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SUMMARY

Modern heterogeneous catalysis has benefitted immensely from computational
predictions of catalyst structure and its evolution under reaction conditions,
first-principles mechanistic investigations, and detailed kinetic modeling, which
are rungs on a multiscale workflow. Establishing connections across these rungs
and integration with experiments have been challenging. Here, operando cata-
lyst structure prediction techniques using density functional theory simulations
and ab initio thermodynamics calculations, molecular dynamics, and machine
learning techniques are presented. Surface structure characterization by
computational spectroscopic and machine learning techniques is then discussed.
Hierarchical approaches in kinetic parameter estimation involving semi-empirical,
data-driven, and first-principles calculations and detailed kinetic modeling via
mean-field microkinetic modeling and kinetic Monte Carlo simulations are dis-
cussed along with methods and the need for uncertainty quantification. With
these as the background, this article proposes a bottom-up hierarchical and
closed loop modeling framework incorporating consistency checks and iterative
refinements at each level and across levels.

INTRODUCTION

As heterogeneous catalysis involves spatiotemporal scales spanning the active site (typically an atom to a

few atoms) to the catalytic reactor which is typically a packed bed of the catalyst pellets (up to a fewmeters),

modeling and analysis of heterogeneously catalyzed phenomena requires a truly multiscale approach.1,2

With typical measurables such as reactant conversion, product selectivity, and reaction rates intricately

linked to the catalyst nanostructure, understanding, optimizing, and designing highly efficient catalytic

reaction systems require fundamental insights on the interconnected phenomena across the scales.3

Well-established techniques are available for modeling and analysis of catalytic phenomena at specific

spatiotemporal scales, while integration across the scales continues to remain a challenge.4 Hence, the

state-of-the-art approaches in modeling heterogeneously catalyzed reactions are hierarchical both in

spatiotemporal scales of the methods adopted and in the order of accuracy and computational effort of

the methods.4 With most catalysts being far from homogeneous, with the distribution of the active sites,

and many of them undergoing substantial surface structural changes at the different stages of the catalytic

cycle (pre-treatment, reaction, and so on), insights on actual operando surface structure of the catalysts

remain obscure.5 This further complicates and limits our understanding of the reaction chemistry on these

catalyst surfaces.

Chemically homogeneous (made of similar atomic species) systems such as metal nanoparticles undergo

morphology change due to substrate/gas species adsorption. Gases like CO, O2, and NO and species like

H2O induce morphology changes in metal nanoparticles such as those of Pt and Au and nanoalloys such as

that of Pt-Pd during reactions.6–8 These gas species are common in reduction reactions such as methanol

synthesis from syngas, NOx selective catalytic reductions, and partial oxidation reactions with molecular

oxygen, to mention a few. On the other hand, other catalyst systems such as metal oxides and metal

carbides and so on are chemically heterogeneous and undergo morphological changes due to

defect formation, substrate adsorption, and active participation in surface reactions.9–12 Hence, in situ or

operando characterization of heterogeneous catalysts is essential in understanding their complex

structure and their structural dynamics due to their interactions with reactive gases under typical reaction
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conditions.13 Operando description of catalyst morphology, surface structure, and active sites are essential

to compute accurate reaction energetics and kinetics and to establish structure-activity relations. These

structure-activity relations will eventually enable us to design catalysts for achieving better catalytic activity.

As operando structure determination is still very challenging, computational operando catalyst modeling

and design14–16 is a new paradigm, emerging as an alternative.

Detailed kinetic modeling via a multiscale modeling framework to link the catalyst surface structure to its

intrinsic surface activity and thereby experimentally observed catalytic performance is the key for design of

better catalysts and engineering of catalytic reactions.17 This is truly a challenging task and requires inter-

disciplinary efforts in integrating modeling techniques across the atomic to reactor scales, establishing

feedback loops, and workflows between experimental and computational techniques and more recently

in exploiting the potential of data-oriented approaches for both catalyst design and reaction engineering.

For around two decades, density functional theory simulations have served as the basis for analysis of re-

action mechanisms, estimation of kinetic parameters, and formulation of microkinetic models,18 forming

the backbone of the first-principles kinetic modeling framework that is widely used in gas-phase heteroge-

neous catalysis. While these kinetic models are excellent tools for qualitative comparison and screening of

catalysts,19 the quantitative reliability and parity of computed and experimental quantities have been far

from the desirable limits.20

Catalytic processes are typically carried out at high temperatures, the dynamics of the active site ensem-

bles, and the interacting substrates are most appropriately modeled using ab initio molecular dynamics

simulations which enable accurate description of the underlying free energy landscape.21 These are, how-

ever, computationally very expensive and find limited application in computational heterogeneous catal-

ysis. First-principles-based kinetic modeling of liquid phase reaction have added complexities of the sol-

vent interaction with the substrate and the catalyst, local transport effects over the catalyst surface,

uncertainties due to dynamics in intermolecular interactions, and difficulties in energy calculations due

to the need for sampling immensely large configurational space.22,23

Data-driven and machine-learning-based approaches are increasingly finding applications in all spheres of

catalysis and catalytic reaction engineering. Machine-learning-based catalytic performance prediction is

dealt with in two ways24: 1) a top-down approach where the training set is obtained from experiments (char-

acterization) that describe catalyst structure such as particle size, surface area, electronic states, surface co-

ordination, and so on and 2) a bottom-up approach where the training set is obtained from quantum chem-

ical calculations involving typical descriptors such as energetics, band gaps, d-band centers, Bader

charges, and so on.24 The top-down approach often involves tedious data mining (literature search) exer-

cises which are time-consuming and may lack quantitative accuracy in the predictions as it is often chal-

lenging to find high-quality training dataset for the desired reaction and catalyst compositions. On the

other hand, the bottom-up approach demands considerable time and effort for building high-fidelity data-

set for training the machine learning models (such as neural networks) for predicting accurate energetics,

potential energy surface, and eventually the activity. A detailed review by Cova et al.25 highlights the ap-

plications of deep-learning-based approaches for predicting reaction rates, reaction routes, molecular

spectra, and so on.

A few recent review articles discuss various theoretical aspects, state-of-the-art techniques, and method-

ologies developed in the field of computational heterogeneous catalysis.4,26–28 A detailed review by Chen

et al.4 discussed the theory of first-principles-based electronic calculations, microkinetic modeling, kinetic

Monte Carlo, and in silico catalyst design methodologies. The review by Bruix et al.28 addressed various

aspects of multiscale modeling, including a brief overview and applications of data-driven methodologies

in computational heterogeneous catalysis. Martinez et al.26 discussed the applications of machine-

learning-based techniques in catalysis and allied fields. Puliyanda et al.27 discussed the recent applications

of automated and data-driven techniques for reaction monitoring and mechanism elucidation.

This article is aimed at providing an overview of the complexities and approaches in modeling and analysis

of heterogeneous surface phenomena and quantitative kinetic modeling, starting with operando catalyst

structure modeling to kinetic parameter estimation and finally multiscale kinetic modeling. An iterative and

hierarchical approach is proposed at each stage such as catalyst structure and active site prediction, reac-

tion mechanism elucidation, kinetic parameter estimation, and multiscale kinetic modeling, with cross
2 iScience 26, 107029, July 21, 2023
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validations with appropriate experimental data and using the current state-of-the-art approaches such as

using data-driven models to build robust and accurate kinetic models capable of making accurate predic-

tions. A detailed discussion on operando computational catalyst structure and morphology prediction,

validation, and the overall iterative workflows are the highlights of the work.

The article is organized as follows. First-principles-based determination of operando catalyst morphology,

surface structure, active site distribution on the relevant catalyst surfaces, and data-driven methods for

catalyst screening and discovery are discussed in the section titled operando catalyst morphology and sur-

face structure prediction. Heterogeneity in active sites on catalysts and identifying them are discussed in

the section titled Active site nature and its impact on catalysis. Computational and data-driven approaches

for the operando catalyst characterization and validation techniques that are conventionally used for vali-

dating the catalyst surface and active site details are described in the section titled computational and

data-driven methods for operando catalyst characterization and validation. The section titled summary

and iterative workflow for catalyst structure modeling summarizes the approaches in operando catalyst

structure determination and validation and proposes the iterative refinement based on model and exper-

imental inputs. The section titled reaction mechanism and network generation and validation discusses

general practices of elucidation of reaction mechanisms using chemical intuition, reaction rules, data-

driven techniques, and their validation for mapping of reaction networks comprising all possible elemen-

tary reaction steps using validated computational model catalysts. The section titled semi-empirical

techniques describes semi-empirical techniques such as the UBI-QEP method and kinetic linear scaling re-

lations used for estimation of the activation energy barriers for the elementary reaction steps. This is fol-

lowed by a discussion on alternatives to semi-empirical techniques such as density functional theory

(DFT) and data-driven methods which enable calculation of both the pre-exponential factor and the acti-

vation energy barrier. This is followed by a discussion on the uncertainties in the parameter estimation

both in the DFT-based calculated energetics and parameters estimated through semi-empirical methods.

We then summarize the reaction mechanism generation and kinetic parameter estimation highlighting the

hierarchical approaches and decisions trees for desired accuracy across systems. The section titled mean

field microkinetic modeling discusses the mean-field microkinetic modeling (MKM) technique as one of the

most popular detailed kinetic modeling approaches, with the sub-sections describing the applications of

the technique in different scenarios and caveats. This is followed by a discussion of the stochastic kinetic

Monte Carlo (KMC) technique with typical applications, comparison with the MKM and caveats. We finally

summarize, a unidirectional multiscalemodeling framework and propose an iterative closed loop approach

linking catalyst structure modeling with kinetic modeling, with multiple cross validations with experimental

data across the scales.
OPERANDO CATALYST STRUCTURE MODELING AND VALIDATION

Operando characterization of heterogeneous catalysts requires sophisticated facilities which are still

beyond the reach of most of the heterogeneous catalysis community. Hence, ‘‘Operando Catalyst Struc-

ture Determination’’ is a holy grail in heterogeneously catalyzed reactions. With advances in first-principles

theoretical frameworks and high-performance parallel computing systems, the computational community

has stepped up in developing tools and workflows that enable ‘‘operando computational catalyst structure

predictions’’ with minimal inputs from experimental observables. A suite of first-principles calculations, pri-

marily relying on DFT simulations, are now being employed in modeling and predicting the catalyst surface

structure.4,29 Modeling catalyst fluxionality and catalyst reconstruction at reaction condition may not be

straightforward with DFT techniques alone and techniques like molecular dynamics (MD) and combinations

with grand canonical Monte Carlo (GCMC) may be useful. Recently, DFT-aided machine learning tech-

niques have also been employed to predict the catalyst structure under reaction environments.29,30 The

section titled operando catalyst morphology and surface structure prediction describes computational ap-

proaches widely used to study surface morphological changes and estimate the surface structure at

equilibrium as a function of reactive gas environment and reaction temperatures, dynamical simulations

addressing catalyst reconstruction and fluxionality changes, data-driven methods for catalyst screening,

and discovery with selected examples from the literature demonstrating their application. The discussion

here is primarily focused on metal, metal oxide, and metal carbide kind of catalysts and the catalyst mate-

rials like zeolites and metal-organic frameworks are not discussed in detail. Active sites of a type, where

specific reaction steps happen on the catalyst surface, may be uniformly distributed on the catalyst surface,

making them homogeneous surfaces. Sometimes there might be a distribution of active sites which differ in

their catalytic potential, leading to active site heterogeneity, which complicates analyses of reaction
iScience 26, 107029, July 21, 2023 3



Figure 1. Conventional methods for computational operando catalyst structure modeling and validation
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mechanisms, energetics, and kinetics. The section titled active site nature and its impact on catalysis briefly

describes identification of active site heterogeneity and its implications. Upon predictions of the operando

structural information, it is essential to validate these against experimentally reported observations. Full-

fledged first-principles-based computational infrared (IR), Raman, X-ray photoelectron spectroscopy

(XPS), and scanning tunneling microscopic (STM) analyses are suitable techniques for the surface structure

and active site characterization and thereby validation of the active sites. These methods, along with a brief

discussion on the recent advent of data-driven techniques for assisting computational and experimental

operando characterization have also been discussed with selected examples from literature in the section

titled Computational and Data-driven methods for operando catalyst characterization and validation. A

schematic representation of all the contents discussed is given in Figure 1.

Operando catalyst morphology and surface structure prediction

The reaction conditions and chemical environments can significantly influence the catalyst morphology and

the associated surface structure which in turn dictates the reaction mechanisms and energetics. A sche-

matic representation of the implication of the catalyst morphology evolution on the surface structural

changes and the reaction energetics is shown in Figure 2. The overall catalyst morphology determines

the types of exposed crystal facets of the catalyst (nano)particle. The exposed crystal facets determine

the specific atomic arrangement on the catalyst surface. This arrangement together with specific atomic

ensembles which serve as the active sites for the various reaction steps determine the reaction mechanisms

and the energetics along the possible reaction pathways. These microscopic features eventually determine

the overall macroscopic observables such as species conversion, product selectivity/distribution, and reac-

tion rates.

With selected examples from the literature, use of methods such as Wulff construction, ab initio thermo-

dynamics, adsorption isotherm models, data-driven methods, MD simulations for estimation of the overall

morphology of the catalyst (nano)particles, and its evolution with changes in the reaction environment/con-

ditions are discussed in this section.

Catalyst morphology prediction

Catalyst morphological studies provide necessary information about the predominant crystal facet distri-

butions of a catalyst during the reaction. When studied as a function of temperature and reactant pressure,

the catalyst morphological changes at equilibrium are captured, and the corresponding stable facets can
4 iScience 26, 107029, July 21, 2023



Figure 2. Schematic representation of the impact of the reaction conditions such as temperature and partial

pressure of gases on the catalyst morphology, structure, and reaction energetics

An arbitrary catalyst is represented with different morphologies in the top panel. Arbitrary atomic arrangements

representative of different crystal exposure is presented in the middle panel with balls of different color representing

atoms of different elements. Energy profiles for an arbitrary reaction step (going from a reactant state to a product state

via a transition state TS) happening on different crystal exposures are presented. Here, Ti and Pg,i denotes reaction

temperature and reactive gas partial pressure, respectively. Ei and Ei
’ refers to activation energy barriers and reaction

energies. The energy comparisons are made with inclusion of effect of + and - signs.
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be identified for subsequent reaction modeling. Computationally, catalyst nanoparticle shapes are pre-

dicted based on the Wulff construction,31–34 which is a method of identifying a shape that minimizes the

surface energies of different crystal facets for a fixed volume. This in turn relies on the Gibbs free energy

for the formation of the different crystal surfaces per unit area (surface energy) which are calculated using

ab initio thermodynamics techniques based on DFT energetics. For more details on the ab initio thermo-

dynamics techniques, and catalyst shape and surface analyses using these techniques, refer to the

ref.14,35,36. Many of the recent investigations employ Wulff construction to study the effects of reactant

adsorption on the catalyst surface on the particle morphology evolution during reactions.37–39 These ana-

lyses require the stable surface coverage of the reaction gas adsorbed on all the prominent low-index crys-

tal facets of the catalyst material at the reaction conditions and this coverage can be estimated using equi-

librium-basedmethodologies such as 1) analyses of the surface free energies of different surface coverages

and generation of surface phase diagrams,37 2) using adsorption isothermmodels,13 and 3) from non-equi-

librium-based methodologies such as from surface species concentrations from kinetic modeling such as

MKM or KMC analysis.40,41 Examples of each of these are discussed in the next few paragraphs and sum-

marized in Table 1.

The implications of CO and H2 environments on the equilibrium morphology evolution of cobalt nanopar-

ticles were studied by Yu et al.37 A stepwise CO and H (dissociated H2) adsorption was studied over the

(100), (111), (110), and (311) surfaces of Co nanoparticle. Saturated H coverage of 1 monolayer (ML) over

(111), (311), and (100), and 0.78 ML for (110) surfaces and CO coverages of 0.78, 0.61, 0.78, and 0.5 ML

over (111), (311), (100), and (110) surfaces were obtained from surface free energy analyses. The H2 and

CO environments increased the surface exposure of Co(311) surface from 0% (PH2
= 10�10atm) to 10%

(PH2
= 5 atm) and that of Co(110) from 0% (PCO = 10�10atm) to 6% (PCO = 5 atm) at 675 K. These surfaces

exposed substantial quantities of under-coordinated metal sites, and hence were expected to offer higher

catalytic activity in terms of H2 and CO dissociation during Fischer-Tropsch synthesis. Inoǧlu et al.,38 in their

computational work, investigated the role of adsorbates on the morphological changes of Cu catalysts in a

water gas shift (WGS) reaction environment. They reported that the presence of H2S in the reaction system

induced poisoning of the Cu surfaces due to strong S (from H2S dissociation) adsorption and changed the
iScience 26, 107029, July 21, 2023 5



Table 1. Different catalyst morphology prediction techniques and corresponding references from literature

Method Technique Reference

Equilibrium-based methodologies Wulff construction 13 and44

Surface phase diagrams 37,42 and47

Adsorption isotherm 13

Non-equilibrium-based methodologies Microkinetic modeling (MKM) 41 and42

Kinetic Monte Carlo (KMC) analysis 40 and41
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crystal morphology significantly from one dominated by (111) and (100) facets to the one dominated by

(110) facets, at high S chemical potentials.

The surface coverage of species at specific reaction temperature and partial pressure of the gas can be esti-

mated using an appropriate adsorption isothermmodel. Zhu B et al.13 estimated the surface free energy of

low-index Cu surfaces using a combination of the Langmuir adsorption isotherm model and DFT calcula-

tions of adsorption energy. This free energy was used in the Wulff construction scheme to study morpho-

logical evolution of copper nanoparticles in a humid atmosphere in the temperature range of 250 K–500 K.

At high temperatures greater than 500 K where there is limited coverage of water on the surface, the nano-

particle was a cuboctahedron, dominated by Cu(111) and Cu(100) surfaces, while at intermediate temper-

atures of 380 K–420 K, the nanoparticle was a rhombic dodecahedron, dominated by Cu(110) surface.

Based on a microkinetic model built with a structureless catalyst, the most abundant reaction intermedi-

ates on the catalyst surface at the early zone of a packed catalyst bed during partial oxidation of methane

on Rh/Al2O3 were identified as oxygen and at the later zone was identified as carbon monoxide with

hydrogen, respectively, by Cheula et al.42 The bulk nature of the catalyst (metal vs. metal oxide) at the

partial oxidation condition was then identified using surface phase diagram analyses which showed

Rh2O3 to be the dominant catalyst in the initial reactor zone and metallic Rh to be the dominant catalyst

in the later part of the reactor. With Rh2O3 as the catalyst in the early zone of the reactor, the equilibrium

morphology of the catalyst under conditions relevant for this zone was identified with predominant expo-

sure of Rh2O3(0001), Rh2O3 (1102), and Rh2O3 (1123) surfaces with the small contribution of the other

surfaces diminishing along the axial direction in the reactor. In the later zone of the reactor with metallic

Rh as the dominant catalyst and CO and H as the dominant adsorbed species, Rh nanoparticle with pre-

dominant exposure of Rh(111) surface followed by Rh(311) and Rh(100) surfaces was identified. This

approach of utilizing surface coverage from kinetic model for the ab initio thermodynamic analysis is

superior to the equilibrium surface energy calculations as it accounts for kinetic factors on the surface

phenomena which are overlooked by the purely thermodynamical approach.

A few studies aim at developing morphology control strategies and hence employ Wulff construction as a

tool in the computational screening of additives, promoters, or moderators,43–45 as the nature of ligands

plays a major role in surface morphology evolution. Domingo et al.43 investigated the role of

N-containing ligands in changing gold nanoparticle morphology. It was found that themorphology change

was prominent in the case of specific ligands such as aniline, ethylene diamine, pyrrole, and trimethylamine,

as the dominantly exposed facet on gold nanoparticles changed from Au(111) to Au(110). Among the stud-

ied ligands, ethylene diamine brought about the highest change in morphology, as the percentage expo-

sure of Au(110) facets increased to 94% from 10% (over a bare gold nanoparticle).

Identification of descriptors for specific morphology control is crucial in screening and identification of po-

tential modifiers to generate such morphologies. Garcı́a-Mota et al.44 studied the morphology evolution of

supported Ag nanoparticles on a-Al2O3(0001) usingWulff-Kaichev methodology and predicted surface en-

ergy descriptors for obtaining cubic nanoparticles that enable higher selectivity for ethylene epoxidation. It

was reported that a surface energy ratio between the (100) and (111) facets of Ag should be less than 1
ffiffi

3
p , to

obtain better ethylene oxide selectivity. This descriptor can be used to screen supports and modifiers that

enable selective formation of cubic Ag nanoparticles for selective epoxidation of ethylene. Similar applica-

tion of Wulff construction is seen in designing multiferroic materials. Ribeiro et al.45 presented a method-

ology for designing ATiO3 (A =Mn, Fe, Ni) materials, wherein the surface energy was used as the descriptor

to selectively obtain (001) and (111) facets for enhanced superficial magnetic properties.
6 iScience 26, 107029, July 21, 2023



Figure 3. Surface phase equilibria studies depicting the stability of (a) various phases representing different

extents of surface reduction (number of surface oxygen vacancies) on Ni-doped ceria nanorod surface and

(b) hydroxyls on Ni-doped ceria nanorod surface with increasing coverage to complete monolayer as reported by

Pushkar et al.47 under typical propane oxidative dehydrogenation conditions

The surface atomic arrangement (top view) of the dominant surface phases predicted by the two-phase diagrams is shown

to the right of each phase diagram. *Here asterisk in each phase diagram denotes the typical propane oxidative

dehydrogenation reaction conditions.
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Surface structure determination

Identifying the surface atomic arrangement and species composition, sometimes referred to as ‘‘surface

phase’’, is an essential part of catalyst modeling. Surface phase equilibria studies are one of the commonly

adopted thermodynamics-based methods to predict the stability of different phases of a catalyst surface

under different reactive gas environments. They give valuable information on structural changes and sur-

face stoichiometry, adsorbate coverages, and stability of clusters in multi-species catalysts. Prediction of

defect concentrations over reducible metal oxide surfaces is crucial to model redox reactions. Typically,

DFT calculations, together with ab initio thermodynamics calculations, are performed to obtain surface

phase transitions at various reaction conditions. The Gibbs free energies for forming various surface phases

as a function of the chemical potential of the reactive gas-phase species of interest are plotted. The inter-

section of these phase lines denotes phase transition, and the chemical potential corresponding to various

phase transitions is used to obtain a surface phase diagram.

For ceria nanorod catalyst, a stoichiometric oxygen-dense phase was predicted to be stable under typical

redox conditions,46 while low-valent Ni-doped ceria nanorods were predicted to expose a partially

reduced surface with 8.3% surface oxygen vacancy concentration and surface stoichiometry of

Ce0.83Ni0.17O1.83(110)
47 for a wide range of temperatures and oxygen pressures as shown in Figure 3A. Su-

thirakun et al.,48 in their electrochemical H2 oxidation studies over Sr2Fe1.5Mo0.5O6-d (SFMO perovskites),

predicted the optimal surface Fe/Mo ratios at typical solid oxide fuel cell operating conditions using

ab initio thermodynamic studies. Their studies predicted lower Mo concentrations on the surface at typical

anodic conditions, an essential piece of information required for modeling complex systems such as

perovskites.48
iScience 26, 107029, July 21, 2023 7



Table 2. Different catalyst structure dynamics prediction techniques and corresponding references from literature

Technique References

Grand canonical Monte Carlo (GCMC)

simulations

53

Ab initio molecular dynamics (AIMD) 54

Grand canonical Monte Carlo (GCMC) and

reactive force-field (ReaxFF) molecular

dynamics simulations

55

Classical molecular dynamics simulations 57

Density functional theory (DFT) method 58 and59
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Substrate coverages are very common in surface catalysis. Surface phase equilibria studies also provide

reasonable estimates of adsorbate coverages by analyzing the stability of each coverage at typical reaction

conditions. Predicting substrate-covered surfaces is essential to capture the impact of adsorbed substrates

on the reaction mechanisms and overall morphological changes during the reaction. Penschuke et al.49

compared the stability of vanadia monomers (VO and VO2) over ceria-supported vanadia nanoparticles

and predicted themost stable monomer stoichiometry to be VO2. Furthermore, among the various vanadia

oligomers probable at higher vanadium loading, the trimeric V3O6 was estimated to be the most stable.

The H and CO coverage studies reported for molybdenum carbide systems50,51 revealed possible

surface coverages relevant for various industrial reactions, such as WGS, CO hydrogenation to alcohols,

and Fischer-Tropsch synthesis. Wang et al.50 reported monolayer CO coverages of 9.64, 10.85,

and 11.74 CO/nm2 over the (101), (001), and (201) surface facets of b – Mo2C catalysts. Similar studies for

hydroxyl coverages over Ni-doped ceria nanorods reported the stability of 1 ML hydroxylated surface at

typical propane oxidative dehydrogenation (ODH) conditions (Figure 3B).47 Geng et al.39 studied the H sur-

face coverages on six different surfaces on HCP Co nanoparticles and reported fractional coverage ranging

from 0ML at high temperature/low hydrogen partial pressure condition to completemonolayer at low tem-

perature and high hydrogen partial pressure.

Although equilibrium surface structure predictions are thermodynamically consistent, the adsorption-

desorption and surface reaction kinetics are not usually accounted for in such analyses. Stochastic kinetic

modeling techniques such as KMC simulations have been used to account for the substrate adsorption-

desorption kinetics and accurately capture the coverages of metastable adsorbate species, which are

otherwise overlooked in a typical thermodynamic analysis. Pilania et al.52 used KMC simulations to predict

a metastable O adatom-covered phase over LaMnO3 catalyst surfaces which was not traced by typical

ab initio thermodynamic calculations. Such studies give a more reliable operando catalyst structure as

they do not assume equilibrium. However, these are computationally intensive compared to the equilib-

rium-based calculations.

Modeling and understanding catalyst structure dynamics

Typically, ab initio thermodynamics-based catalyst morphology prediction is relevant to and applicable un-

der equilibrium conditions. However, there might be insufficient time to reach equilibrium at typical reac-

tion conditions. The success of ab initio thermodynamics-based simulations would rely partially on the

numbers of potential surface configurations sampled. However, manually exploring the vast possibilities

for many materials is difficult and may not be exhaustive. Moreover, many reactions experience a dynamic

chemical environment, changing surface coverage of species and enabling catalyst fluxionality. Hence,

there is a need to investigate catalyst structure dynamics and structure under dynamic reaction conditions.

Additionally, understanding the reconstruction process may be useful in identifying metastable catalyst

structures and developing appropriate computational models in such cases. Some of the catalyst structure

dynamics prediction techniques are summarized in Table 2.

Vaidish et al.53 conducted in situ time-dependent STM study on Pt catalyst at 1.5*10�6 Torr CO pressure

and higher at room temperature and noticed progressive detachment of sub-nanometer Pt clusters. At

a CO pressure of 0.1 Torr, they observed more Pt clusters corresponding to a size range of 0.5–0.8 nm.

The origin of the cluster reconstruction process was analyzed by Monte Carlo (MC) simulations at

0.0007, 0.5, and 450 Torr CO pressure, using machine learning inter-atomic potentials trained by DFT
8 iScience 26, 107029, July 21, 2023
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calculations. Simulations revealed that higher CO coverage on the step sites of Pt caused rearrangement

and extraction of step site atoms and, thereby, island formation. This study showed that appropriately de-

signed MC simulations can qualitatively predict the catalyst features in operando conditions.

MD is also a powerful and widely used technique for operando modeling of the catalyst. Yongpeng

et al.54 studied reconstruction dynamics of Pd@Au core-shell nanoparticles at different CO coverages us-

ing ab initio molecular dynamics simulations. Very high CO coverage was found to increase the stability

of the surface by limiting the surface atom diffusion into the second layer. Thomas et al.55 used a com-

bination of GCMC and reactive force-field (ReaxFF) MD simulations to obtain a reasonable catalyst

model representing Pd clusters supported on a CeO2 catalyst. GCMC simulations were performed at

500 K and 1 bar O2 pressure to estimate the Pd-CeO2(111) surface oxygen uptake. The resulting model

was further simulated with ReaxFF MD simulations to identify the catalyst structure, with possibility of Pd

diffusion into CeO2. For more insights on the use of MD simulations in reaction kinetics analysis, readers

are directed to the review article by Liu et al.56

Classical MD simulations are computationally less expensive than ab initio simulations. Mengjiao et al.57

investigated the temperature effect on the morphology of iron and iron carbides (Fe3C, Fe5C2, and

Fe7C3) that are commonly used in high temperature applications such as carbon nanotube growth and

Fischer-Tropsch synthesis using classical MD simulations. The MD simulations were performed with the

modified embedded-atom method (MEAM) potential for Fe and Fe3C and analytical bond-order potential

(ABOP) for Fe3C2 and Fe7C3. A Wulff morphology was built using the surface energies obtained using

MEAM and ABOP potential-based classical MD simulations of iron and different iron carbide nanopar-

ticles. These nanoparticles exhibited the dominance of low Miller index surfaces for temperatures up to

1000 K and high index surfaces for temperatures above 1000 K. A significant change in exposure ratio of

different surfaces across the considered temperature range of 100 K–1300 K was reported, suggesting

the possibility of temperature-based morphology change.

Typically, supported and unsupported sub-nanometer catalytic clusters can exist in many low-energy iso-

mers and the most stable isomer may not be the most catalytically active.58 Additionally, isomers may inter-

convert at elevated temperatures due to the low barriers to be overcome and therefore exhibit fluxionality

during catalysis. Rahul et al.58 created initial geometries of free Pt13 clusters using the bond length distri-

bution algorithm and optimized them using DFT simulations to identify the global minimum and the meta-

stable isomers (within 0.4 eV energy difference from global minimum). A phase diagram was developed at

different O2 pressures and temperatures with these global minimum andmetastable clusters to identify the

most relevant structure corresponding to the gas-phase oxygen reduction reaction condition. Huanchen

et al.59 studied the fluxional behavior of Pt7 cluster on Al2O3 support using the nudged elastic band-opti-

mized minimum energy path of Pt7 isomerization by considering different isomers corresponding to local/

global minima as the endpoint. Most of the isomers corresponding to local minima were within an energy

range of 0.6 eV of the global minimum. By considering the typical CO oxidation reaction temperature of

700 K, cluster reconstruction is possible for such small clusters. Hence metastable configurations of the

clusters may need to be considered for the catalyst model for comprehensive evaluation. For more details

on operando modeling, we refer to the reader to ref.60,61.

Machine-learning-based predictive methods in structure determination

Predictive methods based on machine learning together with DFT can be employed in the identification of

catalyst structures. The use of first-principles calculations in identifying the detailed site and coverage ef-

fects would require an enormous amount of computational power. Hence, with the advances in the ma-

chine learning concepts, models can be trained with experimental and computational data.29 Specifically,

the in situ surface characterization like IR spectroscopy using appropriate probe molecules has been very

successful in unraveling the complex surfaces of simple catalysts by coupling them with computational IR

calculations. Lansford et al.29 demonstrated the use of IR spectroscopy as a method with enormous data

generated from their first-principles calculations and combining it with the machine learning concepts

for deducing the structure of Pt nanoparticle using CO as a probe molecule. Here, DFT-generated fre-

quencies and intensities at low CO coverage for each binding type were taken as primary dataset on

different Pt clusters and nanoparticles of multiple coordination sites representing facets, defects, edges,

and corners. Outliers identified from the primary dataset were screened to generate secondary spectral

data for each binding type and generalized coordination number (GCN). As the frequencies were very
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sensitive to CO coverage, the dependence of IR data on coverage was a function of the binding type and

independent of GCN. Finally, two neural network models were trained for the binding type and GCN using

the secondary data as input for the inverse mapping matching of the experimental spectra and thus pre-

dicting the Pt surface microstructure with (111) and (110) as dominant facets.29

Another interesting study by Li et al.62 used the stochastic surface walking-based neural network (SSW-NN)

to self-learn a DFT global dataset of potential energy surfaces and predicted the desired catalytic surface

phases of Pd-based nanoparticles required for achieving better yield in acetylene semi-hydrogenation to

ethene and ethane. The authors were able to predict the hydride phase, i.e., Pd4H3(100) formed under a

hydrogenation environment, which was involved in the deep hydrogenation of acetylene to ethane using

their SSW-NN model. They confirmed the prediction by synthesizing a nanoparticle which predominantly

exposed the predicted phase.62

Data-driven catalyst screening and discovery

Machine learning tools can be very handy for efficient, rapid (descriptor-based) catalyst screening and

design,62–68 especially in discovering new catalytic compositions when the chemistry of the individual

constituents is relatively simple such as metals. The compositions so obtained can then be modeled

and subjected to detailed first-principles-based structure, active site elucidation, and characterization/

validation, as explained in previous sections. In their review of the available machine learning methods

for efficient catalyst search, Musa et al.68 compared the benefits of new-age ML-based techniques such

as reinforcement learning over the conventional genetic algorithms, laid out protocols for choosing the

right descriptors, and developing catalyst search tools. Data-driven predictions in heterogeneous catal-

ysis are broadly classified into two types: forward and inverse predictions. The forward prediction objec-

tives involve the prediction of catalytic performance with the known structural information. Machine-

learning-based catalyst search/screening comes under inverse prediction objective, wherein for a

required performance, the desired catalyst structure/composition is deduced.67 Suzuki et al.66 used

the available data on the catalyst structure, performance descriptors, yield, and selectivity for oxidative

coupling of methane (OCM) reaction and did an inverse prediction of the optimal compositions of

various catalytic components for the design of novel catalysts. The authors predicted 20 promising candi-

date catalysts for OCM reactions by considering various alkali and alkaline earth metal combinations with

MgO and La2O3 as the base metal oxides using various ML techniques such as non-linear regression

models and cross-validation techniques.

DFT-aidedmachine-learning-based techniques have been used to discover multi-metallic high-entropy al-

loys (HEAs).69,70 Lu et al.70 developed a neural network (NN)-basedmodel to predict the adsorption energy

of hydroxyl (OH*)—a key intermediate in the oxygen reduction reactions. They used the same to decouple

the ligand and coordination effects (determining factors in active site elucidation) on the performance of

HEA catalyst (IrPdPtRhRu) for fuel cell applications. The authors developed a high-dimensional NN model

that predicted the adsorption energies with high accuracy (MAE = 0.09 eV; root-mean-squared error

(RMSE) = 0.12 eV). They further reduced the same to a linear scaling type model which can be used as

an efficient tool for rapid catalyst screening and discovery of HEAs with a minimal loss of accuracy.70 Similar

studies exist on the discovery of atomically dispersed/single-atom catalysts for hydrogen evolution reac-

tion applications.63,64 Sun et al.63 proposed a data-clustering algorithm called the fuzzy C-means model

for data separation inML and developed guidelines for the rapid catalyst screening and discovery of graph-

diyne-based atomic catalysts. The authors considered all transition and lanthanide metals as heteroatoms

and used reaction energies of H2 adsorption, desorption, and dissociation as the descriptor for training

their dataset, unlike the conventional choice of simple H adsorption energy. The developed ML model

was used to predict H adsorption energies over the screened catalysts.

Although data mining-derivedMLmodels can circumvent the computational costs incurred from pure first-

principles-based structure prediction, they are limited applicability to simple systems such as metals and

have a long way to go before they can be reliably applied for screening complex catalytic systems such as

metal oxide, supported metal/metal oxides, and so on. Moreover, the predicted catalytic compositions are

sometimes unphysical and might not be synthesized due to the lack of experimental synthesis procedures.

Hence, first-principles-derived ML models need to be developed for more realistic structure predictions.
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Active site nature and its impact on catalysis

Identifying the nature of active sites is an essential step in catalyst modeling and an important prerequisite

for reaction modeling. The presence of energetically/electronically heterogeneous active sites impacts the

overall reaction energetics via site-dependent mechanisms/energetics and ultimately determines the

product distribution.47,71,72 Except for simple systems such as metals and pristine metal oxide surfaces,

most realistic catalyst systems exhibit active site heterogeneity in varying degrees. It is commonly identified

using ‘‘activity descriptors,’’ such as binding energies of specific species that describe the reactivity of

various active sites on the catalyst surface. For example, H adsorption//binding energy over surface oxygen

on metal oxides or adsorbed oxygen containing metal catalysts is commonly considered as the reactivity

descriptor for reactions involving H abstraction.71,73 Typical systems that exhibit site heterogeneity are sin-

gle-atom alloys, metal oxide, metal carbides, doped, defect containing, and supported systems.47,72

The site heterogeneity in alumina-based catalysts is known to cause changes in the reaction mechanisms.

Dixit et al.71 investigated the site heterogeneity in the Lewis acid-base (Al-O) pairs of g-Al2O3 and their sig-

nificance on the propane non-oxidative dehydrogenation energetics. The site heterogeneity was captured

for nine unique Lewis acid-base pairs each over Al2O3(100) and Al2O3(110) facets, using dissociative H2

binding energy. The propane dehydrogenation mechanisms were site dependent, i.e., concerted mecha-

nism over most active site pairs and sequential mechanism over the remaining pairs. The energetics varied

significantly over each active site pair and was described with the help of a volcano plot relating the pro-

pane dehydrogenation turnover frequencies and H2 binding energies.71

Sometimes, site heterogeneity might impact reaction energetics and not necessarily the nature of mech-

anisms. Pushkar et al.,47 in their investigation of propane ODH over Ni-doped ceria nanorods, reported the

significance of active site heterogeneity of surface oxygen caused due to local electronic rearrangement by

Ni-doping-dictated surface reduction. On analyzing the hydrogen adsorption energies, four different types

of surface oxygen were identified as significant contributors to the catalyst activity and were found to

impact propane ODH energetics without influencing the nature of C-H activation steps.47

Another important implication of active site heterogeneity is the breaking of kinetic linear scaling relation-

ships (LSRs), a commonly used tool for the kinetic parameter (activation energy barrier) prediction using a

linear relationship developed for thermodynamic parameters like binding or reaction energies.72

Computational and data-driven methods for operando catalyst characterization and

validation

Validating the computationally predicted equilibrium catalyst surface structure and active sites is critical for

ensuring near-operando mechanistic insights and development of accurate first-principles detailed kinetic

models from reaction network and energetics analyses. STM is an excellent technique for the direct valida-

tion of the catalyst surface structure as a one-to-one mapping can be obtained from experimental and

computational analyses. In situ or operando vibrational spectroscopy, both IR and Raman are good but in-

direct choices for validation of catalyst surface structure and active sites, as computational IR and Raman

analyses are fairly well-established protocols now.74,75 A suite of non-vibrational spectroscopy techniques

involve X-ray irradiation and subsequent analysis. Machine learning tools have been successfully employed

for interpreting the spectra obtained from X-ray absorption-based spectroscopic techniques (XAS).76–81

These include X-ray absorption near-edge structure (XANES), X-ray absorption fine structure, extended

X-ray absorption fine structure (EXAFS), and electron energy loss-based spectroscopic techniques such

as energy loss near-edge structure (ELNES) or extended electron energy loss fine structure (EXELFS).82

A few applications of these techniques in establishing the catalyst/material surface structure are discussed

in this section.

Infrared spectroscopy

IR spectroscopy is a powerful technique used to characterize the surface of catalyst structure using the

vibrational frequencies of the adsorbates and these are obtained rapidly in situ for both the gas/solid

and liquid/solid interfaces.29 Vibrational spectra have been used to characterize adsorbate/surface vibra-

tional frequencies for determining the surface of the catalysts including metals,83 metal oxides,84

and metal-organic frameworks.85 Computational IR technique is used to validate the catalyst models

by capturing the catalytic signatures on the surface of the catalyst observed in the experiments. IR inten-

sities and frequencies are obtained using density functional perturbation theory (DFPT) and finite
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difference-basedmethodologies, respectively, wherein the change in atomic polarizabilities with reference

to an external electric field is estimated using DFT calculations. Most often, the computationally obtained

frequencies are compared against experimentally observed frequencies from diffuse reflectance infrared

Fourier transform spectroscopy (DRIFTS) for surface and gas-phase species and Fourier transform infrared

(FTIR) analyses for surface species. With appropriate probemolecules, the nature of the surface sites on the

catalyst is well reflected by the shifts in the vibrational frequencies of the characteristic modes of the probe

molecules interacting with the surface.

Lansford et al.86 employed a first-principles-based machine learning framework for detecting the micro-

structure of Pt catalyst surface using CO, NO, and C2H4 as the probe molecules. Here, they used C-O

stretch frequencies as a descriptor for different Pt atop sites of similar geometries for a wide range of

GCN values. They used the concept of interaction energy between the metal and adsorbates and scaled

it across GCN to identify C2H4 as an ideal probe molecule for detecting different Pt coordination envi-

ronments.86 Penschke et al.49 proposed different (VO)k and (VO2)k (k = 1,2,3) species supported on

CeO2(111) catalyst and employed computational IR analyses for the structure validation. They captured

the characteristic blue shift in the vanadyl (V=O) oxygen frequencies to validate the catalyst model.

The computed IR frequencies exhibited a blue shift of 25 cm�1 for V3O6 trimer species in

agreement with experimentally observed blue shift of 27 cm�1 for increase in the vanadia loadings

from 0.3 V atoms/nm2 to 0.7 V atoms/nm2 in the CeO2-based catalyst.49

While this is a powerful and easy-to-apply tool for a wide range of catalytic systems, the ideal probe mol-

ecules for the system at hand should be identified. Additionally, benchmarking of the computational

methods for the vibrational spectra calculations should also be done for every probe-catalyst system

separately.

Raman

Raman spectroscopy is a powerful technique to characterize catalyst structure (bulk and surface features),

defects, adsorbates, and depositions (clusters and oligomers) and validate reaction mechanisms. It is gov-

erned by the Raman effect, caused due to the excited molecular vibrations in a sample when irradiated by

monochromatic light. Hence, the incident light gets scattered inelastically and shifts its frequency. Compu-

tationally, the frequency shift is captured by vibrational frequency-based calculations, and themagnitude of

the inelastic scattering (Raman intensities) is obtained by the derivative of themacroscopic dielectric tensor

with respect to normal modes.87Within the DFT framework, the normal mode vibrations are calculated via a

finite difference approach or DFPT, while the macroscopic dielectric tensors are obtained using DFPT.

In their detailed computational Raman analyses over ceria-based materials, Xu et al.88 assigned the iden-

tities for the two Raman peaks observed for M-O-Ce bond vibrations in doped ceria systems, where M de-

notes the dopant metal, using bulk equivalent models of various ceria-based catalysts. A peak observed

around 560 cm�1 was assigned to the M3+-O-Ce4+ near oxygen defects, while the peak around

600 cm�1 was assigned to the Mn+-O-Ce4+ without oxygen defects. Such distinctions and detailed descrip-

tions were difficult to capture in previous experimental Raman studies.89,90

Although, most computational Raman studies employ bulk catalyst models to explain the surface phenom-

ena observed during reactions (due to easier prediction of bulk phonons/vibrations),47,88 a few recent

studies have also shown surface phonon prediction using surface models. Schilling et al.,91 in their com-

bined experimental and theoretical investigation, studied CeO2(111) surface phonons and assigned the

Raman band at 250 cm�1 to the longitudinal Ce-O stretch on the ceria surface. This is an important assign-

ment as it is an indicator of the oxidation state of the Ce entities of CeO2(111) nanoparticles. They also stud-

ied the peroxide (O2
2�) vibrations, which are one of the important active oxygen species that influence

oxidation reactions over the ceria surface. Various configurations of O2
2� (based on their neighboring

Ce states) were identified, and the corresponding Raman modes were predicted, which are otherwise un-

traceable in experiments. Such assignments are essential to predict the type of active sites and describe

reaction mechanisms for oxidation reactions over the ceria surface.

XPS

XPS is a powerful technique for studying the electronic structure and active sites of catalyst surfaces. The

surface atoms of the catalyst undergo electronic changes in their valence regions due to reduction,
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oxidation, and interactions with adsorbates during chemical reactions. This can be captured by analyzing

the response of core electrons via the calculation of core-level binding energies (CLBE). Experimentally, it is

captured by the changes in the X-ray photoemissions,92 while computationally, it is calculated using DFT-

based electronic calculations. Due to the complexity of photoemission processes, theoretically calculated

CLBEs aid in deconvolution and accurate interpretation of experimental spectra. Under the DFT frame-

work, the core-level binding energies are calculated using initial (without accounting for core-hole

screening) or final state (with core-hole screening) approximations. The difference between the core-level

binding energies of a surface atom and its bulk equivalent, referred to as surface core-level shifts (SCLS), is

used as a descriptor to explain various surface chemistries related to adsorption, site coverages, and defect

formation.92–96

Posada-Borbón et al.95 used SCLS of surfaceO atoms to explain the impact of oxygen vacancy formation on

the surface reduction in ceria catalysts. A negative SCLS calculated for oxygen in the vicinity of the vacancy

was ascribed to the destabilization of the surface due to the formation of Ce+3 species around the oxygen

vacancy.95 SCLS can also be used to predict the adsorption site, and hence the adsorbate-induced growth

of catalysts or adsorbate islands.97,98 Lousada et al.97 predicted the extent of O coverage over Al(110) sur-

faces by comparing the trends in SCLS of surface and subsurface Al atoms of Al(110) with that of the surface

Al of Al2O3. This provided a rational means of modeling Al(110)-exposed catalysts for oxidation studies with

a right description of oxygen coverages/islands. Lizzit et al.93 explained the nature of O chemisorption on

the Ru(0001) and Rh(111) surfaces using the SCLS in Ru atoms. A similar trend in SCLS with an increase in

O coverage indicated the presence of similar on-surface O chemisorption behavior in both Rh(0001) and

Rh(111) surfaces, although O adsorption sites were different (hcp in the case of Ru(0001) and fcc in case

of Rh(111)).93 However, sole experimental XPS analysis would have failed to observe the distinctions in

the active sites, as the spectra would have been similar for the two surfaces. SCLS is also used to resolve

ambiguities in active site determination from experiments. Köhler et al.94 confirmed the adsorption of

CO on atop Rh site over Rh(111) surface as the Rh SCLS value corresponding to atop adsorption mode

agreed well with that of the experimental core-level binding energy shift, while it did not for other sites

(bridge and hollow sites).94

Although an indirect means, computational XPS analysis is becoming a useful tool for ascertaining active

sites for adsorption and reactions. Sufficient caution needs to be exercised during the application of this

technique as an accurate prediction of CLBE is contingent on the right choice of the catalyst models (lateral

dimensions and number of atomic layers),99 and computational parameters such as the application and

value of on-site Coulombic interactions (Hubbard U), and the type of DFT exchange correlation

functionals.100

STM or scanning tunneling electron microscopy (STEM)

High-resolution STM experiments are used to elucidate atomic-scale catalyst structure both qualitatively

and quantitatively. It is used in studying surface defects,101 growth,102–104 adsorption and cover-

ages,105–107 cluster agglomeration,108 and so on. However, one of the fundamental challenges for an

experimentalist is the assignment of atomic identities for the observed STM images. This is easily

resolved by theoretical STM simulations with the help of DFT-obtained charge densities of catalyst sur-

face species, which can be used to explain the underlying surface structure. Hence, computational STM is

a direct method of catalyst model validation, unlike the other techniques discussed in this article which

are indirect in nature.

Quertite et al.,101 in their work on the growth of NaCl over Ag(110), used a combination of experimental and

simulated STM studies to explain the formation of Cl vacancies at one 1 ML coverage of NaCl film. The

observed ‘‘depression’’ in the experimentally determined STM image was ascertained to be the Cl va-

cancies, as the simulated STM image of a Cl vacancy-containing model also showed a similar-sized depres-

sion.101 The STM simulations also resolved ambiguities in predicting the right atomic compositions of the

growing films. Chen et al.103 observed two distinct types of step edges for the ceria growth (islands) over

Pt(111) in their experimental STM images. However, the right description of the atomic species involved in

the formation of these step edges was impossible solely by experiments. To explain this, four surfaces with

different Ce and oxygen compositions were modeled, out of which two surfaces with step edge composi-

tion of Oi-Os-Ce and Os-Oi-Ce/Oi-Ce-Os (where Oi and Os denote interfacial and surface oxygens over

Pt(111)) reproduced the experimentally observed step edges using DFT calculations and computational
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STM analyses. Such studies not only explain the experimentally observed features but also gave realistic

catalyst models for detailed mechanistic studies.

Data-driven methods for assisting computational and experimental operando characterization

The XANES, EXAFS, ELNES (analogous to XANES), and EXELFS (analogous to EXAFS) techniques are atom

specific and are highly sensitive to the local chemical environments and capture the geometric and elec-

tronic effects around active sites, which ultimately impact the catalyst structures and reactivities. Interpre-

tation and analyses of such spectra can substantially benefit from data-driven and computational

approaches. For that, a reasonable dataset (hundreds to thousands) comprising the spectra of known struc-

tural features (descriptors such as bond lengths, coordination numbers, etc.) is required for a desired atom/

element for training the supervised machine learning models. However, for systems with unknown descrip-

tors, a larger dataset (thousands to millions) obtained from experiments and simulations can be subjected

to unsupervised machine learning methods such as principal component analyses (PCA), multivariate

analyses, and so on, for classification, dimensionality reduction, noise removal, and clustering to make

meaningful inferences.

Liu et al.79 used a supervised machine learning method involving a NN to understand the XANES spectra

of copper oxide clusters using structural descriptors such as coordination numbers. The authors created

25 CuO and 30 Cu2O cluster models by truncating the original bulk structures of Cu2O and CuO along

different low-index planes, such as (100) and (111) and to standard morphologies such as tetrahedral,

octahedral, and cubic shapes. They also created surface slab models of (100) and (111), for developing

the training set for the neural network. Their developed NN could extract important information such as

average particle size and oxidation state using Cu-Cu coordination number as the descriptor.79 Although

metal-to-metal CN is a sufficient descriptor for interpreting XANES for metallic clusters,81 consideration

of metal-oxygen coordination numbers is also essential to predict the sizes of mixed phases (simulta-

neous presence of Cu, CuO, and Cu2O) in metal oxide clusters. The unsupervised learning methods

have been used to preprocess the XAS data and categorize them into XANES and EXAFS data. Using

techniques such as PCA, Z score normalization, and k-means clustering, Kartashov et al.77 developed

software tools to pre-process the XAS data and offer a means of data mining to develop new insights

about Pd nanoparticles. For more information on the machine-learning-based interpretation of X-ray ab-

sorption spectra, available databases for obtaining large-scale spectral datasets, and simulation codes

for generating large datasets for XANES, the readers are suggested to refer to the review article by Tim-

onshenko et al.82

Causes for incorrect predictions of catalyst structure

Poor catalyst modeling causes a mismatch with those obtained from the experiments. Reliable catalyst

modeling requires rigorous testing and optimization of computational and catalyst model (supercell) pa-

rameters for DFT calculations. These include cutoff energy for the plane wave basis set, electronic and force

convergence criteria for the self-consistent field calculations and the geometry optimization, respectively,

k points density for the Brillouin zone sampling, lateral dimensions of the surface, number of atomic layers

in the supercell, vacuum thickness above the surface, and so on. These are usually optimized against a suit-

able descriptor, such as formation (surface/phase) energies, adsorption energies of a probe molecule

(describing a desired reaction), vibrational frequencies (absolute and shifts), binding energy shifts (CLBE

for XPS analyses), and so on. Improper optimization of these parameters is one of the reasons for the failure

of computational characterization having parity with experiments. One of the studies by Trinh et al.99 on

computational XPS analyses presented the need for optimization of some of the above-mentioned param-

eters, as the binding energy shifts (CLBEs) were found to be extremely sensitive to these parameters.99 The

other possible reasons include improper choice of the catalyst surface (crystal facet), catalyst phase, the

surface coverage of species, and model types (oligomeric types, cluster, and periodic supercells). Finally,

poor choice of experimental references also impacts catalyst modeling and validation as the quality and

rigor of the experimental data that are chosen for developing catalyst models also determines the quality

of the computational models.

Summary and iterative workflow for catalyst structure modeling

An ideal iterative workflow for rational catalyst modeling and validation is proposed in Figure 4. Among the

first steps is the prediction of equilibrium catalyst morphology at reaction conditions using the commonly

observed low-index crystal facets. Based on the most dominantly exposed crystal facets obtained from the
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Figure 4. Proposed iterative workflow for rational operando catalyst structure prediction and validation
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Wulff construction of the nanoparticle morphology, the surface models for the catalyst can be obtained.

This is followed by an accurate description of the surface phase and surface atomic arrangement, either

using equilibrium-based (surface phase equilibria) or kinetics-based simulation techniques. If the catalyst

structure dynamics is expected to be relevant at reaction conditions, dynamic simulations may be per-

formed to capture those effects. Otherwise, kinetic Monte Carlo or predictive (machine learning) method-

ologies may be useful. In carrying out surface phase equilibria studies, one must be cognizant of the
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Table 3. Different reaction mechanism generators relevant for heterogeneous catalysis and their typical

application in different reaction types

Mechanism generator Commonly used reaction type

NetGen120 Deoxygenation122

Oxidation123

Oligomerization122

Cracking122

Alkylation122

Aromatization124

Reaction Mechanism Generator (RMG)117,118 Reforming125

Oxidation126

Rule Input Network Generator (RING)127 Dehydrogenation128

Hydrodeoxygenation128

Cracking129

ll
OPEN ACCESS

iScience
Review
presence of surface defects, redox behavior of the catalyst surfaces under the reactive gases in the reaction

environment, and analyze surface phase equilibria accordingly. These determine the nature and stability of

various active sites (inherent and induced) on the surface. Among these, the kinetics-based and predictive

methods employing machine learning can be used for more rigorous prediction of surface phases which

may normally get overlooked by phase equilibrium studies at the reaction conditions. The nature of active

sites is determined using standard descriptor-based evaluations for capturing the heterogeneity present

if any.

Finally, the developed catalyst models are to be validated using computational techniques such as IR,

Raman, XPS, or STM (or combinations as relevant) against the available experimental evidence. Choosing

the right type of technique for the validation is crucial and will depend on the type of catalyst system under

consideration and the experimental data available for validation. STM offers a direct means of character-

izing the structural features (such as sites) of the catalyst surface. Spectroscopic techniques can be used to

explain and validate active sites, surface redox processes, surface reaction intermediates, reaction mech-

anisms, and so on. Failure to reasonably match the key catalytic signatures observed in the experiments

suggests a poor choice or description of a surface model, and the process needs to be revisited (Refer

to Figure 6 for more details on the iterative refinement of the catalyst model). Catalyst models that repro-

duce the experimentally reported catalytic signatures can be used for further reaction studies.

REACTION MECHANISM AND NETWORK GENERATION AND VALIDATION

Detailed reaction mechanism and complete reaction network, together with the corresponding energy

profile, is a minimum requirement for the hierarchical detailed kinetic modeling of the reaction. Typically,

reactions of small molecules with simple reaction networks are explored based on chemical intuition,

breaking down the network into all possible elementary reaction steps. This approach may however be

fraught with the risk of personal biases, resulting in incomplete or inappropriate networks. With recent de-

velopments in high-performance computing systems, application of DFT simulations to identify reaction

mechanisms and mapping energy landscapes of whole reaction networks by calculating energy changes

for each elementary step has become commonplace.4,16,109 This is typically done by analysis of the mini-

mum energy pathway connecting the reactant and the product states via the transition state (first-order

saddle point in the potential energy profile) for each of the elementary reaction steps using DFT simula-

tions. When all elementary steps are connected, it forms a continuous energy profile on an arbitrary reac-

tion coordinate, representing the complete catalytic cycle. Such DFT potential energy profiles of reaction

networks are now the backbone of reaction mechanism analysis at the atomistic scale.4 An alternative is the

analyses of the underlying free energy profile for the same reaction network, and this is routinely done by

adding appropriate corrections using statistical mechanics to the DFT-derived potential energy to convert

it to a free energy, ref.110.

Rule-based reaction mechanism and network generation

As the size of the reactant or the number of species involved in the reaction increases, the number of

elementary reactions in the network rapidly increases.111 Although spectroscopic information on the
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observed reaction intermediates is often helpful to identify pathways and eliminate some other possibil-

ities, generation and analyses of large reaction networks are challenging. Here, the automatic reaction

network generation algorithms which take information such as reactants, reaction rules, and reaction fam-

ilies as input for generation of the reaction network become extremely useful.112 Although there are a wide

range of reaction mechanism generators for gas-phase chemistries such as Genesys,113 MechGen,114 Ki-

netic Network Generator,115 and Reaction,116 a few that have applications for heterogeneous catalysis

are listed in Table 3. The Reaction Mechanism Generator117,118 was developed from the previous codes

Exxon-Mobil Mechanism Generator,119 NetGen,120 and Exgas.121 An automatically generated reaction

network considers all possibilities, making it large and complex and analyses of such large networks would

be computationally intractable.

Data-driven reaction mechanism and network generation

Chemometric techniques and data-driven models have been developed for monitoring reaction dynamics

in order to interpret the multivariate (dependent on temperature, residence time, etc.) signals from spec-

troscopic data.27,130 These have been shown to assist experimental elucidation of reaction mechanisms as

they are carefully trained based on the existing spectral information and can also be used to develop hy-

potheses for carrying out new experiments. Puliyanda et al.131 developed the hidden semi-Markov models

for both offline and online monitoring of FTIR spectroscopic data, extracted the ‘‘latent’’ features (species

identities) in the spectra using Bayesian networks, and interpreted the reaction mechanism and timescales

for the identified modes, for low-temperature thermal cracking of Cold Lake bitumen. In another study for

the same reaction system, a data injection/fusion model based on the joint non-negative matrix factoriza-

tion and Bayesian networks was developed to extract the pseudo-component spectra and hypothesize the

reaction mechanisms, respectively.132 Sivaramakrishnan et al.,130 in their study on the thermal upgrading of

Athabasca bitumen, reported the use of the self-modeling multivariate curve resolution method and other

statistical tools to develop a reaction mechanism with minimal prior chemical knowledge. For a more

detailed understanding of the data-driven approaches in reaction mechanism generation, the readers

are suggested to refer to the review by Puliyanda et al.27

Recently, many studies have come up with machine-learning-based reaction mechanism generation tech-

niques in order to circumvent the computationally expensive DFT-based mechanistic studies with minimal

DFT data for initial training or using data in available experimental databases.133 Puliyanda et al.,27 in their

review, collated the recent studies that have reported automated and data-driven generation of reaction

pathways. A detailed comparison of various rule-based (manually encoded and algorithmically extracted),

quantum mechanical simulation-based, and machine learning-based methodologies to generate reaction

networks for developing the mechanistic insights was made. Burés et al.133 recently developed a large-

scale artificial intelligence-guided reaction mechanism classification tool. The authors used neural network

and deep learning tools to extract mechanistic information from the available experimental kinetic data for

which they considered a wide range of reactions such as olefin metathesis, cycloaddition, alkene isomer-

ization, C-H amination, photocatalyzed hydroalkoxylation, and so on. The developed AI model was re-

ported to accurately (>99% categorical accuracy) predict the mechanisms for the aforementioned reac-

tions, at various reaction conditions, and including those of catalyst activation and deactivation steps,

which are normally inaccessible in traditional kinetic analyses. Unlike the case of conventional machine-

learning-based reaction mechanism generators which require careful choice and assignment of reactivity

descriptors27 (obtainedmostly with the aid of DFT), the proposedmodel by Burés et al.133 relies only on the

experimental dataset for developing the required training set and hence bypasses the inevitable human

errors during the computational reaction and kinetic analyses.

Reaction mechanism validation

Validation of reaction mechanism is a prerequisite for conducting kinetic modeling. Conventionally, vibra-

tional frequency-based techniques like IR and Raman spectroscopic analyses have been used in in situ/op-

erando mode to assign molecular identities based on the identification of the functional groups from the

characteristic spectroscopic signatures observed in the experiments and to obtain mechanistic in-

sights.49,134–137 The review by Zaera et al.134 discusses the use of various IR-based techniques including

transmission IR (TIR), FTIR, DRIFTS, reflection-absorption, and attenuated total reflection in detail. Modifi-

cations to the conventional DRIFTS analyses, such as synchrotron-based DRIFTS, modulation excitation

(ME) with phase-sensitive detection (PSD), have yielded accurate descriptions of surface species during re-

actions.134,136 Various Raman spectroscopy-based analyses such as time-dependent operando Raman,
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ME-PSD Raman, surface-enhanced Raman, and shell-isolated nanoparticle-enhanced Raman have also

been adopted for mechanistic studies.137

The computational analogs of vibrational spectroscopy-based techniques become very useful to directly

assign the molecular identity of the surface species which would in turn help in identification of the re-

action mechanism. This approach is to be adopted with a caveat that typically there is a deviation of the

computed frequencies of the normal mode vibrations of the intermediates from the experimental fre-

quencies by 10–20 cm�1.47,49 Pushkar et al.47 employed computational IR analyses to assign the molec-

ular identities of the surface intermediates observed during propane oxidation over Ni-doped ceria

nanorods where formation of over-oxidized oxygenates such as acetone, ketene, and formaldehyde

were confirmed. Another study reported the use of computational Raman spectroscopy in mechanistic

analyses of WGS reaction over ceria-supported gold catalysts.138 Characteristic vibrations reproduced

for surface hydroxyl, peroxide, formate species, and Ce+3-O vibrations explained the active role of the

ceria support in WGS reactions and gave insights into the reaction mechanism.138

Hess et al.139 studied the CO oxidation over Au/CeO2 catalysts and confirmed the role of oxygen vacancies

over the ceria surface in facilitating the adsorption of molecular O2 and oxidation of CO to CO2 using op-

erando Raman analyses, which was previously predicted by Henkelman and co-workers140 in their DFT

studies. Another example would be that of the propane ODH studies by Schumacher et al.,135 where

they confirmed the active role of ceria surfaces in the first C-H activation of propane over VOx/CeO2 cata-

lysts using operando DRIFTS with isotopic (C3D8) experiments and validated a similar claim made by

Penschke et al.49 in their DFT studies using H adsorption studies.
KINETIC PARAMETER ESTIMATION

With reaction mechanisms and reaction network identified, predicting the reaction kinetics is critical to

quantify catalytic activity and to compare the performance of different catalysts. This requires estimation

of the rate constants for all the elementary reaction steps in the network. Rate constant within the Arrhenius

framework or within the transition state theory (TST) framework comprises the pre-exponential and expo-

nential terms. Within TST, the pre-exponential and exponential terms are functions of the activation en-

tropy change and activation enthalpy/energy barrier, respectively. In this review article, the pre-exponen-

tial term and activation barrier are referred to as the kinetic parameters.
Semi-empirical techniques

Semi-empirical techniques such as the unity bond index–quadratic exponential potential (UBI–QEP)141 and

transition state/kinetic scaling relations142 can be used to estimate the activation barriers of elementary re-

actions. However, activation entropy change for elementary reactions is not easily acquired without the use

of quantum mechanical calculations and often the pre-exponentials are obtained by fitting against the

available experimental data. This section briefly introduces a couple of semi-empirical methods used in

estimation of the activation barriers for kinetic modeling and discusses limitations of these techniques

with examples from the literature.

UBI-QEP method

The UBI–QEP is a phenomenological approach modified from the earlier bond order conservation–Morse

potential143 method. The UBI–QEP method analytically describes the Morse potential with a polynomial

description and bond index as an exponential function in the quadratic exponential potential.144 Based

on information such as binding strength, type of coordination, atom count, and so on, an appropriate equa-

tion comprising the bond dissociation energy and the heat of chemisorption is applied to estimate the acti-

vation barrier.144 Evgeny et al.141 described the UBI-QEP methods and its applications for the cases with

different binding coordination, binding strength, and atomic size of molecules and were discussed in detail

for different transition metal catalysts.

Maestri et al.145 reported a 0.3 eV underestimation of the activation energy by the UBI-QEP method,

compared to a DFT reference for surface hydroxyl (OH) dissociation (OH dissociation into O and H) on

Rh(111) surface with a 0.5 ML of O coverage. The lateness of the transition state(TS) caused by the

O coverage was identified as the reason for the error. A scaling factor was proposed to compensate for

the underestimation which brought the predicted O-H activation barriers using UBI-QEP method within
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a 10% uncertainty of the DFT reference. For the elementary steps in CO2 reduction to methanol on Cu-

based catalyst, Park et al.146 improved the prediction of the activation energy barriers by the UBI-QEP

method by using binding energy and enthalpy calculations from DFT simulations.

Evgeny et al.141 compared the UBI-QEP-predicted CObinding energy on different transitionmetals such as

Ni, Cu, Pt, Pd, Ag, and Co with the experimental data reported by Whitten et al.147 and reported that the

UBI-QEP estimations on 3d transition metal catalysts are in good agreement with experimental data while

those on 4d and especially 5d metals exhibit deviations. Moreover, the accuracy of the UBI-QEP energetics

is sensitive to the factors like 1) the accuracy of the estimated binding energy (BE), 2) the size of molecule, 3)

the presence of repulsive interaction due to coverage of reactive/non-reactive intermediates such as O,

OH, and H, 4) the nature of the catalyst material and the active sites, and 5) the extent of surface rearrange-

ment.141 Hence, appropriate corrections and considerations for these factors need to be incorporated

while using the method.

LSR

Thermodynamic correlations of adsorption energies of certain species, with a structurally related and

simpler species, on similar adsorption site types across different materials are typically called adsorption

scaling relations.148 More useful are the linear correlations such as the Brønsted�Evans�Polanyi (BEP) rela-

tion that links the reaction energy for elementary steps (thermodynamics) with activation energy barriers

(kinetics)149,150 as accurate determination of transition state of reaction steps and thereby the activation

energy barrier calculation by DFT is computationally more intensive than calculations of the intermediates.

In this context, scaling relations are an attractive means for estimation of activation barriers for kinetic

modeling of complex reaction networks. An example of the use of LSRs to reduce the compute expense

in large reaction network is discussed in the section titled Hierarchical iterative microkinetic modeling of

large reaction networks. Like the UBI-QEP method, the LSRs, can at best only give estimates of the activa-

tion barriers for elementary steps and not pre-exponential factors which are critical components of kinetic

expressions. LSRs are typically valid for simple catalytic systems such as metals, where the dissociation of

the reactants and adsorption of the products occur on the similar site types, and hence the activation en-

ergy barriers and binding energies are coupled.148–151

Complex catalyst systems such as single-atom alloys (SAAs),72,152,153 supported nanoclusters,153 and

ligand-modified systems typically exhibit active site heterogeneity.72,152–155 These offer dissimilar active

sites for reactant dissociation and product adsorption, resulting in the decoupling of the activation energy

barriers and binding/reaction energies. This results in what is now commonly referred to as the breaking of

the linear scaling relationship, which leads to deviations in the activation or binding energies predicted us-

ing a linear scaling relationship.72,156 The extent of these deviations depends on the extent of geometric

and electronic contributions to/from the catalyst system under consideration.156 Some of the typical in-

stances leading to the breaking of linear scaling relations include substrate spillover on the surface, sec-

ondary interactions, and confinement effects (in zeolites) during surface reactions.72,153–155

Darby et al.72 attributed the deviations in LSR for the dissociation of H2, CH4, CO2, and CH3OH on SAAs of

various metal systems such as Ni, Pt, Rh, Ir, and Pd to the large variation in the reaction energies for the

dissociation of these molecules of 0.1–1.3 eV due to adsorbate spillover across the surface. The large de-

viations were caused due to the dissociation of these molecules on the dopant and adsorption of the prod-

uct on the dissimilar metal host site. The deviations were also attributed to the valency of the bonding

metal atom and the nature of the adsorption configuration. A similar observation was made by Sun

et al.152 over g-Alumina-supported Pt/Cu SAAs during propane oxidative dehydrogenation. The Pt/Cu

SAA offered weaker (�0.57 eV) propene adsorption due to p bonding over the single Pt atom, compared

to the stronger di s bonds in the case of adsorption on Pt (111) (�1.1 eV) and Pt3Cu (�0.88 eV) alloy. As a

result, the propene desorption barrier was lowered and the further dehydrogenation barrier increased over

Pt/Cu SAA, hence showing a deviation from the linear scaling relationship developed between the propene

dehydrogenation/desorption energy barrier and propane dehydrogenation energy barrier. Lustemberg

et al.153 reported the breaking of linear scaling relations on ceria-supported metal (Pt, Ni, or Co) systems

(from a single atom to sub-nanometer clusters), wherein the strong metal-support interactions brought

about significant deviations in methane dissociation barriers predicted from conventional linear scaling

relationships.
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Szécsényi et al.154 reported the breaking of linear scaling relationships between the activation energy bar-

riers and reaction energies for methane dissociation over different Fe active sites in Fe/ZSM-5 catalysts. The

observed deviations were mainly attributed to the presence of confinement effects and adsorbed hydroxyl

ligands in the zeolite micropores. The confinement in the zeolite micropores imposed geometric con-

straints on the transition states, destabilized them, and altered the activation energy barriers. The ad-

sorbed hydroxyl ligands either stabilized the transition states by forming H bonds and reduced the activa-

tion energy barriers, or they destabilized the final states by losing the pre-existing H bonds (between the

neighboring hydroxyls) during methane dissociation. The former reduced the activation energy barriers,

while the latter increased the reaction energies.
Alternatives to semi-empirical techniques for kinetic parameter and reactivity descriptor

estimation

Applications of the semi-empirical techniques are limited to some specific systems and are subject to the

availability of parameters for the UBI-QEP method and existing LSRs for prediction of activations barriers.

Moreover, these techniques are typically capable of predicting the activation barriers for the elementary

reactions and not the pre-exponential factor. In addition to calculation of activation barriers, DFT simula-

tions are now routinely used to calculate the activation entropy change for elementary reaction steps and

thereby the pre-exponential factor in the transition state theory-based kinetic expressions. Harmonic

normal mode vibrational frequency analysis within the DFT framework, together with ab initio thermody-

namics calculations enable estimation of the activation entropy change fromwhich the pre-exponential fac-

tor in the kinetic expression is estimated. For activation barrier estimation on complex catalyst systems con-

taining dopants,102 vacancy,102 interface,103 and involving coverage effects,104 the typical semi-empirical

techniques may not be appropriate choices and there is a need for DFT-based parameter estimation.

Based on the ability to estimate activation entropy change and its applicability to a wide range of systems

with reasonable accuracy, DFT calculations are now preferred over semi-empirical techniques. Saurabh

et al.157 built a kinetic model obtained from DFT-based kinetic parameter for formic acid decomposition

reaction over Pt/C and Au/SiC catalysts and reported a good match with the experimental conversion

and TOF by appropriately accounting for the quantity of different sites corresponding to different facets

in the kinetic model. Although the DFT results are typically assumed to be reliable enough, the accuracy

depends on the choice of spin state of the catalyst model,158 the DFT exchange correlation functional

used,159 the valence state of the catalyst active site,160 the impact of surface species coverage on kinetic

and thermodynamics parameters,161 presence of defects,161 size of the catalyst model,162 surface struc-

ture,163–166 and approximations/limitations with catalyst model.157,167

As an alternative to traditional scaling relations, Baochuan et al.168 proposed the use of graph-based ma-

chine learning models to estimate the binding energies and activation energies of elementary steps in

ethanol synthesis from syngas on Rh catalyst. The parity plot of graph neural network and BEP relation-pre-

dicted activation energy barriers against the DFT-calculated activation energies were presented. It was

shown that the BEP-predicted activation barriers showed significant deviations with RMSE of 0.35 eV while

the graph neural network-predicted activation barriers showed a lower deviation with RMSE of 0.23 eV for

barriers in the range of 0.5–1.5 eV. They suggested this method to be much more reliable in predicting the

activation energies over a broader range of activation barriers compared to scaling relations.168 The kinetic

linear scaling relationships such as BEP relationships are usually developed to predict the activation en-

ergies for specific reaction steps on catalyst surfaces as they are mostly single-parameter-dependent (Re-

action energies) correlations. The universal/linear scaling relationships developed for simple metal sys-

tems151 rely mostly on the reaction energies where the changes in the chemical identities of the

reactants and the surface restructuring of the catalyst during the course of reactions are neglected. Göltl

et al.169 proposed an adaptation of the well-known BEP relationships by adding certain correction terms.

These terms described the changes in bonding between the catalyst surface and the adsorbed atom (C, N,

O, and H), intermolecular interactions between the surface species, and interaction strength between the

surface and the adsorbates.169 Using techniques such as random forest regression, support vector regres-

sion, and gradient boosted regression, the authors developed generalized BEP relationships for metallic

surfaces which predicted activation energies with an MAE of 0.11 eV.169 A detailed review by Lewis-

Atwell et al.170 highlights various machine learning tools for developing data-driven models to predict acti-

vation energies and discusses some of the studies that have adopted these for reaction kinetic modeling.
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Recent studies have employedmachine learning tools to account for adsorbate interactions which prove to

be computationally less expensive than KMC simulations, provided the necessary training dataset is gener-

ated.171–173 Wang et al.172 developed an NNmodel for describing the CO and NO adsorption over Au(111)

surface using electric dipole moments, dipole-dipole interaction potential energy, angle between surface

and molecule dipole, work function, and d-band center as the descriptors. The developed NN model pre-

dicted the adsorption energies (RMSE = 0.035 and 0.030 eV for CO andNO, respectively, over Au (111)) and

transferred charges (RMSE = 0.004 and 0.001 eV for CO andNO, respectively, over Au (111)) accurately. This

approach was also extended to CO and NO adsorption over Au(001) and Ag(111) surfaces without any sig-

nificant loss of accuracy.172 Another interesting study by Fung et al.171 reported the use of density of states

as the descriptor for developing the NN model, which accurately (MAE = 0.1 eV) described the adsorption

energies, accounting for the surface-adsorbate interactions. The model was developed to account for the

adsorption of a diverse set of species which included monoatomic (H, C, N, O, and S) and polyatomic (CH,

CH2, CH3, NH, OH, and SH) species on 2000 different bimetallic alloys of 37 different transition and non-

transition metals.171 A recent review by Mou et al.173 discusses more such studies that have developed ma-

chine-learning-based models to capture lateral adsorbate interactions for a better description of surface

kinetics.

Li et al.174 developed a machine-learning-based chemisorption model using artificial neural networks

(ANNs) to accurately describe the CO adsorption energies over the (100) surface of Cu-based multi-

metallic (belonging to Group VIII and IB) catalysts for electrochemical CO2 reduction. Using the descriptors

such as local electronegativity, effective coordination number, ionic potential, electron affinity, and Pauling

electronegativity, the authors trained the NN model to predict the CO adsorption energies which were in

many cases comparable (RMSE� 0.12 eV) with those obtained using DFT calculations.Wang et al.168 devel-

oped graph-based machine learning techniques to predict adsorbate energies, as this method accurately

captured the variations in the adsorbate coverages. The models were developed using techniques such as

graph convolutions, Weave, graph neural network, ensemble-median, and ensemble-mean, and were

trained using the available DFT data (consisting of 315 species containing C, O, and H) on the Rh (111) sys-

tem. Another study proposed a unique Adsorbate Chemical Environment-based Graph Convolution Neu-

ral Network model for screening atomistic configurations with varying adsorbates and their coverages, co-

ordination environments, and varying catalytic surfaces.175 This was used to model NO adsorption on

a Pt3Sn(111) successfully which is a key reaction step in the electroreduction of nitrates. The reaction is typi-

cally characterized by high adsorbate coverages over low symmetry alloy surfaces and OH adsorption over

Pt(221), which is a key step in oxygen reduction reaction, where significant direction-sensitive adsorbate-

adsorbate interactions exist. For more such studies on machine-learning-based multi-metal alloy design

and choice of suitable descriptors, the readers are suggested to refer to the review by Yang et al.176
Addressing the uncertainties in the estimated parameters

First-principles reaction kinetic modeling can be severely impacted by the introduction of errors due to un-

certainties at various stages of kinetics and model parameter estimation which rely on basic DFT-based

electronic energy calculation or semi-empirical energy calculations. Some approaches used in the litera-

ture to address the uncertainties associated with the estimated parameters are discussed in this section.

Estimating and addressing uncertainties in the DFT-estimated parameters

The uncertainty in DFT-predicted energetics can be estimated manually by carrying out DFT calculations

for different exchange-correlation functionals and analyzing the variations in energies, but is computation-

ally intensive.4 An alternative is the use of BEEF-vdW functional—a framework consisting of an ensemble of

functionals that are designed for systematic error prediction using Bayesian statistics.4,28,177 The errors in

the energies predicted using typical DFT exchange-correlation functionals and from the approximate

descriptor-based linear scaling relationships get propagated to the kinetic models and impact the pre-

dicted reaction rates. Medford et al.178 studied systematic error progression in the prediction of rates of

ammonia synthesis over Fe and Ru catalysts and reported errors in turnover frequencies (TOFs) in the range

of an order of magnitude over Fe and almost two orders of magnitude over Ru. Also, large non-trivial un-

certainties in the TOFs were observed at lower temperatures in their Arrhenius plot, as the rates are more

temperature sensitive to low temperatures. Furthermore, they showed that the extent of uncertainties in

the predicted TOFs was more for inactive metals such as Pd and Ni compared to that on active Fe and

Ru catalysts.178
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Wang et al.179 calculated the energies of reaction intermediates with an ensemble of 2000 functionals

around the BEEF-vdW functional and used them for detailed analyses of uncertainties in reaction pathways

via quantifying reaction rates/TOFs, surface coverages, and degree of rate control (DRC) analyses for dry

reforming of methane (DRM) over Ni(111) and Pt(111) catalysts. Out of the 98 and 83 types of reaction path-

ways (developed without explicitly considering any reaction rules) over Ni(111) and Pt(111), respectively,

three main reaction pathways (denoted as A, B, and C) were chosen for kinetic analyses (microkinetic

modeling), based on their high frequencies of occurrence. The frequency of occurrence was considered

as a pruning parameter that was defined based on the confidence of a DRMpathway being dominant within

the temperature range of 823 K–1023 K. This BEEF-vdW-assisted reaction pathway pruning (reduction)

based on reaction rates revealed that pathway A was more favorable over Ni(111) while B and C were

more favorable over Pt(111).179 Furthermore, the transition states for CHO* formation and CO2 dissociation

over Ni(111), and those of CH-OH* formation andOOH* dissociation were found to bemore frequent (DRC

analyses). Finally, the uncertainty quantification of TOFs revealed that the reduced DRM pathways were

distributed between 10�8 and 103 site�1s�1 over Ni(111) and between 10�13 and 102.5 site�1s�1 over

Pt(111).179

Estimating and addressing uncertainties in the parameters estimated through semi-empirical
methods

Often choice of descriptor and its reliability causes uncertainty to acquire a reasonable estimation of en-

ergetics using LSR. Typically, the RMSE and the regression coefficients were considered to check the reli-

ability of the descriptor.168 In some cases, many descriptors may appear to be relevant and identifying the

most reliable one itself may be a challenge. Using a data-driven approach, Wenbin et al.180 identified po-

tential descriptors for the adsorption enthalpies of oxygen during oxygen evolution reaction on doped

RuO2 and IrO2 catalysts. They considered 31 potential descriptors and classified them as geometric and

electronic properties of the surface among which a few exhibited more than 90% correlation with others

and were eliminated from further analysis. Screened features were further analyzed with the sure indepen-

dence screening and sparsifying operator method181 to identify the most relevant descriptors.

Ulissi et al.182 examined the uncertainty in predictions of catalytic activity during NH3 decomposition over

metal catalysts by manual perturbation of kinetic model parameters such as pre-exponential factor and the

adsorbate bond indices (used in UBI-QEP equations). The motivation was to study the impact of an explicit

assumption of a pre-exponential factor of 1013 for all elementary steps on the catalytic activity descriptors,

such as the binding energies of atomic H (QH) andN (QN). An order of magnitude perturbation of pre-expo-

nential factors brought about G 0.9 kcal/mol change in QH and G 2.9 kcal/mol change in QN; while a 25%

change in the bond indices of a reaction pair brought aboutG 0.7 and 3.1 kcal/mol changes in QH and QN,

respectively. Furthermore, they also examined the impact of pre-exponential perturbation on the surface

coverage-dependent binding energies as adsorbate-adsorbate lateral interactions at surface coverages of

zero and 1/9 ML on Ni, Pt, and two monolayer bimetallics (Pt-Ni-Pt and Ni-Pt-Pt) as this is one of the impor-

tant kinetic model parameters. At higher coverage, a significant shift of � G 25 kCal/mol was observed in

QH andQN, and Ni-Pt-Pt bimetallic was reported as the optimal catalyst as it offered the most favorable QH

andQN. This observation was in good agreement with experiments, unlike the case at zero coverage where

pure Ni and Pt were regarded as the optimal catalysts, as they offered better QH and QN compared to that

of the bimetallics.
Summary of reaction mechanism generation and current approaches in kinetic parameter

estimation

Typical methodologies adopted in the literature for estimating kinetic parameters are summarized in Fig-

ure 5. For relatively small reactant species undergoing simple reaction mechanisms on simple catalysts, the

full reaction network may be manually built. In the absence of inputs from existing spectroscopic informa-

tion and prior mechanistic studies, this task is heavily reliant on chemical intuition and experience of the

investigator. However, for complex reaction networks of larger reactant species, an appropriate reaction

mechanism generator may be used. The active site heterogeneity on the catalyst surface may necessitate

multi-mechanistic investigations and the impact of coverage effects on reactionmechanism and energetics

may require iterative studies. Semi-empirical methods such as the UBI-QEP which is computationally inex-

pensive have given reasonable estimates of activation barriers in conditions such as reactions of small mol-

ecules on 3d transition metals at relatively low pressure (low coverage). This can be used as a tool to obtain

quick preliminary estimates of reaction energetics in a complex reaction network. When UBI-QEP estimates
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are not sufficiently accurate, DFT calculated BEs may be combined with the UBI-QEP approach for

improving the accuracy, especially for 4d and 5d transition metals. Kinetic linear scaling relations on appro-

priate descriptors have been established for a wide range of species/elementary steps for different catalyst

classes. These can also be used for quick preliminary estimates of kinetic parameters, especially for com-

plex reaction networks. However, these need to be used with caution, as the deviations in predictions can

be significant for cases where the geometric and electronic features of the catalytic sites or the nature of

species interactions on the surface are even marginally different from those for which the LSR was originally

derived. For complex multi-component catalysts with reaction steps at the interfacial sites or for catalysts

containing dopants, vacancies, and defects, the UBI-QEP/LSRs typically fail and direct DFT-based analyses

are recommended. DFT analyses are also recommended when the surface species coverage effects are

prominent or for the cases where high accuracy is needed. Ascertaining the fidelity of the computed kinetic

parameters and quantifying the parametric uncertainties by using error estimating functionals, using data-

centered approaches, or using experimental data injection are critical in ensuring reliable predictions by

the kinetic models. Hierarchical approaches utilizing a judicious choice of lower rung semi-empirical

methods with higher accuracy DFT techniques and iterative refinement of the parameters is a promising

approach drawing compromises on accuracy and computational cost. For more insights and details on

the methods and techniques for accurate estimation of reaction kinetics parameters, the readers are

directed to the review article by Sebastian et al.183
KINETIC MODELING

A kinetic model represents the complete catalytic cycle and describes the temporal evolution of

reactants, products, and various reaction intermediates during a chemical reaction. These models can

predict macroscopic observables/measurables such as reactant conversions, turnover frequencies, prod-

uct selectivity, and reaction orders at a wide range of conditions which can be validated with the existing

experimental reports. A kinetic model built by coupling all the interconnected elementary surface

reaction steps and capable of giving the overall reaction rate is typically described as a microkinetic

model. Analysis of the microkinetic model requires solving a coupled set of differential equations for

an appropriate reactor type. Depending on the complexity of the reaction system under consideration,

the kinetic model can be a simple computationally efficient mean-field-based model that describes the

reaction kinetics without accounting for the spatial correlations between the reaction intermediates or

relying on a computationally expensive stochastic model that accounts for such interactions. In this sec-

tion, we briefly discuss the applications of these approaches to describe heterogeneous catalytic reac-

tion systems.
Mean-field microkinetic modeling

The mean-field approximation inherently neglects the attractive or repulsive interactions of a surface

species with its neighboring surface intermediates. Hence, a mean-field microkinetic model is a system

of coupled rate expressions of elementary surface reaction steps representing a complete catalytic cycle,

where the species under consideration in each expression is treated as if they are unperturbed by their

neighbors on the surface. Here, the fractional surface coverage of the reactants/intermediates/products

is analogous to concentration/pressure used in liquid/gas-phase modeling. Microkinetic modeling be-

comes a crucial link of catalyst microstructure to readily measurable quantities such as TOF, conversion,

and selectivity184–187 from experimental studies at specific conditions which enable development of cata-

lyst structure-activity relations. Hence, this also serves as an indirect tool for validating the computation-

ally estimated kinetic parameters of the elementary steps which is not straightforward and often cumber-

some. For a more detailed description of the methods and applications, the readers are directed to the

review article by Motagamwala et al.17 and for more details on the first-principles microkinetic modeling

techniques, readers are requested to refer to the review article by Albert et al.28

Since the rates of reactions are described by kinetic and thermodynamic parameters and the coupled re-

actions of the developed mechanism are under thermodynamic constraints, one of the critical factors for

successful microkinetic model development is to ensure thermodynamic consistency in parameter estima-

tion.188–190 Consistency needs to be ensured both in the enthalpic and entropic contributions in the kinetic

parameters. Inconsistencies in calculating the kinetic parameters of elementary steps of themechanismwill

lead to inaccuracies in the predictions of the microkinetic model and lead to incorrect representation/pre-

diction of the reaction equilibrium. For more details on thermodynamic consistency in microkinetic
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references where these have been used

Analysis Reference

Sensitivity analysis 186

Degree of rate control (DRC) analysis 193

Partial equilibrium analysis 185

Most abundant reaction intermediate (MARI)

analysis

210

ll
OPEN ACCESS

iScience
Review
modeling and strategies to ensure it, please refer to articles by Mhadeshwar et al.,189 Gossler et al.,190 and

Stotz et al.190

A few typical analyses of mean-field microkinetic models are discussed in section 5.1.1. Selected examples

of microkinetic analyses of large and complex reaction networks where hierarchical techniques are adop-

ted with iterative refinements are described in section 5.1.2. Cases where the mean-field approximation

breaks down and an explicit coverage need to be incorporated in the estimation of energetics and kinetic

parameters or cases where the catalyst structures/active sites are different at operando conditions due to

species coverage on the surface, necessitating a catalyst model refinement are discussed in section 5.1.3.

Caveats of MKM analyses are discussed in section 5.1.4.

Mean-field microkinetic models: Typical analyses and outcomes

Among the outcomes of the microkinetic analysis is the fractional surface coverage of reaction intermedi-

ates and products which enable determination of the most abundant reaction intermediate (MARI). Such

species may in some cases block a significant number of active sites, and hence this information is helpful

in exploring strategies to maximize the active site availability for seamless progress of the reaction. While

the mean-field approximation works well for quite a few chemistries and catalytic systems, in many others,

the lateral repulsive/attractive interactions from the abundant surface species might have to be considered

for more accurate kinetic parameter estimation and thereby kinetic analyses. Moreover, the fractional sur-

face coverage by intermediates may also change the stability and morphology of the catalyst surfaces.

Hence, microkinetic analyses can be utilized for iterative refinement of the catalyst structure and kinetic pa-

rameters of the elementary reaction steps. Examples of this kind from literature are discussed in section

5.1.3. Some common analyses with MKM are summarized in Table 4.

The sensitivity analysis performed on a microkinetic model sheds light on the kinetically relevant elemen-

tary steps in the model and the extent of impact of reaction conditions or the nature of the catalyst have on

these steps and thereby the overall impact on reaction rate, conversion, product selectivity, and so on. This

is crucial in identifying critical reaction tuning parameters, andmore importantly in the search of alternative

more efficient catalysts that impact selectively the identified reaction steps. Typically, through brute force

local sensitivity analyses,191 normalized sensitivity is calculated. Srinivas et al.186 studied the effect of

various reaction parameters on sulfur poisoning on Ni catalyst for steam reforming reaction of biogas con-

taining H2S and found the H2S sticking on the catalyst surface to be the sensitive step for sulfur poisoning.

Hence, they proposed and demonstrated using the model that high-temperature operation minimizes sul-

fur poisoning. Additionally, sensitivity analysis is often helpful in refining the accuracy of the large kinetic

models developed by lower order computational techniques by selectively updating only the sensitive

steps. An example of this type is discussed in section 5.1.2.

In a large reaction network, chnage in the energies of the intermediates and transition states of a few

elementary steps could independently change the net reaction towards the product of interest. The

DRC is a helpful reaction engineering tool used to identify those elementary steps. A detailed discussion

on the DRC analysis, applications, and examples is presented in the viewpoint by Campbell and co-

workers.192 Verena et al.193 analyzed propane combustion reaction on Pd(211) surface using DFT-basedmi-

crokinetic model. Through DRC analysis, the penultimate dehydrogenation step was found to limit the re-

action.11 On Ni-based oxygen carrier, Yuan et al.194 identified H2 decomposition as the controlling step by

comparing the barriers of elementary steps in the syngas combustion reactions.
iScience 26, 107029, July 21, 2023 25



ll
OPEN ACCESS

iScience
Review
The partial equilibrium ratio defined as the ratio of the forward reaction rate to that of the sum of the for-

ward and backward reaction rates of the elementary reaction helps to identify reaction steps with net for-

ward or reverse flux. Information on reactions in partial equilibrium can be used to simplify the reaction

network. Aswathy et al.185 performed the partial equilibrium analysis for CO2 methanation on Ru catalyst

at 410�C, 330�C, and 250�C and reported only 6 out of 21 elementary steps in the network to have a forward

reaction flux at the lower temperatures. At higher temperature of 410�C, only 2 of them showed a net for-

ward flux, implying lower formation of CH4 and thereby lower CH4 selectivity. The partial equilibrium anal-

ysis in this case gave insights on the desirable operation window for the methanation reaction.

Several examples of microkinetic analyses are reported in the literature where the focus was to understand

the surface reaction kinetics of various chemical reactions like methane oxidation and reforming, CO and

CO2 methanation, methanol synthesis from syngas over various catalysts, and so on. Delgado et al.195

investigated the reaction mechanism of methane oxidation and reforming, comprising 52 elementary re-

actions over Ni catalyst. They developed the kinetic model after numerical adjustments to maintain ther-

modynamic consistency. The model predicted the product distribution for both partial oxidation and re-

forming of methane reactions in a temperature range of 373 K–1123 K. The modified kinetic model also

predicted the effect of co-feed of products such as H2 and H2O which predicted a decrease in the surface

carbon concentrations under reaction conditions which was in agreement with the experimental results

that showed H2 and H2O to be coke deposition inhibitors. Zhu et al.196 investigated the methane steam

reforming reaction over Pt and Rh catalysts and their microkinetic results showed Rh to be more active

than Pt catalyst due to the lower activation energy barrier for the rate controlling dissociative CH4 adsorp-

tion step on Rh than Pt. They found that low-coordinated Rh atoms are the active sites for the dissociative

methane adsorption. Schmider et al.197 developed the microkinetic model for both CO and CO2 methana-

tion reactions over Ni-based catalysts.197 The developed kinetic model was able to describe the methana-

tion reaction for a wide range of temperature conditions, catalyst loadings, support materials, and reactant

ratios. Campos et al.198 developed a three-site microkinetic model for the methanol synthesis from syngas

(CO/CO2/H2) over Cu(211) and Cu/Zn(211) catalysts. They considered the three sites as (i) Cu(211), (ii) fully

Zn-covered Cu(211), and (iii) a separate Cu(211) site for H2 and H2O adsorption. They validated the micro-

kinetic model with a total of 359 experimental data points from their own experiments and using those in

the literature. However, their model showed discrepancies in predictions at certain conditions such as a

combination of low temperature, high CO2/CO concentration in the feed, and high values of gas hourly

space velocities (GHSV). De Carvalho et al.199 developed a microkinetic model for the WGS reaction on

Ni-based catalysts which was able to predict the experimentally measured CO2 conversion and apparent

activation energies. Furthermore, they reduced the microkinetic model to a global one-step expression for

the WGS reaction on Ni which was able to predict CO conversion, apparent activation energy for different

conditions such as inlet compositions, volumetric flow rates, and temperatures. Sterk et al.200 investigated

the Sabatier reaction (CO2 to CH4) with DFT-based MKM on Ni(111), Ni(110), Ni(100), and Ni(211) facets.

Among the different facets, Ni(110) surface was shown to be the most effective for the reaction. By

analyzing the fractional contribution of the four nickel facets on Wulff-constructed metal nanoparticles

of 1–9.5 nm, they predicted that the Ni nanoparticles sized around 1.7 nm to be catalytically most active.

First-principles-based transient microkinetic study of CO hydrogenation on Co catalysts by Bart et al.201

revealed that initially on the empty surface, the CO scission is the fastest step, which at a steady-state sur-

face coverage is in competition with the CHx formation (CO hydrogenation) steps. Minimizing the CHx

coverage was found to favor CO desorption and hence it was proposed that CO reabsorbs or diffuses

to the edge sites to get activated for hydrogenation. Dharmalingam et al.202 investigated the multifunc-

tional Cu/ZnO/ZrO2/Al2O3 catalyst for CO2 reduction to methanol and showed that the thermodynamically

consistent DFT-based reactor scale microkinetic model predicted the CO2 conversion and product flow

rates at the desired reaction temperature, GHSV, and inlet feed compositions. They also showed that

the ZnO/Cu interface is active center for the reactions even though DFT calculations showed ZrO2/Cu inter-

face as favorable CO2 adsorption sites which highlighted the importance of the coupling of DFT simula-

tions with thermodynamically consistent reactor scale microkinetic models. The applicability of the MKM

technique and analyses is not limited to heterogeneous thermocatalytic applications, such MKM tech-

niques have been used in electrolysis cell applications203,204 as well.

Hierarchical iterative microkinetic modeling of large reaction networks

The computational expense of the DFT-based kinetic modeling makes its application to large reaction net-

works prohibitive and hence alternative approaches, drawing a balance between computational expense
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and accuracy, are desirable. One of the possibilities in this direction is to use a combination of semi-empir-

ical and DFT-derived kinetic parameters, where the semi-empirical methods are applied to estimate pa-

rameters for the non-sensitive reaction steps while DFT data are used for the sensitive steps. This can typi-

cally be accomplished in a hierarchical approach where semi-empirical methods are used for the

preliminary model development which is refined using DFT data for the sensitive reaction steps.

Yalan et al.205 developed a microkinetic model for methane steam reforming over Co(0001), Ni(111),

Ru(0001), Fe(110), Cu(111), Pd(111), Rh(111), and Pt(111) catalysts using UBI-QEP parameters and identified

the sensitive reaction step. They then updated the parameters of the sensitive steps with DFT-calculated

parameters. This approach led to an improvement in the accuracy of the prediction of the TOF of H2 pro-

duction which now was comparable to a pure DFT-based model, but with lower computational cost. Simi-

larly, Jonathan et al.206 adopted a hierarchical approach and updated the sensitive steps of the kinetic

model for ethanol steam reforming on Pt catalyst which was developed using BEP relation with first-prin-

ciples parameters. Analyses of the outcomes of the ‘‘pathways analysis’’ using the updated and the pure

DFTmodels showed comparable accuracy of the updated semi-empirical model at minimal computational

expense. This approach is believed to be a compromise in accuracy versus computational expense for

larger reaction networks.

Surface species coverage and catalyst structure-dependent microkinetic modeling

UBI-QEP, LSRs, and typical DFT-based kinetic parameters are obtained at conditions representing vacuum

or very low gas pressures which are reflected by the sparse population of the reactive species on the cata-

lyst surface. The kinetic models based on these conventional approaches for reactions that are carried out

at high pressures or with species that have very strong interactions with the catalyst are highly likely to be

making erroneous predictions due to the ‘‘pressure gap’’ or ‘‘coverage gap.’’ Hence, the effect of species

coverage on the surface can be explicitly accounted for by appropriate corrections and species coverage

containing simulation models. But it also needs to be kept in mind that the species coverage contributes to

changing the catalyst surface structure and hence might need iterative model development and parameter

estimation for accurate kinetic modeling.

Bhandari et al.207 investigated formic acid decomposition over Pt catalyst and found that the DFT-calcu-

lated energetics over clean Pt(100) and Pt(111) surfaces required parameter adjustments to predict the

experimentally determined apparent activation energies. Pt(100) was found to be poisoned by CO* under

typical reaction conditions; hence, the CO coverage in the model was updated to 4/9 ML, the energetics

were recalculated, and the MKM was updated. The updated MKM with the spectator CO*-assisted ener-

getics were able to reproduce the experimentally measured apparent activation energies.207 Ding et al.208

compared the TOF predicted by the kinetic model for NO oxidation on Pt catalyst developed using BEP

relations and the experimentally determined TOF for the same reaction and reported two orders of magni-

tude error in the TOF predicted by the semi-empirical kinetic model. The impact of lateral interactions of

surface species on the adsorption energy and the energy of the TS was identified as the reason for the error.

Their rigorous coverage-dependent model that accounted for the impact of lateral interactions on the TS

and the adsorbates gave a TOF which was in excellent agreement with the experimental result.

Ground state or equilibrium catalyst states and thereby the active sites typically used for reaction modeling

may not always accurately predict kinetics of reactions due to the existence of metastable catalyst struc-

tures with a different kind of active site distribution. Using the Gibbs free energy of formation of different

Rh nanoparticle shapes under typical CO dissociation conditions (including explicit CO coverage) and by

applying a Boltzmann probabilistic distribution at such conditions, Raffaele et al.209 generated an

ensemble of equilibrium and metastable nanoparticles of different shapes and sizes. The ensemble of

nanoparticles had a distribution of active sites which had a higher percentage of the more active sites

for CO dissociation than the equilibrium shape. This resulted in a two order of magnitude higher reaction

rate predicted by the kinetic model with the ensemble of nanoparticles than the kinetic model with the

ground state catalyst structure.

Through the MARI analysis of WGS reaction on Rh surface, Raffaele et al.210 identified CO as the dominant

surface species. With CO adsorbed on the surface, they performed Wulff construction by considering the

reaction condition and CO coverage, to identify the equilibrium nanoparticle shape under reaction condi-

tions. Rh(100), Rh(110), Rh(111), Rh(311), and Rh(331) facets with corresponding reaction energetics were
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included in MKM; the Rh(111) facet was found to be the dominant active surface during WGS, whereas, the

Rh(100) facet dominated the reverse WGS reaction rate. This information of the operando active surface

and sites is typically missed while modeling only the stable surfaces.

Uncertainty quantification in MKM and machine learning tools to address them

Limitations in the catalyst model,209 missing contributions of less stable facets,211 choices of sticking coef-

ficient,212 break down of the mean-field approximation,213 and neglect of multi-site reaction mechanisms

are some of the factors which will lead to inaccurate predictions by the microkinetic model. Moreover, ther-

modynamic inconsistency can result in substantial deviations in the predictions of equilibrium-limited re-

actions and lead to unreliable kinetic models.213 Although the surface reaction networks analyzed with

DFT simulations are typically expected to satisfy the thermodynamic constraints, it must also ensure con-

sistency in the overall catalytic cycle188 and this needs to be thoroughly verified. To ensure thermodynamic

consistency,198 andmany a time to obtain a better fit of model prediction against experimental data, kinetic

parameter optimization is unavoidable. The reliability of suchmodels needs to be ascertained by validating

against experimental data obtained for a wide range of operating conditions.184,185

Machine learning tools can be handy in dealing with the typical inaccuracies present in computed en-

thalpies and entropies, uncertainty quantification, and other challenges such as multisite mechanisms

and surface diffusion in MKM.214,215 Rangarajan et al.,214 in their review, highlighted some of the recent

studies that have used NN or Gaussian process surrogate models with DFT-aided training to address

the fast diffusion approximations made in mean-field-based microkinetic modeling. They also discussed

techniques such as polynomial chaos expansion with DFT-aided training to address corrections to en-

thalpies and entropies. The authors suggested the use of multi-fidelity data such as those generated

from combining the data obtained from simulations using the generalized gradient approximation,

random phase approximation, and experiments for training the NN models.214 In order to account for

lateral interactions between the adsorbates and the presence of surface heterogeneities, Tian et al.215 pro-

posed an ANN-based model using a training set of macroscopic reaction rates obtained from the lattice

Monte Carlo simulations. The model was applied for the CO oxidation reaction and the predicted reaction

rates (ensemble averaged) showed RMSEs of 3.4x10�2, 7.0x10�3, and 3.4x10�3 for the oxidation, adsorp-

tion, and desorption processes, respectively, compared to those obtained via full-fledged KMC simula-

tions. To render the microkinetic models globally predictive, one study216 proposed a model refinement

strategy using data injection from a set of experiments.

Wittreich et al.217 proposed a framework based on group additivity (GA) with the incorporation of variances

and correlations in the groups (of GA), for estimating uncertainties in reaction enthalpies and entropies in

DFT-parameterized MKM models. This framework did not rely on analyses of energies with multiple ex-

change-correlation functionals or the use of BEEF-vdW functional. The authors used the framework to

explain the impact of these uncertainties in the predicted conversion, reaction rates, selectivity, thermo-

chemistry, reaction orders, and reaction barriers during propane complete oxidation and ethane oxidative

dehydrogenation. Reaction orders showed a lower extent of variance (1 s ofG 0.06–0.03) compared to the

other model parameters such as activation energy barriers (1s of 4–6 kcal/mol) and TOFs (1 s ofG 1 order

of magnitude).217 Various other studies aimed at improving the predictive capabilities of first-principles-

based microkinetic models have proposed different methodologies, such as use of data-driven models

involving the Gaussian process (based on Bayesian statistics),159 adaptive sparse grid approach,218 and

correlative global sensitivity analyses219 based on Monte Carlo methods for uncertainty quantification.
Stochastic kinetic modeling by the KMC approach

The mean-field approximation-based approaches such as MKM predict overall observable rates, conver-

sion, and selectivity trends without emphasizing on the spatial ordering of the adsorbates, site heteroge-

neity, and slow diffusion of surface species, which are quite common in heterogeneous catalysis.220,221

Although some of these can be accounted as corrections in MKM, significant deviations can be expected

due to violation of the law of mass action222,223 unless explicitly incorporated. Under the KMC framework

andMarkovianmaster formalism, surface kinetics is described in a comprehensivemanner by incorporating

short- and long-range, many-body interactions between surface species and slow diffusion across surface

sites.224–229 Unlike the mean-field-approximated models, KMC uses a stochastic approach to study the

adsorption/desorption, surface reaction, and diffusion events as state transitions, wherein each state is in-

dependent of its history. The probability of a transition is an exponential distribution based on its rate
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constant, and the temporal evolution of these probabilities is captured by the Markovian master equation.

For more details of the formulations, we recommend the readers to refer to other reviews4,40,224 on this

method and its applications. Many studies have used KMC in conjugation with DFT simulations to obtain

steady-state surface coverages of dominant reactant/product species, and thereby accurate prediction of

reaction orders and product selectivities.52,227,229–232 However, one of the major drawbacks of KMC simu-

lations is the high computational cost associated with it.

Typical applications and analyses of KMC simulations and uncertainty quantification and
alternatives to KMC

Mei et al.,229 in their kinetic studies of selective hydrogenation of acetylene to ethylene over the Pd(111)

surface, highlighted the importance of the lateral interactions on the reaction kinetics. They established

the same by studying the acetylene hydrogenation kinetics with and without the inclusion of lateral inter-

actions (long-range interactions and from the surface interactions). Neglection of lateral interactions re-

sulted in the prediction of stronger binding energies and overestimation of surface coverages of acetylene

and hydrogen compared to those obtained in the presence of lateral interactions, as the nature of interac-

tions was repulsive. This resulted in an underestimation of ethylene selectivity (7%–19%) as the kinetic

model predicted the facile hydrogenation of acetylene and ethylene. However, the simulations that

included lateral repulsion predicted much higher ethylene selectivity (79%–86%) due to low H coverage.

Furthermore, the reaction order with respect to acetylene was also underestimated significantly (�0.95)

in the absence of lateral interactions compared to the simulations that incorporated them (�0.52). Hence,

the inclusion of lateral interactions played a major role in predicting the right overall selectivity of ethylene

and reaction orders (�0.52 for C2H2 and 1.16 for H2) that agreed well with the experimentally reported or-

ders (�0.66 for C2H2 and 1.04 for H2
233). Yue et al.234 analyzed the effect of CO and H2 coverage for syngas

combustion reaction on NiO catalyst using DFT-based KMC simulation. The results suggested that CO

coverage limited the CO oxidation by weakening the CO adsorption and H2 coverage promoted the

CO oxidation. Using DFT-based KMC simulations, Jingde et al.235 studied carbon nanotubes (CNT) growth

mechanism on Ni(111) surface by considering CH4 as a raw material. The sensitivity analysis revealed that

the CNT growth was sensitive to the CH4 dissociative adsorption step.

Cluster expansion Hamiltonian methods have also been employed to accurately capture the many body

lateral interactions and hence precise adlayer description.228,230 Papanikolaou et al.230 considered

different CE models with varying complexities from first nearest neighbor (1NN) interactions to 2NN and

3NN interactions. They incorporated them in modeling NO oxidation over Pt(111) surface and highlighted

the importance of long-range interactions (between third nearest neighbors) in accurately describing the

surface coverages of various adsorbates and kinetics. Piccinin et al.,231 in their kinetic studies of CO oxida-

tion over Pd (111), reported good agreement between the KMC predicted and experimentally reported

catalyst performance. The one, two, and three body lateral interactions were incorporated to capture ac-

curate surface coverages of CO andO adsorbates, which predicted accurately the reaction orders (0.51 and

0.8 with respect to O and CO, respectively) that matched well with the experimentally reported

observations.231

Since KMC simulations are high-dimensional and stochastic, they lack closed-form expressions to relate

the final desired output parameters (rate, coverage, etc.) with themodel parameters, which pose a difficulty

in the optimization and control of the multiscale model.236,237 To address this, Rasoulian et al.236 proposed

a methodology to examine the uncertainty in the KMC-predicted microscopic rates for the adsorption,

desorption, and migration steps during a general epitaxial thin-film growth process, using high-order po-

wer series (PSEs) to obtain probabilistic bounds in the various microscopic rates. Their methodology

involved four steps: specification of the probability distribution function for the identified uncertainty pa-

rameter(s), evaluation of sensitivities in themicroscopic rates with respect to the uncertain parameters, esti-

mation of the probability distribution function of the rates using the PSEs (truncated to required orders by

comparing the results against that obtained from brute-force KMC simulations), and calculation of upper

and lower bounds of rates for a specific confidence level.236 The authors described the uncertainty in the

bulk gas-phase mole fraction using a first-order PSE, while for describing the uncertainty in some of the

energetics (describing the bond strength and ease of desorption), they used second-order PSEs. They

also showed that the PSE-based method of uncertainty quantification was at least two orders of magnitude

less computationally intensive than the brute-force KMC methods.236
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Chaffart et al.237 proposed a computationally less intense, hybrid multiscale model consisting of continuum

partial differential equations, stochastic partial differential equations (SPDEs), and ANNs as an alternative

to the KMCmethod to describe a general thin-layer growth process. The film thickness was modeled using

fourth-order SPDE, where its coefficients were predicted using the ANN, and the uncertainties in themodel

parameters, such as bulk gas (precursor) mole fraction and activation energies for surface reaction, migra-

tion, and desorption steps, were quantified to study their impact on the film thickness and hence the

growth process.237

MKM vs. KMC and caveats of KMC modeling and analyses

Li et al.41 compared the merits and demerits of MKM and KMC simulations with the inclusion of lateral in-

teractions for a simple case study of CO oxidation reaction over Pt(111). It was reported that in the absence

of slow diffusion processes, the computational costs incurred by KMC simulation was three orders of

magnitude higher than that incurred by MKM simulations upon inclusion of lateral interaction effects via

an iteratively solved coverage-dependent modeling (described by Grabow et al.238) and explicitly defined

pairwise interaction energies in KMC. Although a similar homogeneous rate-determining step was pre-

dicted by both methods at high and low coverages, the TOF information obtained in each method differed

by one order of magnitude.41 Hence, the use of KMC and the associated high computational costs are justi-

fied for describing the kinetics and spatial coverages over catalyst surfaces with significant site heteroge-

neity, while for computational screening purposes and kinetic description over fairly homogeneous sur-

faces, MKM is sufficient.

KMC-based kinetic modeling offers an accurate means of capturing the temporal evolution of catalyst sur-

faces and adsorbate coverages. Compared to mean-field MKM models, these are very rigorous and

computationally expensive as the input is completely first-principles based via DFT and the description

of short- and long-range lateral interactions between surface adsorbates is quite tedious. Moreover,

KMC simulations are very sensitive to the energy input and lattice sizes and require carefully simulated

DFT results. Hence, KMC models need to be employed mindfully depending on the nature of the catalyst

and reaction system in consideration.
SUMMARY AND PERSPECTIVES ON HIERARCHICAL AND ITERATIVE CATALYST

STRUCTURE MODELING, REACTION MECHANISM ANALYSIS, AND DETAILED KINETIC

MODELING

The accuracy of a hierarchical kinetic model and its predictive capabilities are contingent on the appropri-

ateness of the chosen catalyst surface and the active sites, unambiguous establishment of the reaction

mechanism, inclusion of all kinetically relevant elementary steps in the kinetic model, accuracy of the

computational methods used to estimate the kinetic parameters, the choice of the kinetic modeling frame-

work, and the validity of the assumptions made in the modeling.157 Each of these are rungs on the multi-

scale ladder linking atomistic to reactor scale phenomena. Errors and uncertainties in any one of these

rungs can result in predictions which can in some cases result in only minor inconsistencies at certain spe-

cific input reaction conditions42,231 while in other cases can be completely unreliable across all reaction

conditions.179,239 Parity of the model predicted and experimental data pertaining to activity and selectivity

and other observables are ultimate goals and there have been substantial efforts in this direction.20 Unfor-

tunately, the trade-off between accuracy and computational costs associated with generating validated

output at each rung remains substantially high. In the last few years, developments in DFT methods

have demonstrated the potential to reach chemical accuracy in specific cases4 and thus have become

the workhorse for catalyst structure and active site prediction, reaction mechanism and pathway analyses,

and kinetic parameters estimation for detailed kinetic modeling. Such applications have become routine

for simple metal catalysts and small molecules but remains a challenge for complex multicomponent nano-

structured catalysts and for cases with large or complex reaction networks. These situations typically neces-

sitate lower-order hierarchical treatment of the multiscale problem together with iterative refinements at

different stages. Machine learning tools and data-driven approaches are now routinely included in the

overall workflow for reaction mechanism identification/refinements, kinetic parameter estimation/refine-

ment, and reaction kinetics analyses/refinement. These form the crux of this review article and some of

these hierarchical multi-technique approaches and the potential refinement avenues have been discussed.

The next paragraph is a summary of the unidirectional multiscale workflow from catalyst structure
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predictions to kinetic modeling. In many cases, each of these elements are dealt with independently

without integrating across the entire spatiotemporal scales.

For simple metal and metal oxide catalysts, equilibrium catalyst nanoparticle morphologies under typical

reaction conditions and the surface state/phase under the influence of the reaction environment can be

predicted using ab initio thermodynamics-based calculations. These enable identification of the catalyti-

cally relevant surface exposures of catalyst nanoparticles with specific atomic arrangement on such sur-

faces, including adsorbates and reactive gas species, with a caveat that these are equilibrium predictions

with no accounting for kinetically controlled catalyst growth conditions. Understanding the catalyst nano-

particle surface dynamics and fluxionality of isomeric nanoparticles are also critical aspects in identifying

operando catalyst surface sites for reaction investigations. Based on the homogeneity/heterogeneity of

active sites, decision on mechanistic investigations is made. Also useful for this decision-making at this

stage is information regarding the potential for significant impact of surface coverage of species and

thereby lateral interactions on the calculated energetics/kinetic parameters or the possibility of slow sur-

face diffusion steps involving prominent surface species. In the absence of significant heterogeneity of

active sites, significant lateral interactions among surface species, and slow surface diffusion steps, the

mean-fieldMKM is a powerful technique for kinetic modeling. When these factors are critical, then accurate

modeling requires transitioning to the more expensive KMC framework. Both these detailed kinetic

modeling frameworks require the complete reaction network of all possible elementary reaction steps in

the catalytic cycle and for each of these steps. Building the complete reaction network from chemical intu-

ition and in situ spectroscopic inputs appear relatively straightforward for reactions of small molecules on

simple catalysts. Personnel and personal biases can impact the accuracy and completeness of such net-

works. But for larger molecules and for complex reaction networks, automatic reaction mechanism gener-

ators that work with simple input such as reactants, products, reaction rules, lumping rules, and so on

become extremely handy. The kinetic parameters that allow the determination of a reaction rate constant

for each of these elementary steps include the activation energy barriers and the pre-exponential factors.

While activation barriers can be estimated using semi-empirical techniques such as the UBI-QEPmethod or

use of kinetic scaling relations or by explicit first-principles (typically DFT) calculation, the pre-exponentials

are best obtained from first-principles coupled statistical mechanics calculations. As kinetic parameter esti-

mating is at the heart of the kinetic modeling activity, the choice of methods and the associated accuracy

are critical for reliability of the model predictions. Depending on the nature of the system and availability of

the pre-built scaling relations, preliminary estimates of activation barriers can be purely semi-empirical or a

hybrid of DFT-semi-empirical. Complex catalysts and complex interactions of the species with the catalyst

may necessitate the exclusive use of first-principles calculations. The KMC framework additionally requires

the pairwise lateral interaction energies of the species, the kinetic parameters for the diffusion steps, and

kinetic parameters for multi-site reaction mechanisms. The system of coupled species balance equations in

the mean-field MKM can be solved for a specific reactor type to get information on spatiotemporal species

evolution, overall reaction rates, product selectivity, and so on at specific input reaction conditions. These

then serve as the crucial link between catalyst microstructure and catalyst performance enabling the formu-

lation of structure activity relations.

The above unidirectional workflow from catalyst model and active site prediction to reaction mechanism

analysis to kinetic parameter estimation and finally kinetic modeling may lead to unsatisfactory predictions

and unreliable models due to the suite of approximations made at each of these levels for computational

tractability. Reliability and applicability can be built into this workflow by cross validations with available

experimental data at each stage and by adopting an iterative approach with iterations at each level or

for the entire workflow as shown in Figure 6.

Establishing and validating the specific active sites on the surface structures identified from thermody-

namic calculations can be done indirectly using computational spectroscopic techniques such IR, XPS,

Raman, and directly using imaging techniques such as computational STEM analyses. If the computational

predictions of catalyst structure do not match the experimental data, either the kinetic factors in catalyst

synthesis overshadow the thermodynamic formation of the catalyst nanoparticles or the information on

the reaction environment is incorrectly captured in the thermodynamic surface modeling and needs refine-

ment. Such an iterative workflow for the operando catalyst structure prediction and validation was pre-

sented in Figure 4.
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For complex reaction mechanisms analyzed on validated computational catalyst models, a screening ki-

netic model can be built with preliminary estimates of kinetic parameters using semi-empirical or a hybrid

approach of semi-empirical and DFT simulations. Refining of the model can be based on identification of

the sensitive reaction steps that result in an overall impact on the reaction outcomes or using machine

learning and data-driven approaches. Kinetic parameters for such sensitive steps can be re-estimated

based on purely first-principles techniques or even higher-order first-principles techniques (more accurate

DFT functionals or methods beyond DFT where possible) and by application of machine learning ap-

proaches. Uncertainty analyses and quantification are essential checkpoints to be included in the workflow

for kinetic parameter estimation and modeling. A workflow for kinetic parameter estimation with choices

and decision trees was presented in Figure 5.

Special care to ensure thermodynamic consistency is required during the kinetic modeling process. If the

kinetic model predicts substantial coverage of reaction intermediates on the surface, a shift from themean-

field MKM to KMCmight be necessary. Alternatively, the energetics and kinetic parameters for the elemen-

tary steps can be re-estimated by explicit or implicit coverage effects incorporated and ‘‘coverage-depen-

dent’’ MKM can be performed. If refining the MKMwith the coverage dependence or switching to KMC still

results in poor prediction, experimental observables/measures, the catalyst model, and the corresponding

active sites themselvesmay have to be revisited as shown in Figure 6. Species coverage on the surface leads

to substantially different equilibrium shapes of catalysts and thereby exposed surfaces and active sites.

Coverages of species from the screening kinetic models can be utilized to refine the catalyst structure un-

der typical reaction conditions using thermodynamic calculations. Semi-empirical methods would in this

case be inappropriate for estimation of the kinetic parameters, unless modified exclusively for incorpo-

rating the coverage effects. Such a complete cycle iteration as shown in Figure 6 is desirable for a truly

first-principles bottom-up workflow and is likely to be accurate for most of the systems under consideration.

However, this is too computationally intensive and is typically not adopted. Since typical first-principles-

based kinetic models are bound to give poor predictions of catalytic performance due to varying degrees

of uncertainties introduced in different stages such as catalyst structure and active site prediction, DFT-pre-

diction of energetics, parameter estimation via semi-empirical correlations, and kinetic

modeling,182,216,236,237 uncertainty estimation and rectification is recommended at multiple stages.

Machine learning is an emerging tool and is finding widespread application in computational catalysis and

molecular scale phenomena.240,241 The applications of these techniques have been across the various

themes discussed in this article and a few examples include determination of catalytically active surfaces

and active sites,68,242 optimization of geometries of intermediates and transition state on the catalyst sur-

face,243 surface reaction network analyses and generation,244,245 predicting reaction barriers,246 assessing

the surface lateral interactions between adsorbed species,173 correcting the mean-field assumption215 and

improving predictive capabilities of MKM,214 and so on. Demonstration of accuracy and applicability of the

techniques to a variety of catalytic systems and chemistries, and availability of curated data amenable for

use with these techniques remain areas of concern and hence are areas with immense future potential.

Hence, a combination of first-principles computational multiscale simulations and data-driven approaches

are the likely drivers for computation-aided catalyst discovery, reaction optimization, and reaction engi-

neering in the immediate future.
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