in the hippocampus and
amygdala are modulated by potential threat

Next, we used model HA obtained with MSP and extracted time

courses of source activity in response to CS+ and CS− from sources

on the hippocampus and amygdala meshes. In determining the source

locations, we collapsed all CS± trials to avoid any circular inference.

For each region and hemisphere, we identified the source with the

highest amplitude for each structure (N = 4 sources per participant:

left and right hippocampus and amygdala), and extracted a single time

course from each of these sources per participant (Figure 4). We used

wavelet transforms to compute time-frequency decompositions for

each individual trial.

F IGURE 4 Overview of hippocampus (grey) and amygdala (green) meshes per participant. Small dots highlight the sources retained by
multiple sparse priors, while large dots highlight the patches with maximum current per region. The total priors (N = 100 priors) in the full model
(HA) were pseudorandomly distributed on the cortex, hippocampus, and amygdala (80/10/10 priors in each region, respectively). The retained
sources provided a global coverage of the hippocampus and amygdala, and were determined iteratively, by maximising F values. Small dots
highlight all the retained sources and larger dots the sources with maximal current per region [Color figure can be viewed at
wileyonlinelibrary.com]
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During the maintenance phase, we observed a significantly lower

power in amygdala oscillations during CS+ compared to CS− presen-

tation (Figure 5; corrected at the cluster level with random permuta-

tion tests, p = .03). This condition difference was particularly

pronounced for slow oscillatory power (≤6 Hz) and was evident from

around 130 ms poststimulus onset up until trial end (Figure 5).

Although a similar decrease in oscillatory power during CS+ was also

observed within the hippocampus, this decrease was not significant

when correcting for multiple comparisons. During the extinction

phase, the power of low frequency oscillations in the amygdala was

lower for CS+ compared to CS− trials, but different from the mainte-

nance phase, this decrease was not significant after correction

(Figure 5).

3.3 | Theta and gamma oscillations during
maintenance and extinction of fear memories

Based on previous studies in threat conditioning (Stujenske et al.,

2014), we had a strong a priori hypothesis that cues predicting safety

versus threat would elicit differential neuronal oscillations in the

hippocampus and amygdala in specific frequency bands, namely, theta

(1–8 Hz in humans) (Jacobs, 2014), low, and high gamma (30–70 and

70–120 Hz, respectively). Consequently, we next focused on these

three frequency bands and averaged oscillatory power per trial across

the frequency band and the whole poststimulus interval, using an

LME model, with fixed effects CS, time, and region. Results were

corrected for the number of frequency bands considered.

During the maintenance phase, oscillatory power in the theta, but

not gamma range, was significantly lower in response to CS+ com-

pared to CS− (Figure 6a, Table 1) in both hippocampus and amygdala,

in line with our initial analysis (Figure 5). We found a similar, albeit

much weaker, difference for the extinction phase (F(1,7984) = 4.68,

puncorr = .03, Table 1, Figure 6a), which missed the Bonferroni-

corrected significance threshold of α = .05/3. During maintenance,

theta power increased for both regions, with a steeper increase for

the hippocampus compared to amygdala, as shown by a time × region

interaction (Table 1).

In contrast, gamma power was not different for CS+/CS− during

maintenance. Low gamma power decreased over time, (Table 1,

Figure 6b), while high gamma power increased in amygdala but not

F IGURE 5 Time–frequency decomposition across participants, for neural responses originating from the hippocampus and amygdala. The
contrast between conditioned stimuli (CS+) and CS− stimuli revealed a sustained reduction in oscillatory power of low oscillations, which is
mostly pronounced in the amygdala during the maintenance phase and lasts over the whole CS presentation. Grey lines in the full frequency
plots to the right highlight time-frequency clusters with significant differences between CS+ and CS− stimuli (unpaired t tests, corrected by
random permutations at the cluster level, p = .03). To account for interindividual differences in the strength of reconstructed oscillations, all
plots are normalised by the maximum single-trial power value within each participant. Plots to the left illustrate the mean power difference
over a smaller frequency range (1–12 Hz) than the ones to the right, for display purposes [Color figure can be viewed at
wileyonlinelibrary.com]
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hippocampus over time (Figure 6). Importantly, these effects of time

are unlikely to reflect fatigue/habituation, because they were much

less pronounced during the extinction phase. The only effect of time

during the extinction phase occurred for the high gamma frequency

band, but this was not significant after correcting for multiple compar-

isons (F(1,7984) = 5.96, puncorr = .02).

3.4 | Neural synchrony between the hippocampus
and amygdala

We next assessed neural synchrony between the hippocampus and

amygdala using the PLI (Stam et al., 2007), in the theta frequency

band. For this analysis, we focused on the theta band, as it typically

underlies threat learning in rodents (Lesting et al., 2013). There was

no main effect of CS on PLI in the maintenance and in the extinction

phase (Table 2). We observed a main effect of time and a significant

time by CS interaction in the theta band during the maintenance

phase (Table 2). Post hoc analyses showed that the PLI for CS+ trials

significantly increased over the time-course of the experiment

(Figure 7, F(1,1960) = 7.49, p = .006), while it did not differ across

time for CS− trials (F(1,1952) = 0.23, p = .63) (Figure 7).

4 | DISCUSSION

We used high-precision MEG in combination with generative models

of participant-specific anatomical information to characterise, for the

first time, amygdala/hippocampal oscillations during human fear con-

ditioning, and to disentangle the underlying neural sources. We

showed that including neural sources in hippocampus and amygdala

explained our data significantly better than an exclusively neocortical

set of sources. Moreover, we showed that these models were highly

sensitive to the underlying single-participant brain anatomy, as dis-

placing these deep structures by only a few millimetres resulted in a

significant drop in model evidence.

Importantly, using high precision MEG recordings, we demon-

strate that theta, but not gamma, oscillations in the hippocampus and

amygdala relate to predicted threat, in accordance with previous

F IGURE 6 Mean oscillatory
power in theta and high gamma
frequency bands for CS+ and
CS−, reconstructed from sources
in the hippocampus (dashed) and
amygdala (full lines). (a) Mean
theta (1–8 Hz) power was higher
for CS−compared to CS+ stimuli,
in both the hippocampus and
amygdala, during maintenance
and extinction phases. In the high
gamma band (70–120 Hz),
oscillatory power was greater in
amygdala than hippocampus,
regardless of condition. (b) Mean
power for each block,
experimental phase and
frequency band. All plots are
normalised by the maximum
single-trial power value within
each participant. Full grey lines
represent a linear fit of the power
values over time. Full results of
the statistical comparison of these
plots are displayed in Table 1.

Single participant results are
displayed in Supporting
Information 3 [Color figure can be
viewed at wileyonlinelibrary.com]
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rodent studies (Seidenbecher et al., 2003; Stujenske et al., 2014).

Notably, however, the direction of the CS+/CS− difference was in the

opposite direction compared to what is observed in rodents, which

we discuss below. In anticipation of an aversive event, theta power in

the hippocampus and amygdala was decreased compared to safety,

while neural synchrony between these two regions increased over

time, as more predictors of threatening events were observed.

Gamma oscillations did not relate to an upcoming threat per se, but

high gamma (70–120 Hz) power in the amygdala increased over trial

repetitions during maintenance, a finding that accords with reports in

rodents (Stujenske et al., 2014). Theta power was lower for CS+ than

CS− also during the extinction phase, at least 24 h after the last US

exposure, although this finding was not significant after correction for

multiple comparisons.

4.1 | High-precision MEG at the single-participant
level

Neuroimaging studies generally rely on a larger number of participants

(N = 20), but include relatively few stimulus repetitions for each of

them (e.g., 116 CS± acquisition and extinction trials in (Lithari et al.,

2015), or 40 CS± acquisition trials in (Chien et al., 2017)). Here, we

opted for a different approach, including few participants (N = 5), but

increasing the precision of single measurements for each one of them

(Meyer, Bonaiuto, et al., 2017; Troebinger, López, Lutti, Bradbury,

et al., 2014), akin to what used in the field of precision functional

mapping (Gordon et al., 2017) and the nonhuman primate literature

(Klavir et al., 2013). As we were interested in fine-grained spatial

information, we built participant-specific generative models, account-

ing explicitly for interindividual differences in brain anatomy. More-

over, we increased the SNR of each single measurement in two ways:

first, we minimised sources of noise due to head movements or cor-

egistration errors by fixing the position of participants' heads during

the MEG data acquisition (Supporting Information 1), using flexible

headcasts (Meyer, Rossiter, et al., 2017; Troebinger, López, Lutti,

Bradbury, et al., 2014); second, the use of headcasts allowed us to

build up large numbers of trials per participant (N = 800 trials) over

separate recording sessions.

Previous studies, based on simulations, have shown the theoreti-

cal potential of this technique to localise neural oscillations from the

hippocampus (Meyer, Rossiter, et al., 2017), and to distinguishT
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TABLE 2 Statistical analysis of the PLI between the hippocampus
and amygdala in theta band, for maintenance and extinction phases

Maintenance Extinction

F(1,3916) p-Value F(1,3990) p-Value

CS 0.08 .77 0.29 .59

Time 2.44 .12 0.07 .79

CS:Time 5.23 .02 0.19 .66

Note. Bold highlights significant results.

Abbreviations: CS, conditioned stimuli; PLI, phase lag index.
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responses originating between deep and superficial cortical layers

(Troebinger, Lopez, Lutti, Bestmann, et al., 2014). However, none of

these studies has confirmed these simulation results in human MEG

data. Here, we built upon previous theoretical work and provided, for

the first time, experimental evidence that subcortical oscillations can

be reconstructed using headcast-based MEG recordings with a spatial

resolution of few millimetres. Moreover, for our main analyses, we

have used LME models, which take full advantage of single-trial repe-

titions and include participants as random effects, instead of requiring

a trial averaging.

We sought to reconstruct oscillatory activity not only from the

hippocampus (Meyer, Rossiter, et al., 2017), but also from the amyg-

dala. Although the amygdala is a small structure, with a volume of

~1 cm3, located relatively far from the sensors (~8–9 cm), its neuronal

density is up to six times higher than the cortex (Dumas et al., 2013;

Pakkenberg & Gundersen, 1997; Schumann & Amaral, 2005). Previous

studies have shown that, because of this elevated neuronal density,

only 0.2–0.3 cm3 of activated current would be sufficient to generate

a magnetic signal that can be captured by MEG sensors, even if the

cells are not pyramidal and not aligned in parallel (Dumas et al., 2011,

2013). Here, we built upon previous studies which have demonstrated

the feasibility of reconstructing activity from the amygdala, in healthy

conditions (Attal et al., 2012; Dumas et al., 2013), or during epileptic

discharges (Pizzo et al., 2019) and show that a model containing

amygdala sources is significantly more likely to describe MEG data at

the sensor level compared to a model with cortical or cortical and hip-

pocampal sources alone, despite identical model complexity.

4.2 | Neural responses in the hippocampus and
amygdala during maintenance and extinction of fear
memories

The neural circuitry of threat conditioning has been well studied in

rodents, with a large literature providing converging evidence that the

amygdala and hippocampus are key structures in differentiating safety

versus threat (Adhikari et al., 2015; Lesting et al., 2013; Narayanan

et al., 2007; Paz et al., 2008; Seidenbecher et al., 2003; Stujenske

et al., 2014). Theta oscillations and neural synchrony are pronounced

in the rodent amygdala and hippocampus during presentation of cues

encoding threat (presentation of CS+ stimuli) (Seidenbecher et al.,

2003; Stujenske et al., 2014) and decrease during states of relative

safety, possibly as a result of high frequency modulatory oscillatory

input from the medial prefrontal cortex (Lesting et al., 2013; Likhtik &

Paz, 2015; Stujenske et al., 2014).

In humans, it has been more difficult to study the role of the

amygdala in acquisition and extinction of fear memories. There is no

meta-analytic evidence that overall hemodynamic responses in amyg-

dala relate to CS+/CS− (Fullana et al., 2015), possibly due to the

sparse distribution of CS+-responsive neurons (Reijmers, Perkins,

Matsuo, & Mayford, 2007) and the large population of neurons that

respond to CS+ absence (Ciocchi et al., 2010). Patterns of evoked

hemodynamic responses have been reported to differ between CS+

and CS− (Bach, Weiskopf, & Dolan, 2011; Staib & Bach, 2018; Visser,

Scholte, Beemsterboer, & Kindt, 2013), in line with rodent optical

imaging findings (Grewe et al., 2017). Beyond the amygdala, anticipa-

tion of aversive stimuli elicits responses across a distributed network

of cortical regions, including the cingulate cortex, insula, dorsolateral

prefrontal cortex, or hypothalamus (Fullana et al., 2015), suggesting

that the neural circuit underlying threat conditioning in humans may

be modulated by cognitive influences and thus have a more complex

architecture than that of rodents (Janak & Tye, 2015).

4.3 | Measuring neural oscillations during threat
conditioning in humans

Despite the large number of hemodynamic studies on threat condi-

tioning in humans, there is still little information about its oscillatory

content and thus its dynamic neural implementation. As in our case,

previous studies investigating evoked amygdala responses using

EEG/MEG (Balderston et al., 2014; Moses et al., 2007) had to deal

with the ill-posed problem of reconstructing source responses from

sensor-level MEG or EEG data, which is amplified by the low SNR of

F IGURE 7 PLI between the
hippocampus and amygdala across
experimental blocks. The PLI showed a
time by CS interaction during the
maintenance phase only (F(1,3916) = 5.23,
p = .02), due to an increase in neural
synchrony in response to CS+ trials over
the time course of the experiment.
Straight lines represent a linear fit of the
PLI over time. CS, conditioned stimuli; PLI,
phase lag index [Color figure can be
viewed at wileyonlinelibrary.com]
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responses originating far from the sensors. To corroborate their con-

clusions, Balderston et al. (2014) analysed the signal from nearby tem-

poral cortex to demonstrate that it has a different structure. This is an

interesting approach, albeit limited to selected regions of interest, and

relying on the same source reconstruction as the extraction of the

amygdala signal in the first place.

Here, we used headcasts to maximise SNR in order to get a pre-

cise estimate of a participant's anatomy with respect to the MEG

sensors (Meyer, Bonaiuto, et al., 2017). Maximal SNR, minimal cor-

egistration error, and the MSP algorithm as used here have been

shown to be optimal in identifying the exclusive contribution of

deep cortical structures (such as the hippocampus) to MEG data

(Meyer, Rossiter, et al., 2017). Although we cannot exclude the pos-

sibility that reconstructed responses from amygdala might be, at

least to some extent, mixed with responses from the hippocampus

(and vice versa), we provide quantitative evidence that explicitly

modelling sources in the amygdala significantly improves the likeli-

hood of observing the recorded MEG data at the sensor level, over

and above modelling cortical or cortical and hippocampal sources.

Importantly, by imposing sparsity, we could refine the spatial pre-

cision of our findings by showing that even displacements of

3 mm are enough to significantly deteriorate the likelihood of our

generative models. This finding is in accordance with recent stud-

ies showing that sparsity is required to extract fine-grained infor-

mation on the underlying sources (Bonaiuto, Rossiter, et al., 2018;

Krishnaswamy et al., 2017).

Our findings largely accord with what previous MEG/EEG studies

have reported for the sensor level or for cortical areas. In these, CS+

presentations have been shown to result in a decrease in the power

of slow oscillations, compared to presentations of CS− (Chien et al.,

2017; Lithari et al., 2016; Moses et al., 2010). This pattern of results

was replicated in our study, where theta power in the hippocampus

and amygdala was significantly lower following presentations of CS+

compared to CS−. This result is the opposite of what rodent studies

have reported (Seidenbecher et al., 2003; Stujenske et al., 2014), and

it has been interpreted as an anticipatory mechanism, which in

humans results in a suppression of ongoing neural activity and higher

excitability in light of an upcoming aversive event (Lithari et al., 2016).

Increase in neural excitability has been previously reported in humans,

in anticipation of predicted stimuli in different sensory modalities and

cortical areas (Langner et al., 2011), and in particular in response to

aversive stimuli (Lithari et al., 2016; Ploghaus et al., 1999). An alterna-

tive interpretation of amygdalar responses in our experimental para-

digm is that the absence of a US in CS− trials acts as a reward, and

thus a higher oscillatory power in response to CS− compared to CS+

could be explained by amygdalar responses in encoding rewards

(Murray, 2007; Peck & Salzman, 2014). Indeed, this interpretation fol-

lows the view that extinction learning is in fact, reward learning

(Janak & Tye, 2015), and that distinct populations of amygdalar neu-

rons contribute to learning and extinction of fear memories (Muller

et al., 2008).

A further difference between our study and the majority of stud-

ies in rodents is that the latter typically preselect those animals who

have successfully learned CS–US associations, as assessed through

behavioural measures, such as measuring the amount of time spent

freezing in response to CS+ compared to CS−, and then splitting ani-

mals according to whether they froze for a higher amount of time for

CS+ versus CS−, likely boosting the significance of findings (Likhtik,

Stujenske, Topiwala, Harris, & Gordon, 2014; Stujenske et al., 2014).

This prior selection singles out effects of successful conditioning, but

relies on heterogeneous criteria for defining which animal was condi-

tioned and which was not. Another major difference is that the US,

we used in this study (i.e., loud sounds) are unlikely to induce the

same degree of aversion and protective responses as electric shocks

in rodents.

As a limitation, our strategy of maximising SNR at the single-

participant level mandated a large number of stimulus repetitions, in

line with typical nonhuman primate electrophysiology but different

from many human and rodent studies, which include more partici-

pants with fewer trial repetitions. We note that there is no evidence

that electrophysiological responses to CS+ and CS− decrease over

time in rodents or humans during fear maintenance after initial over-

training. Equally, a large meta-analysis has not found evidence that

differential hemodynamic responses to CS+ and CS− in humans decay

over time (Fullana et al., 2015). In contrast, the discriminability

between hemodynamic response patterns evoked by CS+ and CS−

has been shown to increase over 160 trials (Bach, Weiskopf, & Dolan,

2011), suggesting that there is no a priori reason to expect that our

results are incomparable to those obtained with fewer trial repetitions

in rodents or humans.

In summary, we use high-precision MEG to show, for the first

time, that the power of theta oscillations in the human hippocampus

and amygdala are decreased in anticipation of upcoming threat com-

pared to safety, while neural synchrony between these two regions

increases as associations between neutral events and upcoming threat

are learnt.
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