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Mathematical analysis of the influence
of brain metabolism on the BOLD signal
in Alzheimer’s disease
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Abstract

Blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) is a standard clinical tool for the

detection of brain activation. In Alzheimer’s disease (AD), task-related and resting state fMRI have been used to detect

brain dysfunction. It has been shown that the shape of the BOLD response is affected in early AD. To correctly interpret

these changes, the mechanisms responsible for the observed behaviour need to be known. The parameters of the

canonical hemodynamic response function (HRF) commonly used in the analysis of fMRI data have no direct biological

interpretation and cannot be used to answer this question. We here present a model that allows relating AD-specific

changes in the BOLD shape to changes in the underlying energy metabolism. According to our findings, the classic view

that differences in the BOLD shape are only attributed to changes in strength and duration of the stimulus does not hold.

Instead, peak height, peak timing and full width at half maximum are sensitive to changes in the reaction rate of several

metabolic reactions. Our systems-theoretic approach allows the use of patient-specific clinical data to predict dementia-

driven changes in the HRF, which can be used to improve the results of fMRI analyses in AD patients.
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Introduction

Blood oxygen level-dependent functional magnetic res-
onance imaging (BOLD-fMRI) is a standard clinical
tool for the detection of brain activation. The physio-
logical response to stimulation is an increased con-
sumption of oxygen coupled with an increase in blood
flow. The combination of these two effects leads to local
changes in the deoxyhemoglobin concentration in the
brain, which results in a shift of the local magnetic sus-
ceptibility. This dynamic process can be observed using
magnetic resonance imaging.

In Alzheimer’s disease (AD), task-related fMRI has
been used to detect early brain dysfunction.1,2 Already
in 2005, Rombouts et al.3 have shown that peak time
and peak height of the BOLD response are affected in
early AD.

Several studies with AD patients’ brain tissue4–6

have reported changes in the expression levels of
enzymes important for the regulation of glycolysis
and the pentose-phosphate pathway. As the dynamics

of oxygen consumption depends on the complicated
interplay of those transporters and the enzymes that
regulate glycolysis, the pentose phosphate pathway
and mitochondrial respiration, the question arises
whether the observed changes in enzyme expression in
AD can affect the results of BOLD fMRI.

To address this question, we present a mathematical
model of brain energy metabolism, neuronal stimula-
tion and the hemodynamic response. The model
describes the dynamic sequence from neuronal

1ASD Advanced Simulation and Design GmbH, Rostock, Germany
2Department of Systems Biology and Bioinformatics, Rostock University,

Rostock, Germany
3Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research

Centre at Stellenbosch University, Stellenbosch, South Africa

Corresponding author:

Catrin Bludszuweit-Philipp, ASD Advanced Simulation and Design GmbH,

Erich-Schlesinger Str. 50, Rostock 18059, Germany.

Email: catrin.bludszuweit-philipp@asd-online.com

Journal of Cerebral Blood Flow &

Metabolism

2018, Vol. 38(2) 304–316

! Author(s) 2017

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0271678X17693024

journals.sagepub.com/home/jcbfm

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0271678X17693024
journals.sagepub.com/home/jcbfm


stimulation to metabolic and vascular response and pre-
dicts the effect of changes in enzyme activity, flux distri-
bution or metabolite concentration on the BOLD-shape.
Our systems-theoretic approach allows the use of
patient-specific clinical data to predict dementia-driven
changes in the hemodynamic response function (HRF).
We use this model to calculate the sensitivities of peak
height, peak time and full width at half maximum for all
metabolic reactions explicitly considered in the model.
We furthermore simulate different scenarios, including
increased expression of key glycolytic enzymes, increased
expression of enzymes regulating the flux through the
pentose-phosphate pathway and astrocyte hypertrophy.
All scenarios are based on data reported in AD patients.
The resulting BOLD shapes are compared with the
BOLD shapes for the healthy state as predicted by the
model. Our goal here is not to model a clinical situation
but to delineate the individual contributions of chosen
factors to the BOLD signal. Thus, the obtained results
may contribute to a better understanding of data gath-
ered in the clinical setting.

Kinetic modelling of brain metabolism

Mathematical modelling of the brain energy metabol-
ism and the hemodynamic response has been used to
describe the BOLD signal for more than a decade. To
the best of our knowledge, the first work which com-
bined a model of energy metabolism and a description
of the neuronal stimulation was published by Aubert
et al. 2001.7 Their model, derived from a simplified rep-
resentation of erythrocyte glycolysis, includes meta-
bolic and transport reactions as well as a description
of neuronal stimulation via dynamic changes in the
sodium concentration. Aubert and Costalat8,9 subse-
quently refined this model, the most notable steps
being the application to functional neuroimaging8 and
the consideration of neuron-astrocytic interaction.9 The
final model in this series was published in 2007 and used
in vivo and in vitro data to delineate the importance of
both neurons and glia cells in BOLD-fMRI studies.10

Based on these publications, a number of models by
other groups analysed different aspects of brain
energy-metabolism in more detail. Notable works
include the model by Tiveci et al.11 which analysed
the influence of calcium dynamics and the model by
Cloutier et al.,12 which included an explicit description
of neurotransmitter cycling and the glycogen
storage system.

To link these models with functional neuroimaging,
the models in Aubert et al.8–10 and Tiveci et al.11

employ a description of the BOLD response based on
the balloon model developed and popularized in a
series of publications by Richard B. Buxton et al.13–15

All these models can be considered mechanistic

descriptions of the interactions between brain energy
metabolism and neuronal stimulation. This is in stark
contrast to the HRF models used in current clinical
practice, described next.

In clinical functional neuroimaging, the HRF is
modelled in a purely descriptive form. The standard
shape, as implemented in SPM 12,16 is often referred
to as the canonical HRF. It is a linear combination of
two gamma functions �(�). We shall here denote the
time-dependent HRF as hrf(t):

hrf tð Þ ¼

dt
p 3ð Þ

p 1ð Þ
p 3ð Þ � t

p 1ð Þ
p 3ð Þ�1 � e�

dt
p 3ð Þt
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� � �
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�
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The names of the parameters are identical to those in
SPM 12 and are explained in Table 1.

A similar description of the HRF is available for
convolution in the software package FSL17 under the
name double-gamma. There exist several other
approaches to model the hemodynamic response,
including the use of linear combinations of reference
waveforms or the incorporation of the temporal deriva-
tive of the canonical HRF.18 While these approaches
can be used to account for a shift in the onset of the
BOLD response and model region-specific differences,
they do not try to be a representation of the biology.
Instead they provide a phenomenological description of
the observed data. The shape of the canonical HRF
described above, for example, can be adjusted with par-
ameters accounting for a delay of the response and a
delay of the undershoot relative to the onset, dispersion
of response and undershoot, ratio of response to under-
shoot and time of onset, but there is no connection of
these parameters to biological quantities (see Table 1).

Table 1. Parameters of the canonical HRF.

Parameter Meaning

Default

value

p(1) Delay of response relative to onset 6

p(2) Delay of undershoot relative to onset 16

p(3) Dispersion of response 1

p(4) Dispersion of undershoot 1

p(5) Ratio of response to undershoot 6

dt Ratio of scan repeat time and

time resolution

–

Note: Parameters of the canonical hemodynamic response function used

in SPM 12 (using the same notation).
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Owing to the descriptive nature of these parameters,
there is no straightforward way to include information
about a patient’s disease state into phenomenological
models of the hemodynamic response. Instead, changes
in the HRF that result in changes of the observed
BOLD signal are solely attributed to changes in the
neuronal stimulation patterns as described next.

Interpretation of variations in the shape

of the BOLD signal

In the analysis of BOLD fMRI data, the shape of the
BOLD signal is commonly characterized by three par-
ameters: (a) peak height, (b) time-of-peak and (c) full
width at half maximum (FWHM). Because the BOLD
response is modelled as the convolution of a fixed stimu-
lus function with the HRF, changes in the three charac-
teristic parameters are direct consequences of
corresponding changes in the HRF. In the classical inter-
pretation of the HRF shape, changes in its peak height,
time-of-peak and FWHM are attributed to changes in
firing rate, onset latency and duration of neural activity,
respectively.18 Due to this simplified view of the origin of
the HRF, there is no attribution of metabolic influences.
In a situation where the metabolic state of different
patients in a study can be considered identical, this
poses no problem. However, if the metabolic reactions
underlying the hemodynamic response are changing, e.g.
due to different stages of disease progression, these dif-
ferences need to be considered in the evaluation of
BOLD fMRI data. A prominent example for such a
situation is AD, where increases in the activity of differ-
ent enzymes regulating the pentose phosphate pathway
have been observed.5,6 This finding was supported by
Orešič et al.,19 who identified the upregulation of pentose
phosphate pathway in patients progressing to AD.
Mechanistic kinetic modelling of brain energy metabol-
ism provides a tool to include this valuable information
into the analysis of BOLD fMRI data.

Materials and methods

Description of the model

To analyse the influence of alterations in the metabolic
network, we build upon the models by Aubert et al.9

and, Cloutier et al.12 and Heinrich and Schuster.20 As
previous modelling approaches restricted the metabolic
networks to a description of glycolysis, the TCA-cycle
and oxidative phosphorylation only, we extended the
model and included a description of the pentose-
phosphate pathway (PPP) in neurons and astrocytes.

After inclusion of the PPP, the final model consists
of 64 reactions (40 metabolic reactions and 24 transport
reactions) and 65 species. Parameter values listed in the

following section and the tables in this publication are
derived from the literature.9,12,20

The model is deposited in the BioModels data-
base and has been assigned the identifier
MODEL1603240000.21

Compartments and transport reactions. The full model
comprises six compartments: Neurons, astrocytes, the
extracellular space, capillaries, larger blood vessels
(arteries) and veins. The size of the individual compart-
ments is given by their relative amount and is fixed for
neurons (Vn¼ 0.45), astrocytes (Vg¼ 0.25), the extra-
cellular space (Ve¼ 0.2), capillaries (Vc¼ 0.0055) and
arteries (Va¼ 0.0055).8 The size of the venous compart-
ment is described by an ordinary differential equation
derived from the difference between the blood flow into
the veins (Fin) and the blood flow out of the veins (Fout)

dVv

dt
¼ Fin � Fout

with an initial volume of Vv,0¼ 0.02396. At steady
state, Fin is set to a constant value of 0.012 and Fout is
given by

Fout ¼ F0 �
Vv

Vv,0

� �1=�

þ
Vv

Vv,0

� �1=2

�v
1

Vv,0

dVv

dt

 !

with F0¼ 0.012, �¼ 0.5 and �v¼ 2. This equation takes
the viscoelastic properties of the veins into account,
�v being the viscosity parameter, which results in a
post-stimulus undershoot in the BOLD signal.15

Transport reactions govern the exchange of oxygen,
glucose, carbon dioxide, lactate, glutamate and sodium
between the first five compartments (Figure 1).
Transport between the arteries and capillaries is
driven by diffusion and convection. For transport
between capillaries, astrocytes, neurons and the extra-
cellular space facilitated diffusion is assumed for glu-
cose and lactate. Oxygen exchange between capillaries
and neurons as well as between capillaries and astro-
cytes is modelled as simple diffusion according to Fick’s
law. Following the description given in Aubert and
Costalat8 and Vafaee and Gjedde22, the concentration
of intracellular oxygen is coupled to the plasma concen-
tration of oxygen via a Hill relation. All reactions and
the respective parameter values are listed in supplemen-
tary Table 5.

Metabolic pathways

Metabolic reactions for glycolysis, the pentose-phos-
phate pathway and mitochondrial respiration are mod-
elled in neurons and astrocytes (Figure 2). While
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glycolysis and mitochondrial respiration has already
been described in the publications by Aubert et al.9

and Cloutier et al.,12 we applied a more accurate
description of the reactions catalysed by hexokinase
and phosphoglucoisomerase suggested by Heinrich
and Schuster.20 Additionally, our model includes for
the first time a detailed description of the PPP. The
arterial concentrations of glucose, oxygen, lactate and
carbon dioxide and the extracellular sodium concentra-
tion are fixed boundary conditions. All other species
concentrations are governed by rate laws
(Supplementary Table 4).

To include the pentose phosphate pathway, we fol-
lowed an approach developed by Stanford et al.24 This
approach makes use of the common modular rate law25

and is based on data from public databases and
publications to compute initial guesses for the kinetic
parameters. To parameterise the equations of the pen-
tose-phosphate pathway in our model, we collected
data from SabioRK,26 eQuilibrator27 and public avail-
able models where applicable. To achieve a thermo-
dynamically meaningful parameterization based on
these data, the collected values needed to be harmo-
nized. Parameter balancing is a statistical method
to infer model parameters based on experimental data

measured under inconsistent experimental conditions
such as temperature and pH value.28 We used the imple-
mentation available on the semanticSBML website with
the input values listed in supplementary Table 1.

For species which take part in the glycolytic and the
pentose-phosphate branch, the initial concentration
was set to the steady state concentration of the respect-
ive species in the glycolysis only model. As an initial
guess for species concentrations exclusive to the PPP,
we used the arithmetic mean of the concentration of the
metabolic species already contained in the original
model. After parameter balancing, we applied enzyme
rescaling to achieve a physiologically meaningful flux
distribution between the glycolytic branch and the pen-
tose-phosphate branch. The only exception from this
procedure was the calibration of the NADPH oxidase,
which constitutes the single source of NADP in the
model. As this reaction is a housekeeping reaction to
guarantee the availability of NADP, it is basically a
proxy for all other NADP sources not considered in
the model. To account for this special case, we chose
simple mass action kinetics for this reaction and set
the rate constant k for NADPH oxidase in neurons
and astrocytes to 1 before enzyme rescaling.
Enzyme rescaling is described in detail in Kholodenko

Figure 1. Overview of the transport reactions considered in the model. All reactions are reversible. For glucose (Glc), lactate (Lac),

oxygen (O2) and carbon dioxide (CO2) the arrows indicate the direction of flux at steady state. For glutamate (Glu) and sodium

(Naþ) the arrows indicate the flux after stimulation. The notation follows the Systems Biology Graphical Notation (SBGN).23
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et al.29. The amount of flux through the PPP in healthy
steady state is set to about 6%of the total flux, a value
taken from Holzhütter,30 which is close to experimental
findings for the flux distribution in adult brain tissue.31

The full equations for the metabolic model are listed in
supplementary Tables 2 and 3. In the absence of stimu-
lation, the model shows a steady state behaviour with
species concentrations in line with the values described
in the data available.

Stimulation

Neuronal stimulation is described as a combination of
(a) release of glutamate from neurons into the extracel-
lular space coupled with an influx of sodium from the
extracellular space to the neurons, (b) an increase in the
cerebral blood flow. The description of the increase in
sodium influx follows an approach taken by Aubert
and Costalat8 The stimulation is described as the sum
of a constant term and a gamma function

vstim tð Þ ¼ v1 þ v2
t� t0
�stim

e� t�t0ð Þ=�stim

where v1¼ 0.041, v2¼ 1.44, t0¼ 200 and �stim¼ 2.12 This
setup is in line with the notion of habituation of neuronal
activity and can be mapped to time courses of local field
potential published by Logothetis et al.32 A time course
of the sodium influx is depicted in Figure 3, panel (a).
The increase in neuronal sodium is coupled to the
increase in extracellular glutamate which initiates the
neurotransmitter cycling (see supplementary Table 5).

(a) The increase in blood flow is described as a bistable
switch

fCBF ¼ �F �
1

1þ ea t� t0þt1��ð Þð Þ
�

1

1þ ea t� t0þt1þtendþ�ð Þð Þ

� �

where �F¼ 0.42, a¼� 4.59186, t0¼ 200, t1¼ 2,
tend¼ 40 and �¼ 3, which is in line with the description
in Cloutier et al.12 The increased blood flow influences
the size of the venous compartment via F in¼F0þ fCBF

(equation (2)). The resulting venous volume is depicted
in Figure 3, panel (b).

The increase in neuronal sodium as a result of the
stimulation and the increase in astrocytic sodium
in response to glutamate uptake drive the sodium
exchange system away from their steady state solution.
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Figure 2. Metabolic processes considered in astrocytes. The same metabolic reactions are considered in neurons. Nodes inside the

dashed box present the pentose phosphate pathway, not considered in previous models of brain energy metabolism. In addition to the

species already depicted in Figure 1, the following species are shown: glucose 6-phosphate (G6P), fructose 6-phosphate (F6P),

glyceraldehyde 3-phosphate (GAP), phosphoenolpyruvate (PEP), pyruvic acid (PYR), creatine (Cr), phosphocreatine (PCr), 6-phospho

gluconolactone (G6L), 6-phospho lactonate (P6G), ribulose 5-phosphate (Ru5P), ribose 5-phosphate (R5P), xylulose 5-phosphate

(X5P), erythrose 4-phosphate (E4P), sedoheptulose 7-phosphate (S7P), adenosin triphosphate (ATP), adenosin diphosphate (ADP),

adenosine monophosphate (AMP), NAD, NADH, NADP and NADPH. The notation follows the Systems Biology Graphical Notation

(SBGN).23
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This leads to an activation of the sodium pumps which
transport sodium from neurons and astrocytes towards
the extracellular space, thereby consuming ATP. The
ATP pool is subsequently replenished by an increased
activity of the metabolic network, which leads to con-
centration changes of capillary oxygen, visible in the
dynamic profile of dHb (Supplementary Figure 1).

The time evolution of the dHb concentration is gov-
erned by the following equation which describes its
dependency on arterial and capillary oxygen
concentration

d dHb

dt
¼ Fin O2a � 2 O2c �O2að Þð Þ �

Fout � dHb

Vv

where Fin describing the flow into the venous compart-
ment, Fout the outflow of the venous compartment and
Vv the venous volume.

BOLD response

The BOLD response is calculated in dependence of
the venous volume and the change in deoxygenated

hemoglobin (dHb) with the following equation

BOLD ¼ Vv,o � 7� 1�
dHb

dHb0

� �
þ 2�

1� dHb
dHb0

Vv

Vv,0

þ 2� E0 � 0:2ð Þ þ 1�
Vv

Vv,0

� �

which is taken from Friston et al.33 This equation has
been used in a mathematical model of brain energy
metabolism before.7 The resulting shape (Figure 3(c))
compares well to the shape reported in other modelling
studies.7,9,10

Model analysis

The purpose of our model is the analysis of the effect
of changes in enzyme activity and transporter activity
on the shape of the BOLD-response. Although we
are aware that a number of different metabolic
changes has been implicated to AD, we concentrate
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our analysis on the following published experimental
findings:

The activity of the pentose-phosphate pathway is increased

in AD. In the publication by Russel et al.6 an upregula-
tion of neuronal glucose-6-phosphate dehydrogenase
was observed. The authors concluded that the observed
increase in PPP activity is consistent with an ‘attempted
reductive compensation to oxidative stress’. In the
paper by Palmer,5 a significant increase in glucose-6-
phosphate dehydrogenase and 6-phosphogluconate
dehydrogenase in the inferior temporal cortex of AD
patients is described. The authors use this observation
to suggest a ‘state of oxidative stress in the AD brain’.
The question whether the upregulation of the PPP is
actually a result of increased oxidative damage is out-
side the scope of our analysis.

The activity of pyruvate kinase, lactate dehydrogenase and

phosphofructokinase is increased in several brain regions in

AD. Bigl et al.4,33 published a series of articles reporting
increased levels of phosphofructokinase (PFK) pyru-
vate kinase (PK) and lactate dehydrogenase. An
increased activity of PFK in the frontal and temporal
cortex of AD patients compared to a control group was
reported. In the same study, no change in the activity of
aldolase was found.34 In 1999, the same group of
authors analysed the activity of other glycolytic
enzymes, including hexokinase, PK and lactate
dehydrogenase. In this study, significantly increased
levels of lactate dehydrogenase in the basal forebrain
and the frontal cortex as well as significantly increased
levels of PK in the frontal cortex are reported. While
the values of enzyme activity are only given as bars
inside of figures, the increase can be estimated to be
about 20% in both enzymes. For hexokinase, no sig-
nificant change could be established.4

Astrocyte hyperplasia and hypertrophy have been reported in

AD patients. Immunochemical studies of activated astro-
cytes in hippocampus and enthorinal cortex have
shown an increased number of GFAP positive astro-
cytes.35 Similar results were published by Robinson,36

who reported a 1.4-fold increase in astrocytic density in
AD patients compared to controls, and Vijayan et al.,37

who found a general increase in the number of astro-
cytes. Recent evidence suggests, however, that the
observed changes in the number of astrocytes are not
due to increased proliferation, but are a consequence of
phenotypic changes.38 This would be in line with sev-
eral reports of astrocytic hypertrophy as a consequence
of reactive astrogliosis in AD.39,40 Regardless of the
underlying phenomena, both hyperplasia and hypertro-
phy result in an increased astrocytic volume fraction in
the observed voxel.

As described above, changes in the BOLD-response
are typically attributed to changes not directly related
to brain energy metabolism. Our goal was to elucidate
how the different changes in metabolism and transport
described above would affect the parameters of the
BOLD response. To answer this question, we under-
took a two-step analysis of our kinetic model. In a
first step, we use sensitivity analysis to quantify the
effect of changes in the models parameters to the
three main shape parameters of the BOLD response:
time-of-peak, peak height and full width at half max-
imum. In a second step, we created scenarios that
model the situation described above, analysing the
impact of several simultaneous changes to the models
parameters on the BOLD shape.

Sensitivity analysis of the three shape parameters of
the BOLD-response was performed using Copasi V4.18
for t¼ 0 to t¼ 215s using 2,150,000 time steps (i.e.
�t¼ 0.0001).36 The chosen time frame guarantees that
peak time, peak height and full width at half maximum
can be calculated from the sample. For the calculation
of peak time and FWHM, the default numerical preci-
sion of the ODE solver (relTol¼ 1e-06, absTol¼ 1e-12)
was used, whereas for the calculation of peak time, a
precision of the chosen �t was achieved. Scaled sensi-
tivities were subsequently calculated with Matlab
R2011b (The Mathworks, Natick, MA) according to
the following formula

S xð Þ ¼
@f xð Þ

@x
�

f xþ�xð Þ � f xð Þ

�x
�

x

f ðxÞ

where x is the cause (e.g. enzyme concentration) and
f(x) is the effect (e.g. peak height). For �x, the default
setting of Copasi V4.18 was used (�x¼ 0.001 � x). This
formula provides a simple method for computing the
finite difference approximation of the derivative and
has been proven to yield robust results.37

Analysing the influence of metabolic alterations on the BOLD

shape. To measure the influence of experimentally
observed changes in enzyme expression as described
above, we set the values for the enzyme concentration
as reported in the specific publication. The following
scenarios are considered, for which the arguments
were provided above:

(1) Healthy state: This is the model with all parameters
unchanged.

(2) PPP activation: According to the experimental find-
ings, the enzyme level for ZWF was increased to
162%and the enzyme level of GND to 126%. The
rate constant of the NADPH oxidase was also
increased by 162% to model the hypothesized
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increased demand for NADPH in the antioxidant
defence system.

(3) Glycolysis activation: The enzyme activity of lactate
dehydrogenase (LDH), PK and PFK was increased
to 120% of its original value in neurons and
astrocytes.

(4) Increased astrocytic volume: To model the increase
in the share of brain volume occupied by astrocytes,
independently of the underlying mechanism, the
relative amount of astrocytes in the model was
increased from 0.25 to 0.3, while the relative
amount of the extracellular space was reduced
from 0.2 to 0.15 of the total volume, so that the
total volume remains unchanged.

Each scenario was simulated and the resulting shift
in the flux distribution and the value of the three

characteristic shape parameters of the BOLD response
were calculated.

Results

We describe here the results of the analyses in the same
order as above, including sensitivity analysis, the ana-
lysis of the different scenarios and of the influence of
changes in blood glucose levels.

Sensitivity analysis

Sensitivity analysis of the three main characteristics of
the BOLD response was conducted for the model par-
ameters which describe enzyme concentrations. The
results, depicted in Figures 4 and 5, indicate that all
three characteristics: peak height, full width at half
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in the neuronal reactions evoke overall higher responses compared to changes in astrocytic reactions.
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maximum and peak timing are sensitive to changes
in the reaction rate of reactions both from the glyco-
lytic and the PPP branch. In the glycolytic branch
(Figure 4), the three characteristics are most sensitive
to changes in the reactions HK, PGI forward, PGI
backward and PFK. The latter three are the glycolytic
reactions with direct connections to the pentose-
phosphate pathway. Positive sensitivities in the neur-
onal reactions HK, PGI forward and PFK for peak
height and FWHM correspond to negligible sensitiv-
ities of peak time in these reactions. In astrocytes, the
positive sensitivity of the peak height in HK and PGI
forward is coupled to a negative sensitivity in full
width at half maximum for these reactions. While
for most reactions, the effect of changes in neurons
is more pronounced than in astrocytes, the opposite
is true for LDH. Full width at half maximum is the
parameter with the most pronounced sensitivity to
changes in the glycolytic reactions overall. In the

pentose-phosphate pathway, the sensitivities of
FWHM are again larger than the sensitivities in
peak height. For peak time, all non-negative sensitiv-
ities are identical, indicating that the difference is iden-
tical to the chosen �t with which the peak timing was
calculated. With the exception of RKI in astrocytes
and TKL-2 and TAL in neurons, positive sensitivities
for peak height correspond to negative sensitivities in
FWHM.

Increased activity of ZWF and GND – PPP
activation scenario

Altering the enzyme concentration for the reactions
ZWF and GND according to the observations in
Palmer5 led only to a slightly decreased BOLD peak
height and full width at half maximum: less than
0.05% in peak height and FWHM. This result was
expected, as according to prior sensitivity analysis,
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the sensitivities of the shape parameters to changes in
the PPP are minute.

Increased activity of PFK, LDH and PK – Glycolysis
activation scenario

Increasing the concentration of PFK, lactate dehydro-
genase and PK by 20% lead to an decrease in peak
height by 0.84%, an decrease in peak time by 0.07%
and a decrease in FWHM by 5.9%. The alteration in
the shape of the BOLD response is more pronounced
than the alteration in the PPP activation scenario, but
the impact is still small, especially for peak height and
peak time.

Astrocytic hypertrophy or hyperplasia – Increased
astrocytic volume scenario

Increasing the astrocytic volume led to a decrease in the
peak height by 2.38%, a reduction in peak time by
0.1% and a decrease in FWHM by 14% (Figure 6).

Discussion

Summarizing the different results described above, we
derive the following main conclusions:

(1) Our extended mathematical model allows an inves-
tigation of the effect of metabolic alterations
reported in AD brains on the BOLD shape.
BOLD-fMRI imaging relies on a suitable model
of the underlying hemodynamic response. Using a
mathematical model of brain energy metabolism,
neuronal stimulation and venous volume change,
we are able to demonstrate how various reported
changes in brain metabolism influence the three

important parameters of the BOLD shape. In our
model, the BOLD response is not calculated as the
convolution of a HRF with a fixed stimulus pattern,
but instead directly calculated from a mathematical
description of the underlying metabolic network
and the hemodynamic response to a simulated
stimulation. This allows us to relate the observed
changes in the BOLD shape parameters to changes
in the dynamics of the metabolic reaction network.
An advantage of our approach is that our model
allows a simultaneous assessment of the influences
on the shape of the BOLD response, such as
changes in the flux distribution between the main
glycolytic branch and the PPP, changes in expres-
sion of glycolytic enzymes and changes resulting
from astrocytosis.

(2) The shape of the BOLD response is sensitive to
changes in the metabolic network. The sensitivity
analysis revealed that the three characteristic prop-
erties of the BOLD signal, peak height, peak timing
and full width at half maximum are sensitive to
changes in the reaction rate of several reactions.
While the calculated sensitivities are small, they
are not negligible because they appear consistently.
The classic view that changes in the BOLD shape
are only attributed to changes in strength and dur-
ation of the stimulus does not hold. Contrary to
what is suggested in Rombouts et al.,3 the peak
timing is least sensitive to changes in the metabolic
network. It is instead the FWHM which is most
sensitive to these changes.

(3) Reported changes in enzyme activity have only
small influence on the BOLD shape. The analysis
of the literature-derived scenarios revealed that the
reported changes in enzyme activity have only a
small influence on the simulated BOLD shape.
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The PPP activation scenario, which analysed the
impact of an increase activity of the pentose-
phosphate pathway, resulted in a BOLD shape
that can for practical purposes be considered iden-
tical to the healthy state. The glycolysis activation
scenario, which assumes increased levels of PFK,
PK and lactate dehydrogenase, decreased the
BOLD shape by less than 1% and reduced the
FWHM by about 2%. While these changes seem
negligible, one important aspect of these findings
is that all changes in enzyme expression, which
have been reported in the literature and are ana-
lysed here, resulted in lower values for peak
height, peak time and FWHM. This is in line with
the observation of a decrease in the BOLD
response, reported for example in the cortex of a
rat model of Alzheimer’s disease.38 More import-
antly, is has been suggested that the increased
enzyme levels observed in the glycolytic and the
pentose-phosphate pathway can be taken as a
proxy for changes in the ratio of neurons and glia
cells.4 If this is the case, their impact on the BOLD
shape may be much higher than our initial analysis
suggests, as discussed below.

(4) Astrocytosis influences the BOLD shape. The scen-
ario with the most pronounced influence on the
BOLD shape models the impact of astrocytic
hypertrophy or hyperplasia, an important feature
of AD neuropathology. The analysis presented
above shows that such changes in the voxel com-
position exercise much more control on the
resulting BOLD shape than changes in enzyme
concentration alone. This result indicates that the
close interaction between neurons and astrocytes in
the regulation of brain energy metabolism might be a
decisive factor for the shape of the BOLD response.
Given that the observed changes were reported for
the hippocampus and the inferior temporal cortex,
two regions affected early and extensively in AD, this
might be the most relevant result of this study.

The results presented above have been obtained by
in-silico experiments, which allow to fix most of the
observables and thereby focus on the contribution of
individual changing parameters. Our model serves the
particular purpose to quantify the contribution of indi-
vidual metabolic reactions in an otherwise unchanged
environment. Our analysis therefore complements the
clinical analysis of the BOLD response, in which many
other aspects, such as stimulation-induced changes in
ionic currents and vascular properties might be affected
as well. Mathematical modelling, on the other hand, is
a suitable tool to delineate the individual contributions
and thereby increase the understanding of complex
dynamic phenomena.

While our model represents an important step
towards a comprehensive model of brain energy metab-
olism and the vascular response, two important aspects,
which have been also absent in previous models, are not
included. The neurovascular coupling in our model is
currently realized via time-dependent changes in both
metabolism and blood flow. While this is current prac-
tice, we expect that models that can include this con-
nection might be able to shed more light on
the connections between metabolic activity and the
BOLD response. The second aspect, which has the
potential to increase the accuracy of the results,
is the mechanistic coupling of mitochondrial activity
and the production of reactive oxygen species (ROS)
with the demand of NADPH. While there exist several
publications modelling the production of ROS in the
mitochondria, the current state of the art does not
allow an inclusion of these models into the model pre-
sented here. This is due to the complex nature of the
electron transport chain, the main source of ROS, and
the lack of time-series data of this process. The avail-
able models restrict their analysis to the steady state
behaviour41,42 or use a rule-driven modelling approach
to circumvent the difficulties associated with the com-
plexity of kinetic models.43 We restricted ourselves
therefore to mimicking the increase in NADPH
demand by variations in the NADPH oxidase reaction.
Finally, a feature of the model that might need further
attention in future studies is the glutamate-glutamine
cycle. In the model presented here, we used the
approach chosen by Cloutier et al.,12 i.e. a simplified
description of glutamate shuttling coupled to sodium
exchange. Using this approach, it is possible to couple
energy requirements in neurons and astrocytes and
thereby analyse the close interaction of the different
cell types. However, there is increasing evidence that
the parameters chosen by Cloutier et al.12 need to be
reconsidered. In particular, DiNuzzo et al.44 very
recently reported a higher ratio of Naþ /glutamate
and argued that potassium instead of glutamate might
be the decisive factor of metabolic coupling of neurons
and astrocytes.

To use our model in the clinical analysis of BOLD
fMRI data, the differences in peak height, peak timing
and FWHM need to be expressed in terms of parameter
adjustments of the HRF supplied by the image analysis
software. Our results indicate that not only the peak
height, and to a smaller extent also peak timing, of
the hemodynamic response are affected in Alzheimer’s
disease. Instead, it is its width that is most sensitive to
changes in the metabolic network. Comprehensive
mathematical models of brain energy metabolism
such as the one presented here can play an important
role in the creation of personalised and disease-specific
HRFs. The current state of the art allows accounting
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for the individual variability of the concentration of
blood metabolites such as glucose and oxygen. Future
models, however, may also offer the possibility to
include information about differences in vascular deter-
minants of the HRF such as arterial compliance. While
these results need clinical validation, they offer a poten-
tial path towards future disease-specific HRFs.
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the coupling between brain electrical activity and metab-

olism. Acta Biotheor 2001; 49: 301–326.
8. Aubert A and Costalat R. A Model of the coupling

between brain electrical activity, metabolism, and hemo-

dynamics: Application to the interpretation of functional
neuroimaging. Neuroimage 2002; 17: 1162–1181.

9. Aubert A and Costalat R. Interaction between astrocytes

and neurons studied using a mathematical model of com-
partmentalized energy metabolism. J Cereb Blood Flow
Metab 2005; 25: 1476–1490.

10. Aubert A, Pellerin L, Magistretti PJ, et al. A coherent
neurobiological framework for functional neuroimaging
provided by a model integrating compartmentalized
energy metabolism. Proc Natl Acad Sci 2007; 104:

4188–4193.
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