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Since COVID-19 is a global health emergency, any hy-
pothesis that can explain the course and complications of 
this disease, and lead to a more focused treatment and 
self-limiting progression of the infection, should be put 
forward. A whole series of symptoms and features related 
to this disease have emerged from reports including fever, 
cough, myalgia, sore throat, dyspnea, headache, lympho-
penia, and acute respiratory distress syndrome (ARDS), 
but also acute cardiac and kidney injury, secondary infec-
tion, shock [1], vasculitis, thrombosis, and disseminated 
intravascular coagulation. In some patients, significant 
levels of antiphospholipid antibodies have been found 
[2], which, in association with extremely elevated proin-
flammatory cytokines, are probably responsible for the 
worst course and outcome, and have led to the current 
ongoing trials on biological drugs against IL-1 receptor, 
IL-6, and IL-6 receptor, among others [3]. Fibrosis is 
present in the lungs of severely affected patients [4]. Am-
yloidosis and thrombosis have been reported by col-
leagues as present in autoptic specimens but have not yet 
been reported in the literature. 

Patients with obesity are at an increased risk of devel-
oping COVID-19 [5, 6], possibly aggravated further by 
the presence of nonalcoholic fatty liver disease [6]. Obe-

sity is also characterized by low-grade chronic inflamma-
tion.

High mobility group box-1 (HMGB1) is a chromatin-
linked, nonhistomic, small protein with cytokine activity 
that has nuclear, cytosolic, and extracellular actions. It 
binds to chromosomal DNA but also to Toll-like receptor 
3 (TLR3), TLR4, and the receptor for advanced glycation 
end products (RAGE) that activates nuclear factor (NF)-
κB (Fig. 1a), which mediate the upregulation of leukocyte 
adhesion molecules as well as the production of proin-
flammatory cytokines and angiogenic factors that pro-
mote inflammation. HMGB1 was initially known as alar-
min and is a well-recognized damage-associated molecu-
lar pattern (DAMP) protein. 

HMGB1 has been extensively studied within the field 
of endocrinology as it is clearly involved with obesity [7], 
insulin resistance, and diabetes [8], and more recently 
polycystic ovary disease [9], another condition character-
ized by low-grade chronic inflammation (Fig. 1b).

Interestingly, it has been recognized that HMGB1 reg-
ulates autophagy [10] and could potentially be a biomark-
er of acute lung injury [11]. Autophagy is one of the 
mechanisms involved in COVID-19 and is involved in 
viral entry and replication in cells, so targeting this pro-
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cess has been suggested as a possible novel therapeutic 
strategy for COVID-19 [12]. 

Furthermore, HMGB1 expression is increased in 
thrombosis-related diseases [13, 14], and has been stud-
ied in alveolar epithelial cells [14]. Finally, HMGB1, via 
RAGE, mediates sepsis-triggered amyloid-β accumula-
tion in diseases of the central nervous system associated 
with impaired cognitive function, e.g., neurodegenerative 
diseases [15]. 

Most interestingly, HMGB1 gene polymorphisms are 
associated with hypertension in the Han Chinese popula-
tion [16], which also suggests that it could be implicated 
in the outcome and course of COVID-19 in some indi-
viduals.

It is now well known that SARS-CoV2 requires angio-
tensin-converting enzyme (ACE) II receptors for viral 
entry and replication [17]. Kuba et al. [18] showed in 
mice that SARS-CoV downregulated ACE II protein, 
contributing to severe lung injury. Interestingly, ACE II 
overexpression has been reported to reduce HMGB1, be-
sides reducing apoptosis in the myocardium postinfarc-
tion, in a rat model [19]. This leads to the hypothesis that 
a reduction in ACE II induced by the virus would in turn 
increase HMGB1, thus contributing to the “cytokine 
storm” and the worst scenarios seen with COVID-19 in-
fection.

The inflammasome mediates HMGB1 translocation 
from the nucleus to the cytoplasm, with subsequent re-
lease from the cell via type 1 interferon JAK/STAT1 acti-
vation. Thus, pharmacological inhibition of JAK/STAT1 
could be an approach for reducing circulating HMGB1 
[20]. HMGB1 is recognized as a drug target, in particular 
for the salicylic acid (SA) derivatives 3-aminoethyl SA 
and amorfrutin B1, and methotrexate, inflachromene, 
and glycyrrhizin have also been shown to lower HMGB1 
[21]. In 2003, in an in vitro model, a German group used 
glycyrrhizin to inhibit the replication of SARS-CoV1, the 
virus that was circulating at that time, and described this 
compound as effective as ribavirin and mycophenolic 
acid, and more effective than 6-azauridine and pyrazo-
furin. This finding was confirmed in vitro using serum 
samples from patients, but the mechanism of action re-
mained unclear [22].

In addition to these considerations, in 2004, it was hy-
pothesized that HMGB1 could play a possible pathogenic 
role in SARS-Cov1 [23].

 Finally, my research group previously showed that 
cystic fibrosis transductance regulator (CFTR) malfunc-
tion, as found in cystic fibrosis, increases HMGB1 serum 
concentrations, along with inflammation, and further in-
creases are observed at the onset of the specifically related 
diabetes [24]. This suggests that changes in CFTR expres-
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Fig. 1. a HMGB1 shows both intracellular and extracellular effects. By binding to TLR2, TLR4, and RAGE, it ac-
tivates NF-κB which leads to the production of proinflammatory cytokines that have local and systemic effects. 
b HMGB1 is increased both locally and in the circulation in conditions like obesity, cystic fibrosis, and polycys-
tic ovary, and, whenever insulin resistance occurs, it is produced by adipose tissue and the immune system. CFTR 
malfunction causes an increase in HMGB1, besides other changes such as inflammation and increased autopha-
gy.
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sion and/or specific polymorphisms could play a role, 
particularly in the lung, and some of the new CFTR mod-
ulators should be considered for treatment if this were 
indeed the case [25, 26]. Furthermore, diabetes is a recog-
nized risk factor for Sars-CoV2 infection [27], and 
HMGB1 is known to be increased in diabetes [8].

In conclusion, I support the need for assaying HMGB1 
in the serum samples of COVID-19 patients who have 
been affected differently and are thus currently receiving 
different treatment. This would clarify whether HMGB1 
could be a marker of poor prognosis and a potential target 
for treatment. Furthermore, could the HMGB1 gene 

polymorphisms explain some of the variations observed 
in these patients? If so, this should be addressed and inte-
grated into treatment.

Should we now be considering add-on treatment with 
drugs like glycyrrhizin, that reduce HMGB1, and then 
rapidly hypothesize the dose and mode of administra-
tion?
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