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Background: Triple-negative breast cancer (TNBC) is a special subtype of breast
cancer with poor prognosis. DNA damage response (DDR) is one of the hallmarks of
this cancer. However, the association of DDR genes with the prognosis of TNBC is
still unclear.

Methods: We identified differentially expressed genes (DEGs) between normal and
TNBC samples from The Cancer Genome Atlas (TCGA). DDR genes were obtained from
the Molecular Signatures Database through six DDR gene sets. After the expression of
six differential genes were verified by quantitative real-time polymerase chain reaction
(qRT-PCR), we then overlapped the DEGs with DDR genes. Based on univariate
and LASSO Cox regression analyses, a prognostic model was constructed to predict
overall survival (OS). Kaplan–Meier analysis and receiver operating characteristic curve
were used to assess the performance of the prognostic model. Cox regression
analysis was applied to identify independent prognostic factors in TNBC. The Human
Protein Atlas was used to study the immunohistochemical data of six DEGs. The
prognostic model was validated using an independent dataset. Gene Ontology and
the Kyoto Encyclopedia of Genes and Genomes analysis were performed by using
gene set enrichment analysis (GSEA). Single-sample gene set enrichment analysis
was employed to estimate immune cells related to this prognostic model. Finally, we
constructed a transcriptional factor (TF) network and a competing endogenous RNA
regulatory network.

Results: Twenty-three differentially expressed DDR genes were detected between
TNBC and normal samples. The six-gene prognostic model we developed was shown
to be related to OS in TNBC using univariate and LASSO Cox regression analyses.
All the six DEGs were identified as significantly up-regulated in the tumor samples
compared to the normal samples in qRT-PCR. The GSEA analysis indicated that the
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genes in the high-risk group were mainly correlated with leukocyte migration, cytokine
interaction, oxidative phosphorylation, autoimmune diseases, and coagulation cascade.
The mutation data revealed the mutated genes were different. The gene-TF regulatory
network showed that Replication Factor C subunit 4 occupied the dominant position.

Conclusion: We identified six gene markers related to DDR, which can predict
prognosis and serve as an independent biomarker for TNBC patients.

Keywords: DNA damage response, prognostic model, bioinformatics and computational biology, triple-negative
breast cancer, biomarker discovery

INTRODUCTION

Breast cancer is the most common malignancy in women. The
International Agency for Research on Cancer of the World
Health Organization reported that the number of new cases
of breast cancer reached 2.26 million in 2020, and breast
cancer has become the most prevalent malignant tumor in the
world (Sung et al., 2021). Breast cancer is a biologically and
clinically heterogeneous disease with several recognized tissue
and molecular subtypes with different etiologies, risk factors,
treatment responses, and prognoses (Allemani et al., 2018;
Mavaddat et al., 2019; Pashayan et al., 2020). Triple-negative
breast cancer (TNBC) is defined as a type of breast cancer with
negative expression of estrogen (ER), progesterone (PR), and
human epidermal growth factor receptor-2 (HER2; Bianchini
et al., 2016). Compared with other breast cancer subtypes, TNBC
is highly aggressive and has a high rate of early recurrence.
Patients with TNBC usually relapse within 5 years after surgery,
and the overall prognosis is very poor (Emens, 2018). Due to
the lack of ER, PR, and HER2 expression in TNBC tumors,
few therapies targeting specific molecular targets have been able
to significantly improve the prognosis of patients with TNBC
disease, and chemotherapy remains the standard of treatment
of TNBC (Bianchini et al., 2016; Lee et al., 2020). Although
many patients with early-stage TNBC disease are cured by
chemotherapy, the overall median survival with the current
treatment regimen is 13–18 months among those who develop
metastatic disease (André and Zielinski, 2012). Therefore, in
order to improve the prognosis and curative effect of TNBC
patients, it is urgent to obtain new and effective biomarkers.

Abbreviations: AUC, under the ROC curve; BC, breast cancer; BER, base excision
repair; ceRNAs, competing endogenous RNAs; CPF, checkpoint factor; DDR,
DNA damage response; DEGs, differentially expressed genes; DFS, disease-free
survival; EXO1, Exonuclease 1; FA, Fanconi’s anemia; GEO, Gene Expression
Omnibus; GO, Gene Ontology; GSEA, gene set enrichment analysis; HER2, human
epidermal growth factor receptor-2; HRR, homologous recombination repair;
IARC, International Agency for Research on Cancer; KEGG, Kyoto Encyclopedia
of Genes and Genomes; MDSCs, myeloid-derived suppressor cells; MFE, minimal
folding free energy; MMR, Mismatch repair; MSigDB, Molecular Signatures
Database; NER, nucleotide excision repair; NHEJ, non-homologous end ligation;
NPM1, nucleic acid-binding domain of nucleophosmin; OS, overall survival;
PAPRi, poly-ADP-ribose polymerase inhibitor; PR, progesterone; RFC, Replication
Factor C; RMI2, RecQ-mediated genome instability protein 2; ROC, receiver
operating characteristic; SAC, spindle assembly point; SNP, single-nucleotide
polymorphism; ssGSEA, single-sample gene set enrichment analysis; TCGA, the
Cancer Genome Atlas; TF, transcriptional factor; TLS, Translesion Synthesis; TMB,
tumor mutation burden; TNBC, triple-negative breast cancer.

DNA damage response (DDR; Cancer Genome Atlas Research
Network, 2017. Electronic address and Cancer Genome Atlas
Research) pathways are an important mechanism to correct and
repair DNA damage, which can inhibit cell aging, apoptosis, and
carcinogenesis in time and ensure normal life activities (Roos
et al., 2016). DDR consists of eight pathways: (1) mismatch
repair (MMR), (2) base excision repair (BER), (3) nucleotide
excision repair (NER), (4) homologous recombination repair
(HRR), (5) non-homologous end ligation (NHEJ), (6) checkpoint
factor (CPF), (7) Fanconi’s anemia (FA), and (8) variable DNA
synthesis (TLS). The interaction of these pathways can repair
DNA damage accurately and timely, prevent gene distortion,
and ensure the integrity of the genome (Scarbrough et al.,
2016). Recent studies have shown that increasing DNA damage
and reducing the DNA repair ability of cancer cells lead
to genome distortion of cancer cells, but that distinguishing
these cells from normal cells can improve the effectiveness
of cancer treatment (Lawrence et al., 2014). DDR genes
can broaden therapy options for cancer patients by cancer-
driving effects and significance in clinical and translational
medicine (Hu and Guo, 2020). For example, DDR alterations
are independently associated with the therapeutic response to
PD-1/PD-L1 inhibitors and are positively correlated with a
higher tumor mutation burden (Turner et al., 2004; Cerrato
et al., 2016). Poly-ADP-ribose polymerase inhibitor therapy had a
better effect on cancer patients with BRCA1/2 mutations (Faraoni
and Graziani, 2018; Teo et al., 2018). Moreover, many studies
have demonstrated that tumors with deleterious DDR mutations
are more sensitive to platinum-based therapy (Tutt et al., 2018).
Therefore, DDR genes are very important to the prognosis of
patients, but there has yet to be a systematic study of DDR genes
in TNBC.

In this study, we downloaded the sequencing data and DDR
datasets of TNBC patients from The Cancer Genome Atlas
(TCGA) and the Gene Expression Omnibus (GEO) databases and
performed bioinformatics analysis on them to comprehensively
evaluate whether the expression level of DDR-related genes can
predict the prognosis of TNBC patients. The aim of our study
was to identify new potential prognostic markers for TNBC and
establish new prognostic models to assist in the formulation
of diagnosis and treatment strategies. In addition, we stratified
the risk of TNBC patients by establishing a prognostic model,
and then performed more specific treatments on the patients
according to the results of the different risk assessments, so as to
avoid unnecessary active treatments for the patients.
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MATERIALS AND METHODS

Clinical Sample Acquisition
Tumor tissue samples and adjacent normal breast tissue samples
from 10 TNBC patients were obtained from the sample library
of The First Affiliated Hospital of Zhengzhou University, Henan,
China. All the patients had received surgery in The First Affiliated
Hospital of Zhengzhou University and had not received any
anti-cancer treatment before surgery. Tissue specimens were
collected within 30 min after surgery and quickly frozen in liquid
nitrogen. Postoperative monitoring and treatment continued
in accordance with the relevant consensus guidelines. Tumors
were graded according to the WHO grading system. Each
patient’s written informed consent to donate the sample to the
sample bank was required before any sample was collected.
Our research was approved by the Ethics Committee of The
First Affiliated Hospital of Zhengzhou University and was
conducted in accordance with the principles of Declaration of
Helsinki. The age and clinical conditions of each patient, such as
immunohistochemistry, are shown in Supplementary Table 1.

Data Collection and Differential
Expression Analysis
The gene expression data and clinical information of TNBC
patients were acquired from the TCGA database1 and GEO
database2. We collected 99 normal and 113 TNBC samples from
the TCGA database. Differentially expressed genes (DEGs) were
selected using the “limma” package (|log2 (fold change)| > 1,
P < 0.05). We obtained six DDR gene sets that encompassed
several DDRs pathways, including MMR, BER, CPFs, NER, HRR,
FA, and NHEJ, from Molecular Signatures Database (MSigDB)3

and 57 duplicate DDRs were removed. Finally, we collected 154
DDR genes and intersected them with DEGs (DE-DDRs).

Survival Analysis
From a total of 113 TNBC samples, after excluding a TNBC
sample lacking survival data, we used 112 TNBC samples
to construct a prognostic model. Univariate and LASSO Cox
analyses were used to identify prognostic genes that were
significantly associated with OS (overall survival). Univariate
Cox analysis was used to initially identify the potential
prognostic genes (P < 0.2; Kang et al., 2013). Next, we
used the R package “glmnet” for the LASSO Cox regression
analysis to construct the prognostic model for TNBC patients.
The risk score was calculated according to the standardized
expression level of each gene and its corresponding regression
coefficient. The following formula was used: Risk score =
(CoefficientmRNA1 × ExpressionmRNA1) + (CoefficientmRNA2 ×

ExpressionmRNA2) + · · · + (CoefficientmRNAn × Expression
mRNAn). Setting the median risk score of the TCGA database
as the cut-off value, 112 TNBC samples were divided into low-
or high-risk groups. The R package “survival” was performed

1https://portal.gdc.cancer.gov/cart
2https://www.ncbi.nlm.nih.gov/gds
3http://www.gsea-msigdb.org/gsea/msigdb/

to generate the K-M survival curve, and the R package
“survivalROC” was used to generate time-dependent receiver
operating characteristic (ROC) curves to evaluate the predictive
power of the prognostic model. The GSE58812 dataset, which
contained 107 TNBC samples, was used for validation of
the above results. Univariate and multivariate Cox regression
analyses were performed to analyze the independent prognosis
of the six-gene prognostic model. All independent prognostic
factors were used to construct a nomogram to predict the
survival of TNBC patients at 3 and 5 years. In addition, survival
analysis of six prognostic genes was performed separately using
the TCGA database.

RNA Extraction and Quantitative
Real-Time Polymerase Chain Reaction
Total RNA was isolated from 10 paired tissues using Nuclezol LS
RNA Isolation Reagent (ABP Biosciences Inc) according to the
instructions. Then, we quantified the concentration and purity
of the RNA solution using an Ultraviolet spectrophotometer
(Life Real). Briefly, the extracted RNA was reverse-transcribed
to cDNA using the SureScript-First-strand-cDNA-synthesis-kit
(GeneCopoeia) prior to quantitative real-time polymerase chain
reaction (qRT-PCR). QRT-PCR reaction system consisted of 4 µl
of reverse transcription product, 0.5 µl of BlazeTaqTM SYBR R©

Green qPCR Mix 2.0 (GeneCopoeia), 0.5 µl each of forward
and reverse primers, and 3 µl Nuclease-Free Water. PCR was
performed in a Mini Amp Thermal Cycller under the following
conditions: pre-denaturation at 95◦C for 30 s; 40 cycles of
denaturation at 95◦C for 10 s; 40 cycles of annealing at 60◦C
for 20 s; 40 cycles of extension for 20 s. The GAPDH protein
was served as an internal control. RNA levels were calculated
for tumor samples and paired adjacent samples using the 2−1Ct

method. Primer sequences used for qRT-PCR are shown in
Supplementary Table 2.

Gene Set Enrichment Analysis
To better understand the functional pathways of the high- and
low-risk groups, we used GSEA to perform Gene Ontology
(GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses. GSEA was performed by using
clusterProfiler. P < 0.05 was considered statistically significant.

Mutation Analysis
The somatic mutation data of the 112 TNBC samples were
obtained from the TCGA database. We used the “maftools”
tool to comprehensively analyze mutation status in TNBC. The
“somaticInteractions” function in the R package “maftools” was
used to perform a Fisher test on the mutated genes in order to
obtain the interaction relationships between them.

Gene Expression in Pan-Cancer
The expression of six prognostic genes in Pan-Cancer
was analyzed by TIMER 2.04, which integrates multiple
heterogeneous types of data, including gene symbol,
name and location.
4http://timer.cistrome.org/
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Immune Analysis
The enrichment levels of 28 immune signatures in each TNBC
sample were quantified by single-sample gene set enrichment
analysis (ssGSEA) in the R package “GSVA.” Heat maps and
violin plots were drawn to observe the difference in the level of
various immune cell infiltration between the high- and low-risk
groups. Finally, the correlation between 6 genes and 28 immune
signatures was calculated by the Spearman method.

Immunohistochemistry and Protein Level
Validation
The Human Protein Atlas (HPA) provides information on the
tissue and cell distributions of 26,000 human proteins (Uhlén
et al., 2015, Uhlen et al., 2017; Thul et al., 2017). We used the HPA
database to detect the protein expression level of six prognostic
genes by immunohistochemistry (IHC) staining, and obtained
IHC images from the HPA database.

Transcription Factors and ceRNA
Network Construction
The Network analyst database5 is an online visual analysis
platform for gene expression analysis and meta-analysis. In this
study, the Network analyst database was used to search the
transcriptional factors (TFs) related to the hub genes, which refers
to the genes used to construct the prognostic model.

The mRNA-miRNA and miRNA-lncRNA interactions were
predicted by using the miRanda database6. To improve the
reliability of the competing endogenous RNA (ceRNA) network,
we used a binding score > 500 and minimal folding free
energy (MFE) < − 50 for the predicted mRNA-target miRNA
interaction. The screening criteria of miRNA-lncRNA were as
follows: binding score > 4,000 and MFE <− 400.

Statistical Analysis
All analyses were performed using the R software. Univariate
and LASSO Cox regression analyses were used to assess the
relationship between the prognostic model and OS. The Kaplan–
Meier (K–M) method was used to assess survival analysis with a
log-rank test. The ROC curves were used to detect the sensitivity
and specificity of the prognostic model. P < 0.05 was considered
statistically as significant.

RESULTS

Identification of DE-DDRs
Following analysis of the TCGA database using limma, a total of
2,178 DEGs were identified in 113 TNBC and 99 normal samples
(| log2 (fold change)| > 1, P < 0.05). Figure 1A illustrates the 946
up-regulated and 1,232 down-regulated genes using a volcano
plot. As shown by the Venn diagrams in Figure 1B, we selected
23 significant DE-DDRs (the intersection of 154 DDRs and 2,178
DEGs) for subsequent analysis. GO function annotation of the

5http://www.networkanalyst.ca/faces/home.xhtml
6http://www.microrna.org/microrna/home.do

DE-DDRs was performed by the R package. These genes were
mainly enriched in DNA replication, DNA recombination, and
DNA-dependent DNA replication (Figure 1C).

Construction of Prognostic Model in the
TCGA Database
In order to establish a prognostic model, univariate Cox
regression analysis was performed on 23 genes, of which six
genes were significantly associated with the OS of TCGA-TNBC
(Figure 2A). The regression coefficients of these six genes were
calculated via LASSO COX regression analysis (Figure 2B). The
prognostic model achieved the best performance when the six
genes were used (Figure 2C). The formula of the model was:
risk score = (−0.18330185 × expression level of PARP1) +
(0.25938239 × expression level of BRIP1) + (−0.71002582 ×
expression level of RMI2) + (−0.05379813 × expression level
of RFC4) + (−1.01590214 × expression level of EXO1) +
(1.46313437 × expression level of RAD51). According to the
median risk score, 56 of the 112 TNBC samples were classified
into the high-risk group (n = 56), and the remaining 56 samples
were classified into the low-risk group (n = 56; Figure 2D).
Survival analysis indicated that the OS was lower in the high-
risk group than the low-risk group (P < 0.05; Figure 2E). The
time-dependent ROC curves were used to evaluate the prediction
effect of the risk score, and the AUC was 0.821 at 3 years and
0.745 at 5 years (Figure 2F). The relationships between risk score
and clinicopathological features (age, sex, pathological stage, and
TNM stage) are shown in Figure 2G.

Validation of Prognostic Genes Based on
Clinical Samples
Quantitative real-time polymerase chain reaction analysis were
performed to assess the expression levels of the six DEGs that
constructed our prognostic model. Consistent with the results
of the bioinformatics analysis, all DEGs were identified as
significantly up-regulated in the tumor samples compared to the
normal samples (Figure 3). The results of qRT-PCR analysis were
showed in Table 1.

Validation of the Six-Gene Prognostic
Model in the GEO Database
In order to verify the robustness of the prognostic model, we
applied the model to the GEO cohort for external validation.
Patients in the GSE58812 dataset (n = 107) were divided into
a high-risk group (n = 53) and low-risk group (n = 54) using
the formula obtained from TCGA-TNBC cohort (Figure 4A).
Consistent with the TCGA cohort, the survival probability of
high-risk patients was significantly lower than that of low-risk
patients (Figure 4B). As shown in Figure 4C, the AUC of the
ROCs was 0.574 for 3 years and 0.663 for 5 years. Since there were
only three patients with data regarding the 1-year follow-up, we
did not plot the ROC curve of the 1-year follow-up for the TCGA
and GSE58812 datasets. Collectively, these results indicated that
the six-gene prognostic model was robust for survival prediction.
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FIGURE 1 | Bioinformatics analysis of the expression of DE-DDRs. (A) A Volcano plot illustrating the comparison of differential gene expression in tumors vs. normal
tissue. The red dots indicate that the gene expression level is up-regulated (tumor samples relative to normal samples), the blue dots indicate that the gene
expression level is down-regulated (tumor samples relative to normal samples), and the gray dots indicate that there is no significant difference between these genes.
(B) A Venn diagram representation showing the intersection of DDRs and DEGs. (C) The results of the GO annotation of DE-DDRs.

Independent Prognostic Value of the
Six-Gene Prognostic Model
Next, we used univariate and multivariate Cox regression
analyses to evaluate whether the six-gene prognostic model could
serve as an independent predictor for TNBC patients. Univariate
Cox regression analysis showed the variables of tumor stage,
TNM stage, and risk score were significantly associated with
OS (P < 0.05; Figure 5A). Multivariate Cox regression analysis
indicated that N stage, T stage, and risk score were independent
risk factors correlated with OS (P < 0.05; Figure 5B). Moreover,
a nomogram was constructed to predict the possibility of 3-year
and 5-year OS in TNBC patients by integrating the six-gene
prognostic model with other clinicopathological characteristics
(T and N stage). As shown in Figures 5C,D, the nomogram
and calibration curve demonstrated that the six-gene prognostic
model was a valuable indicator for prognostic prediction.

Separate Survival Analysis of the Six
DEGs in TNBC
In TCGA data, we analyzed the effects of the six DEGs on the
OS of TNBC patients, but none of them had significant effect
on the OS (overall survival) of TNBC patients (Supplementary
Figure 1). The results were shown in Supplementary Table 3.

Expression of Six DEGs in 33
Pan-Cancers
Using the TIMER 2.0 database, we analyzed the expression
levels of these six genes at the pan-cancer level, and the
results were as follows: BIRP1, PARP1, and RFC4 were
significantly overexpressed in BRCA (Breast cancer), BLCA
(Bladder Urothelial Carcinoma) and LIHC (Liver hepatocellular
carcinoma) while they were significantly lower expressed in
KICH (Kidney Chromophobe). Compared with normal samples,
EXO1, RMI2, and RAD51 were significantly overexpressed
in most cancer types including BRCA, while RMI2 was
significantly lower expressed in PARD (Prostate adenocarcinoma;
Supplementary Figure 2).

Gene Set Enrichment Analyses
We performed GSEA to identify 672 GO terms and 30 KEGG
pathways associated with the high- and low-risk groups in
the TCGA cohort (P < 0.05). As shown in Figures 6A,B
and Supplementary Table 4, the genes in the high-risk
group were mainly enriched in leukocyte migration, cytokine
interaction with cytokine receptors, oxidative phosphorylation,
autoimmune diseases, and coagulation cascade. The genes in
the low-risk group were mainly enriched in ATPase activity,
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FIGURE 2 | Establishment and evaluation of the prognostic model. (A) The forest plots illustrate univariate Cox analysis of the six genes significantly associated with
OS. (B,C) LASSO coefficient profiles of six genes significantly associated with OS. (D) The Risk curve of the risk model. The risk value of patients increases from left
to right. According to the median value, the samples were divided into high- and low-risk groups. (E) K–M survival curve of the Risk score. In the figure, the ordinate
indicates the survival rate, and the abscissa indicates the total survival time. The red curve represents the high-risk group, and the blue curve represents the low-risk
group. The difference between high- and low-risk groups was 0.0048, indicating a significant difference. (F) The ROC curve used to evaluate the effectiveness of the
risk model. (G) The top of the heat map shows different clinical characteristics, in which the first line denotes the high-low risk grouping, orange represents the
low-risk group samples, and green represents the high-risk group samples. The tree on the left shows the clustering analysis results of different genes from different
samples.
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FIGURE 3 | Results of quantitative real-time PCR (qRT-PCR) validation of six differentially expressed genes (DEGs) in TNBC tumor tissues (TNBC) and adjacent
normal tissues. The expression of each of these six DEGs was significantly increased in tumor tissues (P < 0.0001). Expression levels measured by qRT-PCR
analysis of (A) PARP1. (B) RAD51. (C) EXO1. (D) BRIP1. (E) RMI2. (F) RFC4.

chromatin remodeling, DNA replication, methylation, and cell
cycle (Figures 6C,D and Supplementary Table 5). In summary,
the enrichment analysis revealed potential pathways that could
serve as targets in TNBC treatment.

Clinical Validation of Six Genes in Terms
of Protein Expression
The HPA version 9.07 is a public database with millions
of immunohistochemical images and was used to compare
protein expressions between normal and tumor tissues. Since
BRCA data were not classified according to molecular subtypes

7http://www.proteinatlas.org

in HPA, we analyzed the IHC staining of these six DEGs
in BRCA to verify the expression level of them. We only
found 5 DEGs (BIRP1, PARP1, RFC4, RMI2, and RAD51)
had protein expression data in HPA and the results showed
that the expression levels of BIRP1, PARP1, RFC4, RMI2, and
RAD51 in BRCA tumor tissues were higher than in normal
tissues (Figure 7).

Landscape of Mutation Profiles in
Low-and High-Risk Groups
Since the DDR is closely related to somatic mutations (Tian
et al., 2020), we further explored the mutation status of the
high- and low-risk groups. After analyzing the mutation data,
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TABLE 1 | Results of quantitative real-time PCR (qRT-PCR).

Control TNBC t P

PARP1 1.015 ± 0.103 2.997 ± 1.094 t = 5.410 df = 18 <0.0001

RAD51 1.032 ± 0.162 3.320 ± 0.914 t = 7.394 df = 18 <0.0002

EXO1 1.023 ± 0.1387 4.644 ± 1.065 t = 10.11 df = 18 <0.0003

BRIP1 1.046 ± 0.235 11.875 ± 3.326 t = 9.742 df = 18 <0.0004

RMI2 1.024 ± 0.153 8.855 ± 2.942 t = 7.974 df = 18 <0.0005

RFC4 1.020 ± 0.126 10.503 ± 3.882 t = 7.324 df = 18 <0.0006

FIGURE 4 | Validation of the six-gene prognostic model using the GEO database. (A) The Risk curve of the risk model. The risk value of patients increases from left
to right. According to the median value, the samples were divided into high- and low-risk groups. (B) K–M survival curve of verification set—Risk score. The ordinate
indicates survival rate, and the abscissa indicates total survival time. The red curve represents the high-risk group, and the blue curve represents the low-risk group.
The difference between high- and low-risk groups was significant (0.0012). (C) Validation Set—ROC Curve to evaluate the effectiveness of the risk model.

we found missense mutations accounted for the most mutations
in the high- and low-risk groups. The main variant type
was single-nucleotide polymorphism, with the most common
single nucleotide variants being C > T (Figures 8A,B).
Figures 8C,D show the top 20 most frequently mutated genes
in the high- and low-risk groups with ranked percentages. The
mutation frequency of the two groups was the same (94% vs.
93.75%), while the mutated genes were different. Additionally,
the associations across the top 20 mutated genes are shown

in Supplementary Figures 3A,B, where green represents co-
expression and red represents mutually exclusive relationships.

Immune Status Between Low- and
High-Risk Groups
To further explore the relationship between the six-gene
prognostic model and the immune system, ssGSEA was used to
evaluate the expression profiles of 28 immune signature genomes
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FIGURE 5 | Independent prognostic value of the six-gene prognostic model. (A) Independent prognostic factors as determined by the Univariate Cox regression
analysis. The left side represents the gene, corresponding P value, and HR value. The red square on the right indicates that the HR value is greater than 1, the green
square indicates that the HR value is less than 1, and the line segments on both sides of the square are 95% confidence intervals of the HR value. (B) Independent
prognostic factors as determined by the Multiple Cox regression analysis. (C) The nomogram to predict overall survival was created based on three independent
prognostic factors. Each factor corresponds to a score, and the sum of the total scores of each factor corresponds to the total score. The 1-year, 3-year, and 5-year
survival rate is predicted according to the total score. (D) The correction curve based on the above prediction model. The c-index of the model is 0.902371, and the
corrected c-index is 0.887527.

in the high- and low-risk groups. The heat map in Figure 9A
shows that in the TCGA database, 28 types of immune cells
in the low- and high-risk groups showed a certain degree of
heterogeneity. The violin plot of the 28 immune cells showed
that, as compared with the low-risk group, the content of
memory B cells and T follicular helper cells increased, while the
content of myeloid-derived suppressor cells (MDSCs) decreased
(Figure 9B). We also showed the correlation analysis of six genes
and 28 immune cells (Supplementary Figures 4A,B).

Construction of TF and ceRNA
Regulatory Network
A gene-TF regulatory network was constructed using the
Network Analyst database for the six-gene prognostic model we
developed in this study. As shown in Figure 10A, we were unable
to search for TF related to BRIP1 and PARP1. The constructed
transcriptional regulatory network included 105 interaction pairs
among 4 genes and 87 TFs, of which RFC4 regulated most of the
TF and occupied the dominant position. Finally, we predicted the
target miRNAs of the six-gene prognostic model and lncRNAs

that may be related to miRNAs via the miRanda database. A total
of 271 lncRNA-miRNA-mRNA pairs were obtained, including 94
lncRNAs, 25 miRNAs, and 3 mRNAs (Figure 10B). It is worth
noting that three mRNAs in this ceRNA network including BRIP1
and PARP1, were not found in the Network Analyst database.

DISCUSSION

DNA is the source of genetic information, and maintaining its
integrity is vital to sustaining life. Therefore, cells have evolved
specialized DDR mechanisms to maintain the integrity of the
genome (Malaquin et al., 2015; Wengner et al., 2020). DDR plays
an important role in maintaining homeostasis within the cell
(Goldstein and Kastan, 2015). Cancer cells are characterized by
genomic instability, which is conducive to the accumulation of
driver mutations and the expansion of tumor heterogeneity (Lin
et al., 2019; Hu and Guo, 2020). DDR mechanisms can repair
mutated genes during the early stage of cancer and hinder the
development of tumors (Ali et al., 2017). However, with the
development of cancer, DDRs may cause tumor cells to develop
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FIGURE 6 | Gene set enrichment analysis (GSEA). (A) The top 10 enriched GO pathways in the high-risk group. (B) The top 10 enriched GO pathways in the
low-risk group. (C) The top 10 enriched KEGG pathways in the high-risk group. (D) The top 10 enriched KEGG pathways in the low-risk group.

resistance to cytotoxic drugs (Brandsma et al., 2017; Carusillo
and Mussolino, 2020). The occurrence and development of
cancer are often accompanied by the inactivation of one or
more DDR pathways; however, cancer cells are therefore more
dependent on the remaining DDR pathways than normal cells
(Carusillo and Mussolino, 2020). This phenomenon suggests
that there are potential weaknesses in tumors that can be
targeted by innovative therapies that follow the concept of
synthetic lethality. In the concept of synthetic lethality, two
pathway defects (independently non-toxic) become fatal when
combined (Blackford and Jackson, 2017; Nickoloff et al., 2017;
Pilié et al., 2019; Yap et al., 2019). In this study, we screened
out six prognostic genes from DDR genes, constructed a risk
model based on the bio-analysis of DDR genes, and conducted
immune-related analysis based on the model. Our research

provides a theoretical basis and reference for the diagnosis and
treatment of TNBC.

From the TNBC patient data in the TCGA database, we
obtained 2,178 differential genes and intersected them with DDRs
genes to obtain 23 DE-DDRs. We then constructed a risk model
based on six prognostic genes (PARP1, RAD51, EXO1, BRIP1,
RMI2, and RFC4) using univariate analysis and Lasso analysis
and determined the effectiveness of the risk model by drawing
an ROC curve and a K–M curve. In addition, independent
prognostic analysis of the risk model and verification of the
model based on the GEO dataset confirmed that the risk model
constructed in this study can effectively predict the prognosis of
TNBC. In order to investigate the reasons why the model could
effectively predict the prognosis of TNBC patients, we conducted
enrichment analysis, mutation analysis, and immunocorrelation
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FIGURE 7 | Representative immunohistochemical stains of the six prognostic genes analyzed in the HPA data. (A) BRIP1 protein expression in breast cancer and
normal control samples. (B) PAPR1 protein expression in breast cancer and normal control samples. (C) RAD51 protein expression in breast cancer and normal
control samples. (D) RFC4 protein expression in breast cancer and normal control samples. (E) RMI2 protein expression in breast cancer and normal control
samples.

analysis (immunoinfiltration and immunocorrelation score) on
the high- and low-risk groups defined by the model. We found
that there were certain differences in immunity between the high-
and low-risk groups. Finally, we constructed a TF regulatory
network and ceRNA network based on model gene prediction
and demonstrated the regulatory function of these key genes.

Poly(ADP-ribose) Polymerase-1 (PARP1) is a member of the
PARP family, which has 17 members total and plays a role
in various biological functions, including synthetic lethality,
DNA repair, apoptosis, necrosis, and histone binding. PARP1,
a chromatin-bound nuclear enzyme that is activated by DNA
damage, is a validated therapeutic target for cancers and other
human diseases (Jain and Patel, 2019; Cao et al., 2020). PARP1
can inhibit the expression of PD-L1 on the surface of TNBC

cells by interacting with the nucleic acid-binding domain of
nucleophosmin, thus playing a key role in the tumor-related
immune escape of TNBC (Qin et al., 2020). In our study, we
found that the PARP1 gene correlated positively with eosinophils.

RAD51 is a strand transferase that aggregates into
nucleoprotein filaments on single strands of DNA and promotes
the exchange of DNA strands with undamaged homologous
chromatin (San Filippo et al., 2008). RAD51 is a component of
the cellular DDR, and as such, inhibition of RAD51 sensitizes
cancer cells to DNA-damaging drugs (Tsai et al., 2010; Quiros
et al., 2011). Studies have found that RAD51 can mediate breast
cancer stem cells to develop resistance to PARP inhibitors in
TNBC (Liu et al., 2017). In our study, we found a negative
correlation between the RAD51 gene and immune dense cells.
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FIGURE 8 | Landscape of mutation profiles in the low-and high-risk groups. (A) Overview of mutation types in the high-risk group. (B) Overview of mutation types in
the low-risk group. (C) Waterfall Plot of the top 20 genes with the most mutations in the high-risk group. (D) Waterfall Plot of the top 20 genes with the most
mutations in the low-risk group.

BRIP1, which belongs to the Fanconi anemia (FA) gene family,
was first identified via tandem mass spectrometry through its
physical interaction with BRCA1 (Rutter et al., 2003). BRIP1 is
essential to the stability of the genome, and its normal active
expression is necessary for the repair of DNA interstrand cross-
links (Moyer et al., 2020). Although pathogenic mutations and
a large number of missense mutations in BRIP1 have been
discovered through genetic testing, the impact of these mutations
on the molecular function and subsequent role of BRIP1 in
cancer risk is uncertain (Lu et al., 2015; Easton et al., 2016;
Weber-Lassalle et al., 2018). Studies have found that BRIP1 can
promote the invasion of breast cancer (BC) cells by regulating
the expression of multiple downstream target genes, such as
MGAT5, EPCAM, and CXCL12, especially in the triple-negative
phenotype MDA-MB-231 cell line (Rizeq et al., 2020). In our
study, we found a positive correlation between the BRIP1
gene and monocytes.

Exonuclease 1 (EXO1) is associated with increased levels
of genomic instability in the telomere region, and this
widespread genomic instability can promote cancer progression
(Maciejowski and de Lange, 2017). EXO1 is a therapeutic target
of TNBC that serves an important role in the DDR by inhibiting
the activity of PARP (Quist et al., 2019; Li et al., 2021). In our

study, we found that the EXO1 gene has a positive correlation
with eosinophils.

RecQ-mediated genome instability protein 2 (RMI2) plays a
vital role when the spindle assembly point (Battaglia et al., 2020)
is activated during mitosis (Pradhan et al., 2013). RMI2 is widely
considered to play a crucial role in DNA damage repair. High
expression of RMI2 was confirmed to be associated with the
worse prognosis in pancreatic cancer (Xu et al., 2018) and lung
cancer (Zhan et al., 2020). RMI2 was also reported to act as
a tumor promoter by mediating MYCN/PARP DDR signaling
pathway in neuroendocrine prostate cancer (Zhang et al., 2018).

Human Replication Factor C (RFC) is a polyprotein composed
of five distinct subunits that are highly conserved through
evolution and plays an important role in DNA repair after
DNA damage (Kim and Brill, 2001; Krause et al., 2001). Human
replication factor C subunit 4 (RFC4) is a member of the
RFC family that is often overexpressed in cancer, promoting
tumor progression and resulting in worse survival outcomes
by regulating tumor cell proliferation and cell cycle. RFC4 has
been reported to be overexpressed in a variety of malignancies,
including prostate cancer, cervical cancer, colorectal cancer, and
head and neck squamous cell carcinoma (Slebos et al., 2006;
Narayan et al., 2007; Erdogan et al., 2009; Kang et al., 2009). It can
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FIGURE 9 | Analysis of immune infiltration patterns in breast cancer samples from TCGA dataset via an ssGSEA score-based method. “ns” represents that there is
no significant difference in the infiltration of immune cells between the two samples; “*” represents P < 0.05. (A) Heatmap of ssGSEA scores (red = positive,
blue = negative). (B) Boxplot of ssGSEA scores of the 28 representative gene sets.

promote tumor progression and lead to worse survival outcomes
by regulating cell proliferation and cell cycle arrest in tumors (Yao
and O’Donnell, 2012). In our study, we found that the RFC4 gene
had a positive correlation with type 2 T helper cells and a negative
correlation with mast cells.

Our results demonstrate that further elucidating the functions
of these six DDR-related genes in TNBC may improve our

understanding of the biological basis of breast cancer and provide
new therapeutic targets. The poor prognosis of TNBC seems to
depend on the multi-layered interaction between DNA repair
gene mutations, cell proliferation, and the immune response. By
including prediction-related biological features, such as immune
cells, our six-gene model displayed better predictive value than
previously published immune features.
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FIGURE 10 | Regulatory network of the risk model genes. (A) Transcription factor regulation network diagram. Only four of the six model genes (RAD51, EXO1,
RMI2, and RFC4) predicted the corresponding transcription factors. In the picture, red is the model gene and blue is TF. (B) Transcription factor regulation network
diagram. In the picture, red is the model gene, green is miRNA, and blue is lncRNA. Three model genes, 25 miRNAs, and 94 lncRNAs were screened out.

In this study, the correlation between our six gene markers
related to the DDR and immune characteristics has been
characterized to a certain extent. This model outperforms
the prognostic performance of individual clinicopathological
prognostic factors and published markers of disease-free survival
gene expression, further reinforcing the fact that the immune
response is an important component of TNBC. Analyzing the
function of the six genetic signatures not only helped us to
understand the biological basis of the risk association, but also
aided us in making treatment decisions. The main limitations
of this study are the retrospective nature of the study and the
genes included in the signature were only initially verified by
qRT-PCR. More functional validation will be further verified in
future experiments and prospective studies.

CONCLUSION

We screened and identified six DE-DDRs (PARP1, RAD51,
EXO1, BRIP1, RMI2, and RFC4) as prognostic genes through
comprehensive bioinformatics analysis and constructed a risk
model that can effectively predict the prognosis of TNBC. In
addition, we found that the high- and low risk TNBC groups,
as defined by the model, exhibited differences in immune-
related analysis (immune infiltration, immune-related scores).
The above analysis provides a theoretical basis and reference for
the research and treatment of TNBC.
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