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SUMMARY

The downriver migration process of young anadromous fish has a far-reaching impact on their survival

rate and the efficacy of hatchery-reared fish release, but it is poorly understood. Moreover, the impact

of dams on the fish remains unclear. TheChinese sturgeon is an anadromous anddam-affected fish in the

YangtzeRiver.Here,weproposeanovel theoretical framework to reveal themigrationprocessofyoung

Chinese sturgeon. We clarify the effects of active swimming of fish and water flow on the downriver

migration and theparametric traits of themigrational stages. Then,we show that the youngfishmigrate

downriveralong the inshorewaters inagradually transformingmanner frompassivedrift toactive swim-

ming. Lastly, we evaluate the impact of the Gezhouba Dam (GD) on the migration of the young fish, as

well as demonstrate the life cycles of Chinese sturgeon in the Yangtze River pre- and post-GD.

INTRODUCTION

Understanding the mechanisms driving an aquatic organism’s movement is an essential component in the

conservation and management of species and ecosystems. The migration pattern of aquatic organisms

plays a fundamental role in the survival of their populations, especially for migratory fish, which usually

depend on their swimming ability and the towing capacity of the water flow or both. In the past, water

flow was presumed to dominate organisms’ movements. However, at present there is a consensus that

active swimming, even at seemingly trivial speeds, could have profound consequences for the movements,

fitness, and distribution of marine organisms (Fossette et al., 2015; Putman and Mansfield, 2015; Putman

et al., 2016). The situation for river organisms, especially anadromous fish, remains poorly understood.

The anadromous fishes, comprising 110 species that live in seas andmigrate into fresh water to spawn, play

a significant role in linking the river-sea ecosystem (Kynard et al., 2002; Braaten et al., 2008, 2012; Stoll and

Beeck, 2012; Huang and Wang, 2018). The downriver migration process of young fish has far-reaching im-

pacts on the survival of fish and the efficacy of hatchery-reared fish release. There is minimal and fragmen-

tary information concerning local river reach (Braaten et al., 2008, 2012) mainly due to technical obstacles in

sampling, identifying individual ages, tracking the fish (Braaten and Fuller, 2007), and the fact that there is

no robust theoretical model. Larvae or juveniles are assumed to act as passive bodies, traveling with the

river’s flow; however, this method underestimates the weak active swimming ability of young fish (YARSG,

1988; Auer and Baker, 2002; Stoll and Beeck, 2012). Moreover, dams are regarded as a serious threat to

anadromous fish, and the mechanism by which dams affect the young fish remains unclear.

Fisheries restocking programs have primarily been applied to bolster stocks by rearing fish in hatcheries

and releasing them into the wild. This is at a time when the world’s fish species are under threat from habitat

degradation and over-exploitation. However, the behavioral deficits displayed by hatchery-reared fish and

the resulting poor survival rates in the wild have been noted for over a century (Brown and Day, 2002). In

China, artificial restocking of fish and release has been used as the sole remedial measure of dam construc-

tion for rescuing rare and endangered fish, and its efficacy has been controversial. Brown and Day (2002)

emphasized that the focus of fisheries researchmust shift from husbandry to improving post-release behav-

ioral performance. Thus, how to assess and improve post-release performance of cultured fish is closely

related to a fundamental issue: detailing the migration process of juveniles in the river.

Chinese sturgeon (Acipenser sinensis) is a typical example of the 16 species of anadromous sturgeon globally

and is a flagship species of the Yangtze River. The sturgeon was listed as critically endangered by the Interna-

tional Union for Conservation of Nature (IUCN) in 2010 and included in Appendix II of Convention on
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International Trade in Endangered Species of Wild Fauna and Flora (CITES) in 2015. Before the river closure by

the Gezhouba Dam (GD), the crucial first and lowermost water project on the Yangtze River on 4 January 1981

(pre-GD), spawning Chinese sturgeons spread in the 800-km reach between Maoshui (Yibin City, Sichuan Prov-

ince) andWanzhou (ChongqingMunicipality) and spawned at 19 sites. The Chinese sturgeon enters the Yangtze

River between June and August every year when the gonadal development of the adult fish reaches stage III

(males, 8 years old; females, 13 years or older) while fasting all along the way andmigrating 2,850 km to the up-

stream spawning ground. After breeding in autumn of the following year, 15 months after initially entering the

Yangtze River, the adult fish returns to the sea within 1 month (Huang andWang, 2018). Hatched larvae begin to

migrate downriver in October or November each year and reach the estuary in the next summer, all the while

foraging along the way and adapting to the saltwater environment of estuarine areas such as the eastern beach

of Chongming Island. After 1981 (post-GD), the spawners were forced to lay eggs in a less suitable spawning

ground about 30 km downstream of the GD (Figures 1A and 1B). However, with the operation of the cascade

dams on the upper reaches of the Yangtze River, especially the ThreeGorges and Xiluodu dams, the population

of Chinese sturgeon has continually decreased to the verge of extinction (Wu et al., 2015).

Before the 1990s, there was insufficient information concerning the population migration or dynamics of

Chinese sturgeon except for fishing or bycatch records (YARSG, 1988). Since then, biotelemetry, hydroa-

coustic detection, and mark-recapture techniques have been widely used in the study of the Chinese stur-

geon (Kynard et al., 1995; Yang et al., 2005; Lin, 2008; Wang et al., 2012, 2014). Only the mark-recapture

technique can be used to obtain the interval speed between the releasing place to the recapture site of

larvae or juveniles, because their body sizes are too small to be monitored (tracked or detected) by biote-

lemetry or hydroacoustic detection (Yang et al., 2005; Wang et al., 2014). Therefore, we cannot clarify the

mechanism of the downriver migration for larvae or juveniles with existing technology. Taking the Chinese

sturgeon as a model organism, Huang and Wang (2018) proposed the Migration Dynamics Model (MDM)

for anadromous or dam-affected fish and successfully applied it to the spawning upriver and post-spawn-

ing downriver migration processes of adult Chinese sturgeon in the Yangtze River. Theoretically, this model

can be used for young fish, but juveniles have more complicated behavior than adults, such as avoiding

predation and feeding; this is related to ontogenetic behavior and the hydrodynamic impacts. Here we

attempt to establish a novel framework for theoretical modeling to analyze the downriver migration pro-

cess of young Chinese sturgeon and to evaluate the impact of the dams on the migration process.

We used the number of days post-hatching (dph) to characterize the age of the fish rather than the number

of days after fertilization. The early life stages of the fish vary greatly in morphology and physiology and are

usually divided into three developmental stages, namely: early larva (0–11 dph), late larva (12–39 dph), and

juvenile (40 + dph) (Zhuang, 1999; Zhuang et al., 2002). The juveniles more than 40 dph old have external

characteristics like the adult fish. Here we also used an overall term, young fish, to refer to these fish at all

developmental stages from the hatching site to the estuary, and we set up a coordinate system by taking

the Yangtze mouth as the origin point and tracing upriver (Figure 1A).

RESULTS

Considering the mortality of young fish along the migratory path, we derived a modified Migration Dynamics

Model (MDM) for the young fish. The key to solving theMDM is to estimate the following three parameters: the

migration velocity (U), the diffusion coefficient (D), and the mortality rate (K). Of these, U and D are directed

toward the fish as a living body, rather than a passive body (Stoll and Beeck, 2012). Previous studies considered

only the speed of the water flow and neglected the swimming ability of the larvae (Erwin and Jacobson, 2015).

The swimming ability of the larvae increases with age, whereas the effect of the current onU andD diminishes.

Therefore, we considered that the migration speed and the diffusion coefficient of juveniles depend on both

the age of the larvae and the water flow. According to the ontogenetic development and ecological behavior

of the fish, we divided the downriver migration process into three phases: drift stage, cover stage, and self-

migration stage (Figure 2). Of the three, the last stage is predominant in length and time. Based on the river

zoning and including the effects of riverbanks and tides on the migration of young fish, we built formulas of

divided functions on the three parameters at each stage and then calculated themigration processes of young

fish by numerical methods (see Transparent Methods).

Migration Stage Division and Its Distinguishing Features

(1) Drift stage (0–8 dph): This stage involves mainly the downstream area of the spawning ground. The spawners

lay eggs that adhere to the rocks at the bottomof the spawningground, attracting predators. Five days later, the
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Figure 1. Zoning of Migration Path and Spawning Grounds of Chinese Sturgeon Pre- and Post-GD

(A) The Yangtze River basin showing spawning grounds pre- and post-GD and the migration zoning of the juveniles. Here,

the bold purple line indicates the migration path of the Chinese sturgeon. River kilometers (km) are used as the unit of

distance, days (d) as the unit of time, and number of individuals (ind) as fish quantity. The navigation channel mileage was

used to calculate the coordinates of the main cities along the river. Numbers in parentheses below city ports are river

distances from the Yangtze mouth (km).

(B) The GD is the first and the lowest dam built on the main stem of the Yangtze River. After 1981 (post-GD), the spawners

had to lay eggs in a less suitable spawning ground about 30 km downstream of the GD.

(C) The tidal-affected region below Nanjing consists of freshwater and brackish subregions, demarcated at Wusong or Pu

Town indicated by yellow stars. The red stars at Xupu and the eastern beach of Chongming Island indicate the sampling

sites of juveniles in the estuarine area. According to estuarine salinity, the tidal-affected region can be further divided into

freshwater and brackish subregions. The saltwater intrusion caused by tidal current affects not only the flow velocity but

also the salinity. The range of the brackish subregion depends on the interaction between the Yangtze River runoff and

the salt tide, near themouth of the estuary. North and south branches bifurcate the estuary of the Yangtze River. The south

is the mainstream area, but the salt tide invades the north with high salinity. In the dry season, the saltwater of the north

flows backward and invades the south from the bifurcation point. Therefore, we consider the south branch as the

migration path of juveniles from May to August of each year instead of the north branch, which was confirmed by an

investigation between 1982 and 1993 showing no juvenile Chinese sturgeon in the north branch (Yi, 1994). Bao and Zhu

(2017) calculated the horizontal and vertical salinity distribution of the estuary during the spring tide and the low tide in the

1950s and the 1970s, and in 2012. They concluded that, according to the drinking water salinity standard of 0.45 psu, the

upper boundary of saltwater intrusion in the south branch is near Wusong and Pu Town, about 30 km from the East Beach

of Chongming Island. However, salinity had less effect on the swimming ability of juveniles over 7 months of age (He et al.,

2013).

See also Figure S1.
fertilized eggs hatch and start to move downstream with the water current; the early larvae survive through

endogenous nutrition and do not forage. Figure S1A shows the velocity vector of the early larvae, longitudinally

drifting with the current, while laterally swimming to shores, as well as vertically going up to the water surface or

down to the riverbed (Figure 2A). The longitudinalUof larvaemainly dependson the uneven velocity distribution

of the current at different water layers where the larvae stay (Figure 2B). The larvae gradually go up to the surface

and then down to the bottom (Figure 2C). Therefore, the drift velocity of the larvae depends on the spatial po-

sition of the river cross-section. When they drift longitudinally with the current, the larvae move horizontally to

shallow waters near the shore through a weak swing due to their phototaxis. The larvae prefer shallow water

for survival and future feeding. Hence, the riverbank has a significant effect on the speed of larval movement.
774 iScience 19, 772–785, September 27, 2019



Figure 2. Schematic Diagram of the Downriver Migration Process of Young Chinese Sturgeon

(A) The vertical (top) and side (bottom) views of the young fishmigration path in the Yangtze River. Here we assume the Yangtze River as an open channel. The

dotted lines represent the lateral (top) and vertical (bottom) velocity distributions of the current. The elevation view shows that, in the drift stage, the free-

living embryos or early larvae migrate from the middle of the river to both shores while they are moving downward after hatching, and then enter the cover

stage during which the early larvae hide on the inshore bottom of the river bed. After 18 dph, the late larvae enter the self-migration stage and then migrate

downstream along the inshore waters. The side view shows that the juveniles move vertically to the water surface at 1–2 dph of age while drifting with the

current and then move to the riverbed at 3–7 dph until at 8–18 dph when they enter the cracks of riverbed substrate for hiding and avoiding predation. After

18 dph of age, the juveniles migrate downstream, depending on their swimming ability; they are also affected by the current.

(B) The location of the water layer (relative water depth) of the early larvae at different ages (dph) during the drift stage. According to the water depth

preference of early larvae (Zhuang, 1999; Zhuang et al., 2002), we assume that the vertical swimming height (dotted line) of larvae is linear with time (or age) at

the population level. The larvae reach the middle water layer (relative depth y/H = 0.5) at 0 dph and the water surface (relative depth y/H = 0) at 2 dph.

Afterward, the vertical position of the larvae decreases linearly with time (or age), and the larvae reach the bottom of the river at 8 dph, and then enter the

cover stage.

(C) During the drift stage, the early larvae migrate laterally from the thalweg to the shores and vertically from the bottom to the surface and then down to the

bottom. Their longitudinal migration speed at the population level is the same as the current speed calculated by Equation 4, and their lateral and vertical

speeds are age dependent for reaching different locations near the shores (red triangle).

(D) Migration stage division corresponding to ontogenetic development of the Chinese sturgeon after hatching (top) (Zhuang, 1999; Zhuang et al., 2002) and

linear length growth of juveniles with age (bottom).

See also Figures S2 and S3, Tables 1 and S1, Video S1.
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Daily Age

(dph)

Migration Stage/Young Fish Swimming Traits Relative Water

Depth (y/H)

Migration Speed of

Fish U (km/day)

Diffusion

Coefficient

of Fish D

(km2/day)
Pre-GD Post-GD

0 Hatchling Drift with current, accompanied

by vertical swimming and

transverse swimming up to the

water surface and toward the

shores due to weak phototaxis

0.5 – – –

1 Drift stage/Free-living embryo

or early larva

0.25 102.14 73.48 36.3

2 0 78.19 56.25 42.4

3 Drift with current, accompanied

by vertical swimming down from

the upper water layer to the

bottom water layer followed by

swimming to the shores due to

phototaxis

0.17 52.9 38.06 50.9

4 0.33 32.8 23.59 63.6

5 0.5 17.7 12.74 84.8

6 0.67 7.43 5.34 127.2

7 0.83 1.68 1.21 254.4

8 Enter the bottom water layer in

the shores

1 0 0 254.4

– Sum of drifting distance (km) – 292.24 210.67 –

9–11 Cover stage/Early larva Hide in the cracks of riverbed

gravel-cobble substrate

1 0 0 254.4

12 Cover stage/Early larva start

feeding

13–18 Cover stage/Late larva

19–39 Self-migration stage/Late larva Restart downriver migration

along the inshore waters and

bottomwater layer relying on the

swimming ability, although

affected by current

Bottom of riverbed Equation 12 in

Transparent Methods

Equation 20

in Transparent

Methods
40–150 Self-migration stage/Juvenile

150–270 Self-migration stage/Juvenile Enter tidal-affected region

Table 1. Division of Migration Stages and Model’s Parameters of Juvenile Chinese Sturgeon
Figures 2B and 2C show the larvae’s locations in cross-sections of the water layer after hatching. According

to the water depth preference of early larvae, we assumed that the vertical swimming distance of the larvae

is linear with time (or age) at the population level. The larvae reach the middle water layer (relative depth

y/H = 0.5) at 0 dph and water surface (relative depth y/H = 0) at 2 dph. Afterward, the vertical position of the

larvae decreases linearly with time (or age), and the larvae reach the bottom of the river at 8 dph and then

enter the cover stage. Table 1 shows the migration speed (U1) and the diffusion coefficient (D1) of larvae at

different ages. We have applied the perched water layer of relative depth value y/H obtained in the labo-

ratory (Zhuang, 1999; Zhuang et al., 2002) to the Yangtze River. This method has been supported by Kynard

et al. (2007) and Braaten et al. (2008), whereby the vertical distribution of larval pallid sturgeons in labora-

tory and field experiments show similar characters. The diffusion coefficient increases rapidly in the drift

stage, indicating that the larvae disperse quickly to avert the threat of predators.

(2) Cover stage (9–18 dph): Zhuang (1999) and Zhuang et al. (2002) reported that the early larvae begin to

hide in the cracks of gravel-cobbles at 7 dph and reach peak individual numbers at 8–10 dph. The prob-

ability of hiding at 11 dph starts to decrease until 18 dph, when most of the larvae leave the cracks. In this

stage, the larvae initiate feeding when the yolk sac is exhausted at 11–12 dph. An increase in the duration

of the capability to resist the current is observed at the onset of exogenous feeding by the larvae. We

considered that the larvae hide in cracks at the riverbed from 9 to 18 dph in the lower reaches of the

spawning ground but show diffusion behavior owing to the local eddies. Therefore, the time-averaged

velocity of the current (U2) = 0. We took the diffusion coefficient at 7 dph when larvae are near the bottom

of the river bed as D2 = 254.4 km2/day (Table 1, also see Transparent Methods), indicating that the larvae
776 iScience 19, 772–785, September 27, 2019



are scattered as far as possible in the cover stage, especially after the start of feeding, to reduce the risk of

predation.

(3) Self-migration stage (after 18 dph): Based on studies in the laboratory by Zhuang (1999) and Zhuang

et al. (2002), we inferred that, after 18 dph, the late larvae begin their inshore migration downstream while

searching for rich food in rearing areas on their way. In the self-migration stage, the juveniles’ path can be

divided into the river region, where the current is mainly determined by the upstream inflow, and the tidal-

affected region, where the current is affected by both upstream inflow and the tidal current. Because of the

spatiotemporal variability of runoff and the tidal current, the lengths and the origin-destination of the two

regions vary with the complicated interaction of river runoff and tidal current. The stronger the runoff is, the

more powerfully the freshwater suppresses the tidal current. Then the upper boundary of the tidal-affected

region moves downward, or vice versa. Xu et al. (2012) found that the upper boundary of the tidal-affected

region should be between Wuhu and Zhenjiang. According to calculations considering the combination of

flood season and high tide, the average cross-section velocity below Nanjing is reduced by the tidal cur-

rent. The time for juveniles to reach the estuary is between May and August. Therefore, the tidal effect

on the migration speed of juvenile should occur below Nanjing (347 km). Wang et al. (2014) showed that

the downriver speed of juvenile Chinese sturgeon decreased when they entered the tidal-affected region.

Therefore, to simplify the calculations, we regarded Nanjing as the fixed demarcation point between the

river region and the tidal-affected region, where the latter can be further divided into freshwater and

brackish subregions (Figures 1C and S1).

Classification methods of the fish swimming speed correspond to different definitions and indices of swim-

ming speed, such as critical swimming speed, maximum sustained swimming speed, and optimum cruising

swimming speed (Wang et al., 2010). The migration speed (U) in the MDM refers to the swimming speed of

the juveniles over the ground at the population level, which is distinguished from the critical swimming

speed that is widely used. Based on the growth data of juvenile Chinese sturgeon (Zhuang et al., 2002;

He et al., 2013), the relationship between full length and age of a juvenile is expressed as L = 0.1256

t +1.4338. Other species of sturgeon show a similar linear relationship (Braaten and Fuller, 2007). When

the juveniles are less than 12.5 months old, the critical swimming speed and the age can be approximately

expressed as a linear relationship, despite the difference in test conditions leading to different formulae

(Figure S2C). Therefore, we assumed that the migration speed of juveniles is a linear function of age

(Figure S2D).

Owing to the limitations of observation techniques, it is difficult to obtain from the field environment the

spatiotemporal distribution of migration speed (U3) of juveniles after 18 dph. Theoretically, the swimming

ability of the fish is related to their body condition, including health, body length, tail length, and swing

frequency, as well as environmental conditions such as water temperature, velocity, and velocity gradient

of the current. We used the fishing and mark-recapture data to obtain similar expressions for the speed

function and took the average value as the migration speed of juveniles. Meanwhile, we assumed that

the migration speed of juveniles from Nanjing to the estuary is reduced by 30%, and we introduced a tidal

influence coefficient (g) in the tidal-affected region. In the self-migration stage, the diffusion coefficient (D3)

is synthetically determined by the swimming ability and the current speed; the current effect on the juvenile

migration speed decreases with age. Therefore, we divided D3 into two parts: the fish-related diffusivity,

denoted by Df, is determined by the juvenile swimming ability and increases with age, and the current-

related diffusivity (Dw) is determined by the current speed and is attenuated with an increase in age. We

have estimated D3 in the self-migration stage (t > 18 dph) (see Transparent Methods).
Vital Functions of Weak Swing or Swimming of Larval Fish

The spawners of Chinese sturgeon usually lay adhesive eggs in the rapids. The eggs are deposited while

being fertilized and then adhere to the rocks at the bottom of spawning ground, normally attracting large

numbers of predators. Five days later, the fertilized eggs hatch, and the early larvae start to drift downriver

with the current. The early larvae, due to their phototaxis, skillfully utilize the bend flow and the mechanical

interaction between their weak swing and the current, amplifying the weak swing by dint of the water cur-

rent, to reach the littoral zone at the end of the drift stage (Figure 2). The larvae have evolved a unique swim-

ming pattern as a survival tactic. Conversely, if the larvae had drifted with themaximumwater velocity of the

thalweg without approaching the shore by weak swing, they would have reached the brackish subregion at

the estuary within about half a month and then would have certainly died, as they would be unable to feed
iScience 19, 772–785, September 27, 2019 777



Figure 3. The Mortality Rate of Wild Young Chinese Sturgeon After Spawning in the Yangtze River

To study the migration process of young Chinese sturgeon in the Yangtze River, we need to assume the initial number of sturgeon eggs and then estimate

the number of young fishes through the age-specific mortality rate as the initial conditions for the calculations. The egg production of the fish is usually

estimated by sampling predators and dissection statistics of the eggs devoured, but this results in a broad range of annual variation (Wei, 2003; Chang, 1999;

Yu et al., 2002), even when the pre-GD had a stable adult population size. According to our estimation of the population size of adult Chinese sturgeon

(Huang et al., 2017; Huang and Wang, 2018), the GD construction had resulted in a reduction of the yearly effective breeding population from 1,009

individuals of pre-GD to 244 post-GD, corresponding to 24.2% of the original. Considering the sex ratio (1:1) of the fish and the average fecundity (400,000

eggs per female), the total egg production for pre-GD and post-GD are 202 million eggs and 48.8 million eggs, respectively.

See also Transparent Methods and Video S1.
or would be too small to adapt to the saltwater environment. Here, we highlight that the weak swing of early

larvae or swimming ability of larvae, ignored in the past, plays a crucial role in leaving the rapids and in anti-

predator behavior. The larvae prefer shallow waters with rich food for survival and feeding.

Figure 3 shows that the total mortality rate of Chinese sturgeon from egg to 9 months of age is about

99.98% before they enter the sea, which is consistent with the egg-to-1-year mortality rate range of

99.96%–100% for the Gulf sturgeon (A. oxyrinchus desotoi) (Pine et al., 2001). The mortality of young Chi-

nese sturgeon in the Yangtze River plays a crucial role in population recovery. Their mortality risk sources

change frommostly predators in the drift and cover stages to complex factors such as starvation (Caroffino

et al., 2008), water pollution (Hu et al., 2009), bycatch (Chang, 1999), and a variety of hydrological condi-

tions, including the effects of saltwater in the estuary (He et al., 2009; Zhao et al., 2011, 2015) in the self-

migration stage. Before the self-migration stage, the survival rate of larvae is the lowest at 0.39%, mainly
778 iScience 19, 772–785, September 27, 2019



owing to predators devouring eggs and larvae. Therefore, for the wild larvae of Chinese sturgeon, their

anti-predator behavior in the drift and cover stages is the most important factor affecting the population

recovery; this also underlines the ecological significance of weak swing or free swimming of the wild larvae.

Parametric Traits of Migration Stages

Figures 4A and 4B show the migration speed and diffusion coefficient of juveniles over time in the down-

river migration process. First, after hatching the early larvae leave the bottom and rapidly depart the

spawning ground with the water current. The larvae’s drift speed mainly depends on the velocity distribu-

tion of water flow and the spatial position of the larvae accompanying their weak vertical and horizontal

swimming ability. The diffusion coefficient increases rapidly in the drift stage, indicating that the larvae

disperse quickly to avoid predators. Second, during the cover stage, the larvae are mainly distributed in

the inshore riverbed, hiding in cracks of gravel-cobbles and starting to feed at 11–12 dph. At this stage,

the larvae stay in the bottom substrate without time-averaged migration velocity. However, the diffusion

coefficient reaches the maximum owing to the inhomogeneity of the boundary layer with turbulent eddies,

indicating that the larvae are scattered as far as possible, especially after the start of feeding, to reduce the

risks of predation and food competition. Third, during the self-migration stage, the larvae start the course

of migration along the inshore waters and search for food in the rearing area on the way. They move

randomly in the Yangtze River at the individual level but always move downstream at the population level.

With the increase of age, the larvae’s swimming ability grows and the effect of current on their migration

speed gradually weakens. The fish-related diffusivity is proportional to age squared, and the constant Pec-

let number of the fish migration shows that the convective term is about nine times the fish-related diffu-

sivity term in the self-migration stage of juveniles. Overall, the migration speed and diffusion coefficient of

juveniles gradually increase. After entering the tidal-affected region (below Nanjing), the juveniles slow

down. However, the diffusion coefficient increases with the age of the fish.

The downriver migration reflects some characteristics successively as drifting with the current/ hiding/

self-migrating (acceleration-deceleration) along the inshore waters and indicates certain gradually trans-

forming manners, from passive movement (drifting with the flow) to active swimming (self-migrating),

and from the rapids of the thalweg to the quiet flow area of the littoral zone. Furthermore, we revealed

that the spatiotemporal density of the juveniles evolved along the migration path into a normal

distribution.

Panoramas of Migration Processes

Regardless of the impact of the GD on juvenile mortality, we can estimate the number of surviving larvae or

juveniles at all stages (Figure 3). At the end of the cover stage, the number of early larvae used as the initial

conditions of MDM calculation was 780,000 individuals pre-GD and 185,000 post-GD. Figure 3 shows that

pre-GD there were 39,000 individuals entering the sea and post-GD the number was 9,250. Pine et al. (2001)

reported that the annual mortality rates of Gulf sturgeon (A. oxyrinchus desotoi) were 25% for those 1–3

years old and 16% for those 4–25 years old. Assuming that the annual mortality rates of Chinese sturgeon

in the sea are the same as those of Gulf sturgeon, we can estimate the maximum number of the potential

recruit population in 18 years (average age of female and male adults, corresponding total survival rate of

3%) to be 1,170 individuals pre-GD and 278 post-GD, equivalent to the numbers of annual recruitment.

These numbers are consistent with the theoretical estimates (Huang and Wang, 2018) and the estimated

results from the field tests in the early years of post-GD (Chang, 1999; Wei, 2003). In a word, the total natural

survival rate from eggs tomature adults that can live to return to the Yangtze River averaged about 63 10�6

for the wild Chinese sturgeon, implying that each female spawner with a fecundity of 1 million eggs can

contribute only six surviving recruits.

Figure 4C shows that in pre-GD, the peak density of juveniles at Nanjing occurred in July, meaning that they

were entering the tidal-affected region at 8 months old when their pioneers arrived at the estuary. The peak

time of the fish reaching the estuary (Shanghai) was in August when they were 9 months old. The final time

for the juveniles to leave the estuary was in early August. Figure 4D shows that post-GD there was a peak

density at Nanjing at the beginning of May, when the fish were 5 months old, with pioneers reaching the

estuary. However, the peak time at the estuary was mid-June, when fish were at the age of 6.5 months,

and the time to enter the sea was in late August. Figures 4C and 4D show that the density distribution curve

of juveniles gradually flattens along the path and bulges in the estuarine area, showing an aggregation ef-

fect of the fish; the GD has shortened the migration distance of Chinese sturgeon by 1,175 km, causing the
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Figure 4. Model Parameters and Calculated Results of Downriver Migration Processes of Young Chinese Sturgeon in the Yangtze River

(A and B) Migration velocity U and diffusion coefficient D of young Chinese sturgeon varied with time in the ① drift stage; ② cover stage; and ③ self-

migration stage. Pre-GD (A) was similar to post-GD (B), but with the difference in spawning ground, the flow velocity was higher in the upper Yangtze River

than that below the GD in the middle reach of the Yangtze River.

(C and D) Normal migration processes of juvenile Chinese sturgeon for pre-GD (C) and post-GD (D), indicating that the peak density of juveniles passed

through the main cities.

(E) Sankuanshi, one of the three famous spawning sites pre-GD, is located about 45 km upstream of Yibin City.

(F) The standing spawning site of post-GD below the GD.

(G and H) Comparison of juvenile densities at the starting site of the self-migration stage and in the river mouth for pre-GD (G) and post-GD (H), showing that

the aggregation effect of the juveniles in the 10-km-long East Beach of Chongming Island occurred and that the GD has caused a considerable drop in the

population size of juveniles.

See also Figures S1–S4, Tables 1 and S1–S3, Video S1.
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juveniles to reach the estuary 1.5 months earlier while posing an extra mortality risk related to the saltwater

adaption.

We can estimate that pre-GD had the migration distance of the drift stage for 292 km, from the spawning

site at Sankuaishi (Figure 4E) to the hiding site between Hejiang in Sichuan Province and Lanjiatuo in

Chongqing Municipality. However, post-GD had the fish drifting for 211 km, from the standing spawning

site below the GD (Figure 4F) to a hiding site between Jinzhou and Shishou in Hubei Province (Figure 1A),

which was verified empirically by frequent bycatch of local fishermen. The number of larvae hatched post-

GDwas only a quarter of that pre-GD, because theGD reduced the size of the spawning ground. Therefore,

the peak density of juveniles post-GD (Figure 4G) was only one-half of that pre-GD (Figure 4H) in the

estuary.

Finally, we describe the overall life cycle of Chinese sturgeon in the Yangtze River pre- and post-GD,

involving the migration of wild adult and young fish upriver or downriver (Figure 5A). Meanwhile, we

demonstrate that the gonadal development stage of Chinese sturgeon is a vital sign of the fish entering

and departing the estuary (Figure 5B) as a result of evolutionary adaption.
DISCUSSION

Vertical Distribution of Juveniles

Data concerning the vertical distribution of juvenile Chinese sturgeon is lacking for inshore waters. Carof-

fino et al. (2009) studied the vertical distribution of the larval lake sturgeon (A. fulvescens) at a total length of

16–22 mm and found an uneven vertical distribution; the density of the upper layer was higher than that of

the lower layer. In a 150-cm deep artificial stream tube, shortnose sturgeon (A. brevirostrum) larvae moved

downstream, but the majority swam above the bottom at an average height of 100 cm (Kynard and Horgan,

2002). In a similar stream tube experiment, pallid sturgeon (Scaphirhynchus albus) and shovelnose sturgeon

(S. platorhynchus) larvae drifted mostly downstream at the surface (Kynard et al., 2002), whereas white stur-

geon (A. transmontanus) larvae moved downstream at an average depth of 4–58 cm above the bottom (Ky-

nard and Parker, 2005). Therefore, we inferred that the perched waters of juveniles are within 2–5m in depth

during the self-migration stage, and that the early juveniles mainly migrate along with the bottom layer

(Zhuang et al., 2002). With the age-dependent increase of swimming ability, the juveniles switch to an

even distribution vertically in the inshore waters. Here we reflect the average swimming behavior of the

young fish at a large timescale, without considering the details of diel rhythm.
Backcasting Estimation of the New Spawning Place

The Yangtze cascade dams have had a significant impact on the Chinese sturgeon, which has had its spawn-

ing activities decrease from continuous to occasional since the operation of the Three Gorges Dam in 2008

and have disappeared since the Xiluodu Dam in 2013 (Wu et al., 2017b). Despite spawners being mainly

distributed within the 30 km below the GD during the spawning season, a small number of the fish may

also be scattered in the Wuhan-Jiujiang section (Huang and Wang, 2018). Therefore, a large amount of

spawning activity in the traditional spawning ground may cover up the fragmentary, small numbers of

spawning fish in other sites. We can infer that other spawning sites may exist if there are appropriate water

temperatures, substrates, and hydrological factors. Only four wild juveniles were caught in the estuary on

April 16–25, 2015, earlier than normal and far less in number than in previous years. This demonstrated that

a small amount of spawning activity in 2014 occurred in an unknown place downstream far from the GD,

instead of at the traditional site (Zhuang et al., 2016). Here we estimate that the spawning area in 2014

was probably located between Wuhan and Jiujiang, most likely in the Huangshi section. If we have more

collected data in the estuary, such as the peak time of juvenile density, we can calculate backward the

spawning time and site more accurately.
Improvements of Artificial Restocking

On 4 January, 1981, the GD dammed the Yangtze River, causing a hot dispute over if—and by how much—

the GD may have influenced the river’s aquatic life. From then on, China listed the Chinese sturgeon as the

sole target of GD’s fish rescue and started an artificial restocking program as a remedial measure. From

the mid-1980s to the present, more than 6 million individuals of different sizes have been continually

released into the Yangtze River, but this has so far achieved little in the recruitment of the population

due to an inappropriate strategy—‘‘emphasis on reproduction technique and neglect of post-release
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Figure 5. Chinese Sturgeon Life Cycle and Gonadal Development

(A) Overall life cycles of the migration processes for the adult and the young Chinese sturgeon pre- and post-GD. The red

dotted rectangle indicates the location and size of the spawning ground. The adult Chinese sturgeon entered the

Yangtze estuary from June to August (normally distributed with July 15 as the median) each year. In the following autumn,

reproduction was completed under suitable hydrological conditions. After spawning, the adults quickly migrated to the

ocean. The GD shortened the downriver migration distance by 1,175 km; thus, the adults reached the estuary 10 days

earlier than normal (Huang and Wang, 2018). The downriver migration of juveniles takes about 9 months, and the

occurrence time of juveniles in the estuary shows a normal distribution. The GD shortened the migration time of juveniles

to reach the estuary by 1.5 months. On the abscissa (in order): J, July; A, August; S, September; O, October; N, November;

D, December; J, January; F, February; M, March; A, April; M, May; J, June.

(B) Gonadal development in the Yangtze and the sea. After birth in October-November, the larvae move downriver

stepwise along the path at gonadal stage 0. Gonads reach stage I at 9 months old when the larvae leave the river mouth

in August-September. In the ocean, at 1.5–2.2 years (males) or 2.5–3.0 years (females) old, gonads develop into stage II,

and at least at age 8 years for males or 13 years old for females into stage III, at which the fishes become spawners and

start to enter the Yangtze River in June-August. They go upstream to reach the spawning ground while there is complete

gonadal development from stage III to IV. Spawners remain in the spawning ground for 3 months until the gonads grow

from stage IV to IV2 and become mature. Gonads develop fast from stages IV2 to VI with suitable hydrological stimuli,

and then mating occurs. After breeding, gonads drop from stages VI to II (YARSG, 1988; Chen et al., 2004; Huang and

Wang, 2018).
behavior,’’ resulting in a lack of effective evaluation of the artificial restocking program (Brown and Day,

2002). For example, the traditional view states that the larger or older the individual released is, the higher

the survival rate; is this true? How can one balance the economics of hatchery-reared fish number or size

and their post-release survival rate for a cost-effective outcome? Wu et al., (2017a) reported that 61

cultured juvenile Chinese sturgeon 3 years of age were tagged and released below the GD on April 12,

2015. The fish migrated downriver 1,500 km, and finally only 21 individuals (34%) reached the Yangtze es-

tuary half a month later. As a result of exceeding expectations, they were unable to explain why 66% of the
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tagged fish were ‘‘lost’’ during their seaward migration. Similar situations occurred in the subsequent

years.

Based on the laboratory results of juvenile hybrid sturgeon (Huso duricus _ 3 A. schrencki \) (Li et al.,

2011) and Chinese sturgeon (Zhuang et al., 2017), there are four main movement patterns in the flowing

environment of juvenile fish: upstream, still, countercurrent backward, and drift-downward movements.

The upstream movement indicates that juvenile fish swim against the current and move forward owing

to their rheotaxis; the still movement means that the fish remains in a motionless state over the ground,

and the countercurrent backward movement pattern indicates receding relative to the ground. The only

pattern of downstream swimming is the drift-downward movement, indicating that the juvenile fish move

downstream with the current without adverse-current behavior. We can assume that the individual juvenile

Chinese sturgeon in the wild will display the four movement patterns at different velocities of water flow

during the self-migration stage, namely, upstream, still, countercurrent backward, and drift-downward

movements (Figures S3A–S3E). Among the four-movement patterns, the predominance of the counter-

current backward in a running water environment implies that a juvenile must consume a great deal of

energy compared with a drift-downward movement that would save energy. Experiments in the labora-

tory reported that an individual juvenile usually shows complex diurnal swimming behavior (Kynard

et al., 2002; Zhuang et al., 2002). However, the juveniles generally move downstream at an average daily

swimming speed at the population level (Figure S3F). We can infer that the released fish migration down-

river is characterized by the four movement patterns mentioned earlier and that the juveniles must

consume a great deal of energy. If the Yangtze River cannot provide suitable food along the way for

the released fish, this will lead to high mortality. Therefore, improving post-release behavioral perfor-

mance requires understanding the migration process. The findings of this paper can contribute to the

improvement of artificial restocking for the endangered Chinese sturgeon and other anadromous fish

species in the world.
Limitations of the Study

Here, we reflect on themigration characteristics of juvenile fish at a daily scale and the population level. The

swimming behavior at the individual level, or hourly scale or segment scale, remains unclear. For the self-

migration stage, if we can characterize the distribution of juvenile-specific bait-organisms along the

Yangtze River, we can combine the MDMwith the habitat model to obtain a more detailed spatiotemporal

distribution of juvenile fish. In any event, the findings of this paper can provide useful information to deter-

mine the key areas of protection for the management of juvenile fish along the Yangtze River, and the

model can be used to assess the influence of dams on the migration of juvenile fish.

Additionally, we do not consider the influence of changing river hydrological conditions on the migration

process or the navigational mechanism of the long-distance migration. Studies have shown that long-dis-

tance migrants can use geomagnetic information to navigate. Species studied include Pacific salmon

(Oncorhynchus spp) (Putman et al., 2014b), Chinook salmon (Oncorhynchus tshawytscha) (Putman et al.,

2018), steelhead trout (Oncorhynchus mykiss) (Putman et al., 2014a), loggerhead sea turtles (Caretta care-

tta) (Putman and Mansfield, 2015), and European eels (Anguilla anguilla) (Naisbett-Jones et al., 2017). An

inherited magnetic map (i.e., an ability to extract positional information from Earth’s magnetic field) exists

in these organisms to guide their migration processes. These above-mentioned two components merit

further study to improve our model for the Chinese sturgeon and other migratory species.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
DATA AND CODE AVAILABILITY

Raw data for the model parameters and calculated results (Figure 4) and their Matlab software code are

available online via a Mendeley Data repository with DOI links at https://doi.org/10.17632/gyg6gg4mtk.1.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.08.029.
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Figure S1. The Saltwater Intrusion of the Yangtze Estuary, Related to Figures 1 and 4. (Bao & Zhu, 2017) 

(A-B) show the horizontal salinity distributions (psu) of the Yangtze estuary under the spring tide (A) and the neap tide (B) conditions 

in January 2012; (C) indicates the water depth in the Yangtze estuary and three sections (Sec 1, Sec 2 and Sec 3); (D-F) indicate the 

vertical salinity distribution of the northern branch (Sec 1) and the southern branch (Sec 2 and Sec 3) of the Yangtze estuary, respectively; 

(A-F) show that the saltwater intrusion of the northern branch, all of which are in the saline environment, is more severe than the 

southern. The upper limit of the salinity effect in the southern branch is at nearby Wusong or Pu Town, about 30 km from Chongming 

eastern beach. 

  



 

 

Figure S2. The Relationship Between Swimming Speed and Age of Juvenile Chinese Sturgeon, Related to 

Figures 2 and 4. 

(A) The velocity vector of larvae during the drift stage. Lateral and vertical movements occur in the drift stage due to ontogenetic 

behavior of early larva and play a crucial role in the antipredator behavior. 

(B) The relationship between full length and age of the juveniles shows a linear relationship between critical swimming speed and age, 

even if different expressions are used. Based on the growth data of juvenile Chinese sturgeon (Zhuang et al., 2002; He et al., 2013), the 

relationship between full length and age of a juvenile is expressed as L=0.1256 t+1.4338. Other species of sturgeon show a similar 

linear relationship (Braaten & Fuller, 2007). 

(C) The relationship between critical swimming speed and age of the juveniles. Due to differences in time step and velocity increment 

in the experiment, the critical swimming speed is uncertain. However, it is widely adopted as an index for evaluating the swimming 

ability of fish due to the small number of test fish and short test time. Duan et al. (2011) measured the relationship between critical 

swimming speed (Ucr) and body length (L) of juvenile Chinese sturgeon as log 𝑈𝑐𝑟 = 0.754 + 0.648 log𝐿 . cccording to the 

relationship between age and body length (B), we have obtained 𝑈𝑐𝑟 = 2.4377𝐿
0.648 ≈ 0.3193𝑡 + 10.067.  He et al. (2009) have 

studied the relationship between Ucr (cm/s) and age (t, d) of juvenile Chinese sturgeon with age range 2.5–12.5 months old and obtained 

𝑈𝑐𝑟 = 0.1719𝑡 + 17.285.  

(D) The relationship between downriver migration speed and age of juvenile Chinese sturgeon. The scattered points represent three 

sets of velocity-age relationships by regression analysis from the data of Zhang et al. (2012) and Yang et al. (2005). The solid yellow 

line is the average of three sets. 

 

  



 

Figure S3. Effect of Water Velocity on the Time Proportion of Swimming Behavior for Juvenile Hybrid 

Sturgeon within 24 hours, Related to Figures 2 and 4. 

(A) At a water flow velocity of 0 m/s (still water), only two states of upstream and drift-downward movements exist, and the upstream 

state accounts for 79.24% of the time (Li et al., 2011). 

(B) At 0.1 m/s, four movement patterns exist; mainly still movement maintained at 20.2–80.1% of the time, followed by the upstream 

run at 8–42.1% of the time (Li et al., 2011). 

(C) At 0.3 m/s, the countercurrent backward movement is the primary trend at 62.5–89.2%. As time goes on, the time percentage of 

the countercurrent backward swimming decreases slowly. However, that of drift-downward movement increases to be about 20% (Li 

et al., 2011). 

(D) At 0.5 m/s, the countercurrent is the main force, accounting for 92.2–95.4%, without upstream movement (Li et al., 2011). 

(E) Four movement patterns of juvenile fish involve, from top to bottom, the upstream, still, countercurrent backward, and drift-

downward movements corresponding to negative, zero, positive, and positive migration speeds over the ground, respectively, when 

assuming that the downstream direction is positive. 

(F) The average downriver proportion for four water velocities. If the downstream direction is positive, we calculated the time-weighted 

average proportion of four movement patterns within 24 hours at four water velocities and then obtained the average downriver 

proportion for the four water velocities, showing that the juvenile fish individuals swim downward at a relatively small daily average 

migration speed. 



 

Figure S4. Comparison Between Measured and Calculated Values for Density Distributions of Juvenile 

Chinese Sturgeon, Related to Figures 4. 

(A) Comparison between measured and calculated values for occurrence frequency of juveniles in Yangtze estuary (0 km). Yi (1994) 

reported the collection of juveniles as bycatch by set gillnet or other fishing gear in 1987 and between 1990 and 1992, from May to 

August each year in the eastern beach (Chenjia Town) of Chongming Island. Taking dekad (10-day) as a statistical unit to count the 

number of juveniles collected from May to August, as shown in Table S2, the term "dekad frequency" represents the occurrence 

frequency of juveniles every 10 days. On the abscissa (in order): E, Early; M, Middle; L, Late. In China, we usually divide each month 

into three periods, each period being 10 days, to represent early, mid and late month for catch statistics of juveniles. 

(B) Comparison between measured and calculated values for occurrence frequency of juvenile fish at Xupu (115 km) of Changshu 

City. Li et al. (2011) reported the number of juveniles caught at Xupu of Changshu City between 2002 and 2009, with a range of 19–

718 individuals and an average of 167 individuals, as shown in Table S2. 

(C) Comparison between the calculated and observed results of the density distribution of juveniles in the four segments of the Yangtze 

River. 

Yueyang (Chenglingji) section: Yi (1994) reported that juveniles fed and stayed for a long time in this area, which is described as 

appearing in January and lasting from April to May; there were no samples. The calculated results show that juvenile sturgeon in the 

Yueyang section appeared in early November, reached its peak in the middle and late January, and lasted until the middle of March. 

Jiujiang section: Yi (1994) reported that the occurrence time of juveniles in Hukou was from January to June; the peak time was 

from late April to early May, and there were five individuals collected. The calculated results show that the occurrence time of juveniles 

in Hukou lasts from the end of January to the beginning of February, and the peak appears in late March and lasts until early May. 

Nanjing section and Zhenjiang section: Yi (1994) reported that juveniles appeared with 17 individuals in samples from February 

to July, with the peak in May. The situation in Zhenjiang was similar to that in Nanjing, with a sample size of only one individual. The 

calculated results show that, due to the 72 km distance between Nanjing and Zhenjiang, the two graphs of Nanjing and Zhenjiang are 

overlapped. However, the calculations can still reveal the differences and details that are difficult to obtain in field investigations. The 

earliest occurrence time in the Nanjing section is in late March or early April, and the peak appears in early May and lasts until early 

June. In the Zhenjiang section, the first batch appeared in early April, and the peak in mid-May and lasts until the middle of June. 

Therefore, the earliest time, the peak time, and the duration of juveniles in Zhenjiang section are about one week later than those in 

Nanjing. Also, the migration speed of juveniles decreases, and an aggregation effect occurs after their arrival in Nanjing and entrance 

to the tidal-affected region. 



 

 

 

 

 

 

 

Table S1. The Duration and Speed of Juvenile Chinese Sturgeon from Spawning Ground to the Mouth of 

the Yangtze River between 1996 and 2007, Related to Figures 2 and 4. (Zhang et al., 2012) 

Year Spawning Time a Peak Time in Estuary Next Year Migration Time b (d)  Migration Speed (km/d)  

1996 20 October Later May 218 7.68 

1997 22 October Early June 227 7.38 

1998 26 October Middle May 202 8.29 

1999 27 October Later June 243 6.89 

2000 15 October Later May 223 7.51 

2001 20 October Early June 229 7.31 

2002 27 October Later May 211 7.94 

2003 6 November Middle May 192 8.72 

2004 12 November Middle June  216 7.75 

2005 10 November Middle June 218 7.68 

2006 13 November Later May  194 8.63 

Average 216 7.80 

Note: a indicates the spawning date of first batch breeding activity; b indicates that the migration time was calculated in the early, 

middle and late 10-days of each month on the 5th, 15th, and 25th. 

 

  



 

 

Table S2. Sample Collection Number of Juveniles and Their Occurrence Probability from May to August 

at the Mouth, Related to Figures 4. 

Ref. Year 

May June July August 
Total 

(ind) 
Early Middle Later Early Middle Later Early Middle Later Early Middle 

Yi, 

1994 

1987 1 21 98 411 180 300 67 35 10 27 11 1182 

1990 0 0 34 418 289 114 68 3 0 0 0 1127 

1991 0 l2 110 207 417 728 0 1 2 2 0 1480 

1992 0 12 166 383 177 48 11 6 6 6 0 807 

Dekad 

Aver. 
0 11 102 352 265 298 36 11 5 5 3 1088 

Dekad 

Prop. 
0.001 0.01 0.094 0.323 0.243 0.273 0.033 0.01 0.004 0.005 0.003 100% 

Li L.X. 

et al., 

2011 

2002 ND a 30 36 181 12 6 4 0 0 NA b NA 269 

2003 41 72 188 183 102 89 27 9 7 NA NA 718 

2004 2 38 23 24 21 15 8 11 0 NA NA 142 

2005 0 2 6 3 16 11 4 2 4 NA NA 48 

2006 7 7 10 5 30 7 1 0 0 NA NA 67 

2007 0 4 5 1 0 4 5 0 0 NA NA 19 

2008 0 1 11 7 9 15 0 1 0 NA NA 44 

2009 0 2 0 6 2 5 4 0 0 NA NA 19 

Dekad 

Aver. 
7.14 19.5 34.88 51.25 24 19 6.63 2.88 1.38 NA NA 166.64 

Dekad 

Prop. 
0.043 0.117 0.209 0.308 0.144 0.114 0.04 0.017 0.008 NA NA 100% 

    Note: a ND= no data; b NA= not available.   



 

 

Table S3. Spawning Time of Adult Chinese Sturgeon and the Starting Time of Juvenile Self-migration, 

Related to Figures 4. 

Site 
Sampling 

Year 
Spawning Time (year-month-day)  Incubation Period a 

Self-migration Starting Time 

(year-month-day) 

East Beach of 

Chongming 

Island, 

Shanghai 

(Chang, 1999) 

1987 
1986-10-21 (1st batch) 

1986-10-23 (2nd batch) 

1986-10-26 

1986-10-28 

1986-11-13 

1986-11-15 

1990 1989-10-27 1989-11-1 1989-11-19 

1991 
1990-10-15 (1st batch) 

1990-10-31 (2nd batch) 

1990-10-20 

1990-11-5 

1990-11-7 

1990-12-23 

1992 1991-10-23 1991-10-28 1991-1-15 

1987–1992 

Aver. 

22 October (1st batch) 

27 October (2nd batch) 

10-27 

11-1 

11-14 

11-19 

Xupu of 

Changshu 

City, Jiangsu 

Province (Li 

L.X. et al., 

2011) 

2002 
2001-10-20 (1st batch) 

2001-11-8 (2nd batch) 

2001-10-25 

2001-11-13 

2001-11-12 

2001-12-1 

2003 
2002-10-27 (1st batch) 

2002-11-9 (2nd batch) 

2002-11-1 

2002-11-14 

2002-11-19 

2002-12-1 

2004 2003-11-6 2003-11-11 2003-11-29 

2005 2004-11-12 2004-11-17 2004-12-5 

2006 2005-11-10 2005-11-15 2005-12-3 

2007 2006-11-13 2006-11-18 2006-12-6 

2008 2007-11-23 2007-11-28 2007-12-16 

2009 2008-11-26 2008-12-1 2008-12-19 

2002–2009 

Aver. 
10-31 11-5 11-23 

a Calculated over five days of the hatchling period. 

  



TRANSPARENT METHODS 

Migration Dynamics Model (MDM) of Juveniles 

Huang and Wang (2018) derived a non-linear advection-diffusion equation to obtain the spatiotemporal density 

distribution of the fish in the river, treating the fish as active organisms rather than as passive bodies. When 

considering the mortality of fish along the path, the model becomes: 

∂𝐶

∂𝑡
=

∂

∂𝑥
(𝐷

∂𝐶

𝜕𝑥
) − 𝑈

∂𝐶

∂𝑥
 − 𝐾𝐶,                                                            (1) 

where C (x, t) is the density distribution or the occurrence possibility of fish, ind/km (individual per river kilometer); 

x is the migration distance along the river, with the Yangtze mouth (Shanghai) as the origin, km (river kilometer); t 

is the migration time, d (days); D is the diffusion coefficient of fish, km2/d; U is migration upriver or downriver 

speed of fish over the ground, depending on the active swimming ability and being associated with current, km/d; 

K is the instantaneous total mortality rate of the fish, which is a measure of the rate of loss of fish number in a 

population per day (1/d). The diffusive item, 
∂

∂𝑥
(𝐷

𝜕𝐶

𝜕𝑥
), expresses the random walk of the individual. The convective 

item, 
𝜕 (𝑈𝐶) 

𝜕𝑥
, expresses the migratory deterministic movement of the fish cohort. 

Migration Stage Division and Model Parameters 

Drift stage (0–8 dph) 

This stage is in the downstream area of the spawning ground. The drift velocity of the larvae depends on the spatial 

position of the river cross-section. When they drift longitudinally with the current, the larvae move horizontally to 

shallow waters near the shore through a weak swing due to their phototaxis. The larvae prefer shallow water for 

survival and future feeding. Hence, the riverbank has a significant effect on the speed of larval movement. 

Drift speed U1 of the early larva. The drift velocity of the larvae depends on the spatial position of the river cross-

section. In order to simplify the calculation, here we assume the Yangtze River as an open channel, and the exponent 

distribution of turbulent flow velocity in the open channel (Lu, 1990) is: 

𝑢 = 𝑢𝑚 (1 −
𝑦

𝐻
)
1/𝑚
,                                                                          (2) 

where u is the flow velocity of cross-section of the Yangtze River and um the surface flow velocity; y / H is the 

relative water depth, where y is the water depth in a specific position and H is maximum water depth of open channel; 

m is a dimensionless coefficient related to the flow rate and the position of the vertical line. Yao et al. (2005) studied 

the cross-sectional velocity distribution at Huanglingmiao Hydrologic Station in Yichang City and found m = 12 

for the thalweg and m = 6 near the bank; thus m = 7 is used to simplify matters in this study. 

We apply the perched water layer of relative depth value y/H, obtained in the laboratory (Zhuang, 2009; Zhuang et 

al., 2002), to the Yangtze River. This method has been supported by Kynard et al. (2007) and Braaten et al. (2008), 

whereby the vertical distributions of larval pallid sturgeon in laboratory and field experiments show similar 

characters. 

When they drift longitudinally with the current, the larvae move horizontally to shallow waters near the shores 

through a weak swing due to their phototaxis. Hence, the riverbank has a significant effect on the speed of larval 

movement. Therefore, the dimensionless shoreline influence coefficient (φ) is used, 

𝜑 = 1 −
𝑡

8 
 ,                                                                                    (3) 

where t is the age of the larva, dph. 

https://en.wikipedia.org/wiki/Measurement
https://en.wikipedia.org/wiki/Statistical_population


Therefore, the drift velocity U1 of the larvae can be modified as follows: 

𝑈1 = 𝑢𝜑
2 = 𝑢𝑚 (1 −

𝑦

𝐻
)
1/7
(1 −

𝑡

8
)
2
.                                                (4) 

Eq. 4 indicates that the larvae drift with current at the thalweg of the river at t = 0 dph; when t = 1-7 dph, the larvae 

move towards the shores simultaneously. This results in the decrease of drift velocity, and the larvae reach the 

bottom of the river where the drift velocity approaches zero at t = 8 dph. 

The annual average velocity of Zhutuo Hydrological Station in the upper reaches of the Yangtze River is 1.61 m/s 

(Huang et al., 2006); the maximum velocity in Eq.4 is then um = 1.61 m/s = 139 km/d for pre-GD. According to the 

average annual velocity of typical hydrological stations in the middle and lower reaches of the Yangtze River (Yu 

& Zhang, 1995), we use um = 1.16 m/s = 100 km/d for post-GD. 

Diffusion coefficient (D1) of the early larvae. In the drift stage, the diffusion coefficient of larvae is mainly affected 

by the inhomogeneity of the current speed, which near the shores is much higher than that at the thalweg. Therefore, 

the longitudinal mixing coefficient of the river can be used to represent the diffusion coefficient of the larvae (Fisher 

et al., 1979; Zhao, 1986). When the larvae drift with the current and move to the shores through their weak 

swimming ability, the shoreline influence coefficient is used to reflect the augmentation effect of the shores on the 

diffusion coefficient and yields 

𝐷1 = 𝐸/φ ,                                                                                  (5) 

where E is the longitudinal mixing coefficient of the current, = 5.93 Hu*, where H is the water depth of the open 

channel and u*, the friction velocity; φ is the shoreline influence coefficient. The longitudinal mixing coefficient (E) 

is the sum of the turbulent diffusion coefficient caused by turbulence and the longitudinal dispersion coefficient 

caused by uneven velocity distribution. The turbulent diffusion coefficient is much smaller than the longitudinal 

dispersion coefficient and can be neglected. Then the average longitudinal dispersion coefficient in the Three Gorges 

reach is used as the representative value of the main stem of the Yangtze River (Huang et al., 2006) and yields 

𝐸 = 368  m2 s⁄ = 31.8  km2 d⁄ .                                                     (6) 

The diffusion coefficient (D1) of larvae can be calculated by Eqs. 3, 5 and 6, as shown in Table 1. 

Cover stage (9-18 dph) 

Zhuang et al. (1999; 2002) reported that the early larvae begin to hide in the cracks of gravel-cobble at 8 dph and 

get to the peak of the individual number at 8-10 dph. The probability of hiding at 11 dph starts to decrease until 18 

dph when most of the larvae leave the cracks. The larvae hide in cracks at the riverbed from 9–18 dph in the lower 

reaches of the spawning ground but show obvious diffusion behavior due to the local eddies. Therefore, the time-

averaged velocity of current (U2) = 0 and the diffusion coefficient D2 = 254.4 km2/d (Table 1). 

Self-migration stage (after 18 dph) 

Due to the limitation of observation techniques, the spatiotemporal distribution of migration velocity (U3) of 

juveniles after 18 dph in the Yangtze River was difficult to obtain in the field and is related to the swimming speed 

and the current speed. Theoretically, the swimming speed of fish is related to body conditions such as health, body 

length, tail length, and swing frequency as well as environmental conditions such as water temperature, velocity, 

and the velocity gradient of the current. Here, we use the fishing data and mark-recapture data to estimate the model 

parameters. 

Downriver migration speed U3 of juveniles. (1) Estimation with fishing data. Historically, fishers used set gillnets 

to catch juvenile Chinese sturgeon as bycatch in the Yangtze estuary. Later, that method became a routine 

investigation method for the resource monitoring of the juveniles (Li L.X. et al., 2011; Zhuang et al., 2016). Zhang 

et al. (2012) sorted out the migration time, and interval swimming speed of juveniles from the spawning ground to 



the Yangtze estuary between 1996 and 2006, as shown in Table S1. The mean migration time estimated was 216 

days from the first spawning to the peak of juveniles appearing at Xupu in the following year, without deducting 

the incubation period of about five days. In this paper, the age of juveniles is calculated from the day of hatching 

(dph); the mean migration time is changed from 216 days to 211 dph, and mean migration speed is increased from 

7.8 km/d to 7.99 km/d. Assuming that the self-migration started at 18 dph and the U (t) of juveniles in the Yangtze 

River is linear with the age (t), U (t) = at where a is constant, we have: 

1

193
∫ 𝑈(𝑡)𝑑𝑡 = 7.99
18+193

18
                                                         (7) 

As a result, we have a = 0.06978. Then, the relationship between migration speed U (t) and age t of the juveniles is 

expressed as follows: 

𝑈(𝑡) = 0.06978 𝑡.                                                                     (8) 

(2) Estimation with mark-recapture data. Yang et al. (2005) reported that 175,200 two-month-old juvenile Chinese 

sturgeons were released at Yichang and Shashi from 1998 to 2002, 77,957 of which were labeled with CWT; 400 

fourteen-month-old juveniles were labeled with silver tags and CWT. Sample collection was carried out along the 

Yangtze River and the coastal waters after the release. In four years, the total catch was 6,400 of the two-month-

olds and 13 of the fourteen-month-olds, among which the marked juveniles comprised 13 of the two-month-olds 

and 13 of the fourteen-month-olds. We can obtain the linear relationship between mean interval velocity and age. 

The recapture records in 2000 showed that the two-month-old juveniles released on December 28 reached Xupu 

between May and July (June 15 was the median), and their migration speed was 8.5–11.3 km/d with an average of 

9.8 km/d. Calculated monthly for 30 days, therefore, the release age of juveniles is 60 days (2 months old), and the 

age of recapture is 227 dph. The fourteen-month-old juvenile Chinese sturgeon (420 days) were released with an 

average migration time of 70 days and an average speed of 28.6 km/d. Therefore, we have 

{

1

167
∫ 𝑈(𝑡)𝑑𝑡 = 9.8
60+167

60
1

70
∫ 𝑈(𝑡)𝑑𝑡 = 28.6
420+70

420

.                                                                 (9) 

Therefore, the relationship between U (t) and age t of juveniles can be expressed as follows: 

{
𝑈(𝑡) = 0.06829t, for 2 − month − old juveniles released

𝑈(𝑡) = 0.06286t, for 14 −month − old juveniles released
,                         (10) 

where U (t) is the migration speed of the juveniles, km/d; t is the age of fish, dph. 

We used the fishing and mark-recapture data to obtain similar expressions for the speed function and took the 

average value of Eqs. 8 and 10 as the migration speed of juveniles. 

𝑈3 = 0.06698 𝑡                                                                       (11) 

After the juveniles enter the tidal-affected region, the current is slowed down by the tide, resulting in a corresponding 

decrease of the migration speed of juveniles. The tag-tracking measurements in 2015–2016 showed that the 

migration speed of 3.5-year-old subadults after entering Nanjing was reduced by about 20% (Institute of Chinese 

Sturgeon of China Three Gorges Corporation, Preliminary report on the tag-tracking experiment of cultured Chinese 

sturgeon in 2015–2016, internal report). Therefore, the reduction of current speed has a more significant impact on 

the migration speed of juveniles. In this paper, we assume that the migration speed of juveniles from Nanjing to the 

estuary is reduced by 30% and introduce a tidal influence coefficient (γ) into Eq. 11 in the tidal-affected region. 

Then, we have 

𝑈3 = 0.06698 𝑡 γ                                                                     (12) 



where γ is the tidal influence coefficient, γ = 0.3
𝑥

∆𝐿
+ 0.7, as 𝑥 ≤  347 km; γ=1, as x > 347 km (above Nanjing); 

ΔL = 347 km, the distance between Nanjing and the estuary. 

It should be noted that the migration speed equation (Eq. 12), recommended in this paper, represents the combined 

effects of the juveniles’ swimming ability and the current speed, and reflects the common trait of downriver 

migration speed at large spatiotemporal scale and the population level. However, rich detail of the migration speed 

still lacks at a smaller spatiotemporal scale and at the individual level. 

Diffusion coefficient (D3) of juveniles. In the self-migration stage, D3 is synthetically determined by the swimming 

ability and the current speed; of the two, the current effect on the juvenile migration speed decreases with age. 

Therefore, we divide D3 into two parts: the fish-related diffusivity (Df), which is determined by the juvenile 

swimming ability increasing with age, and the current-related diffusivity (Dw), which is determined by the current 

speed and is attenuated with the increase in age. 

(1) Estimation of Df. Based on the random walk theory, the fish-related diffusivity Df can be expressed as follows 

(Zhao, 1986): 

𝐷𝑓 =
𝑉∗𝑑𝑥

2
,                                                                           (13) 

where V is the random walk velocity of the individual; and dx is the walk distance of each step of the individual. 

We introduce the Peclet number as follows (Fisher et al., 1979; Zhao, 1986): 

𝑃𝑒 =
𝑈∗𝑙

𝐷𝑓
,                                                                              (14) 

where the dimensionless Peclet number, Pe, denotes the ratio of convection item to diffusion item; U is the 

characteristic velocity, and l is the characteristic length. 

Assuming the random walk velocity (V) and the characteristic velocity (U) of individual are expressed by the 

migration speed of juveniles, U (t), then V = U = U (t), while the walk distance dx of each step and the characteristic 

length l can be expressed by the full length (L) of juveniles, namely dx = bL (b is constant) and l = L; then Eqs. 13 

and 14 become 

𝐷𝑓 =
𝑏

2
𝑈(𝑡)𝐿                                                                       (15) 

𝑃𝑒 =
𝑈(𝑡)×𝐿

𝐷𝑓
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                        (16) 

Substituting the linear regression relationship of full length–age (Figure S2B) and Eq. 11 into Eq. 15, we have 

𝐷𝑓 = 4.2 × 10
−3𝑏𝑡2 + 4.8 × 10−2𝑏𝑡                                   (17) 

Using the diffusion coefficient obtained by the tag-tracking experiment of 3.5-year-old sub-adults (Huang & Wang, 

2018), t = 3.5 a =1277.5 d and Df =1550 km2/d, meanwhile assuming that the diffusion coefficient of 3.5-year-old 

subadult is less affected by current, then we have b = 0.2238 from Eq. 17. Thus, Eqs. 15 and 16 become 

{
𝐷𝑓 = 9.414 × 10

−4𝑡2 + 1.075 × 10−2𝑡

𝑃𝑒 =  8.94 
                              (18) 

Eq.18 shows that the fish-related diffusivity Df is proportional to age (t) squared and the convective term is 

predominant, about nine times the fish-related diffusivity term in the migration process of juveniles. 



(2)  Estimation of Dw. In the drift stage, we have calculated that the diffusion coefficient of 7-dph larvae is 254.4 

km2/d and is also used in succession in the cover stage (8-18 dph). In the self-migration stage, the effect of water 

flow on swimming attributes weakens with age. Therefore, we assume that the current-related diffusivity (Dw) will 

decrease with the age of the juvenile. So, we can construct a function of (Dw) as follows: 

𝐷𝑤 =
254.4

√𝑡−18
                                                                            (19) 

The diffusion coefficient of juvenile D3 in the self-migration stage (t > 18 dph) was obtained as follows: 

𝐷3 = 𝐷𝑓 + 𝐷𝑤 = 9.414 × 10
−4𝑡2 + 1.075 × 10−2𝑡 +

254.4

√𝑡−18
,                     (20) 

where t is the age of the juvenile, dph. 

The Mortality Rate of Young Chinese Sturgeon 

In the early life stage of lake sturgeon, the larval mortality rate is more than 99.9%, which has a significant impact 

on the recovery of the population size (Caroffino et al., 2008; 2010). Similar to the lake sturgeon, the mortality of 

the juvenile Chinese sturgeon during the migration process in the Yangtze River also significantly affects their 

future population size. 

The eggs are rapidly fertilized while depositing onto the riverbed of spawning ground and adhering to the cracks of 

the gravel-cobble substrate. Fertilized egg survival depends on egg predation and the fertilization rate during the 

sinking process. Wei (2003) reported that the fertilization rate of wild Chinese sturgeon from 2000 to 2002 was 

79.3–93.4%, with an average of 86.4%. Ke et al. (1989) reported three field tests of Chinese sturgeon egg release 

carried out at 5:00 pm, involving 400,000 unfertilized eggs sprinkled on the spawning ground downstream from the 

GD for the first and the second tests; the third field test involved 800,000 fertilized eggs sprinkled at the same place 

a few days later. Each time predators such as Coreius guichenoti, Coreius heterodon, and Pelteobagrus vachelli 

were captured, they were dissected the next day. The test results showed that the average mortality rate was 84% 

for eggs swallowed by the predators during the sinking process on the day of spawning. Therefore, the survival rate 

of 0-day fertilized eggs was 13.8% = (1−84%) ×86.4%, as shown in Figure 3. 

Fertilized eggs adhered to the bottom pebbles for five days to hatch out into early larvae. The hatching rate of 

fertilized eggs was 70% (Chang, 1999), and the threats to eggs come mainly from predatory egg fish. Chang (1999) 

reported a regression function of the occurrence percentage of benthonic predators that appeared day-by-day after 

spawning, so that the function reflected the density-dependent probability of developing eggs being devoured by 

predators (Justice et al., 2009). If considering the mortality rate of 0-day fertilized eggs to be 84%, we can obtain 

the mortality rate of larvae day by day as follows: 

𝐾0 = 0.84 e
−0,2867𝑇,                                                       (21) 

where K0 is the mortality rate caused by egg predation and decreases with time. Mortality by predation mainly 

occurs in the drift stage and the early self-migration stage; T is the number of days after spawning, d. A similar 

result to Eq. 21 was reported for eggs of lake sturgeon (Caroffino et al., 2010). Therefore, the cumulative mortality 

rate by predators at the end of the cover stage (18-day) is estimated to be 96%, so the survival rate from 1-day 

fertilized eggs to late larvae is 2.8% = (1−96%) × 70%. 

When entering the self-migration stage (18 dph), juveniles begin to feed, and their swimming ability has gradually 

enhanced. The total mortality rate of juveniles includes both natural and anthropogenic mortality sources, mainly 

due to starvation (Caroffino et al., 2008), water pollution (Hu et al., 2009), bycatch (Chang, 1999) and a variety of 

hydrological conditions, including the effects of saltwater in the estuary (He et al., 2009; Zhao, Qu & Zhuang et al., 

2011; Zhao, Zhuang & Zhang et al., 2015); however, the threat of predators decreases with the age and growth of 

larvae (Ke et al., 1989). To estimate the amount of juvenile Chinese sturgeon with mark-recapture tests, Wei (2003) 

used a mortality rate of 90% from the release site in the spawning ground to the recapture site in the estuary, 50% 



of which occurred during a stay in the estuary. Therefore, we take the mortality of juveniles as 90% during the self-

migration stage from the hatching site to the estuary, evenly distributed with time along the river reach, and 50% 

during the next stay in the estuary. We have: 

𝐾 =
2.3

𝑇
,                                                                        (22) 

where K is an instantaneous total mortality rate in Eq.1, 1/d; T is the number of days when a juvenile spends from 

the hatching site to the estuary, d. We can estimate T = 288 d for pre-GD and T = 228 d for post-GD from the 

migration speed of the fish, including U1, U2, and U3 mentioned above. 

Numerical Method of MDM 

Our MDM is nonlinear and has variable coefficients. It requires a large calculation space, long calculation time, and 

high conservation of number when numerical methods are used. MATLAB software was used for discretization 

calculation of the MDM. Due to the existence of the convection item, the convection-diffusion equation often 

displays numerical instability and oscillations. After a comparison of methods and schemes, we selected the Crank–

Nicolson scheme of finite difference methods for a discretization calculation to obtain numerical results. The scheme 

is unconditionally stable (Crank & Nicolson, 1996). The discretization form is: 

𝐶𝑗
𝑖+1−𝐶𝑗

𝑖

∆𝑡
=
1

2
[
(𝐶𝑗+1
𝑖+1+𝐶𝑗−1

𝑖+1−2𝐶𝑗
𝑖+1)𝐷𝑖+1

∆𝑥2
+
(𝐶𝑗+1
𝑖 +𝐶𝑗−1

𝑖 −2𝐶𝑗
𝑖)𝐷𝑖

∆𝑥2
] −

1

2
[
(𝑈𝐶)𝑗+1

𝑖+1−(𝑈𝐶)𝑗−1
𝑖+1

2∆𝑥
+
(𝑈𝐶)𝑗+1

𝑖 −(𝑈𝐶)𝑗−1
𝑖

2∆𝑥
] − 𝐾𝐶𝑗

𝑖,       (23) 

where Δx and Δt are spatial and temporal steps, respectively; the superscript of C represents the time node, and the 

subscript represents the space node. The rearranged equation is: 

(−
𝑈𝑗−1
𝑖+1

4∆𝑥
−
𝐷𝑖+1

2∆𝑥2
)𝐶𝑗−1

𝑖+1 + (
1

∆𝑡
+
𝐷𝑖+1

∆𝑥2
)𝐶𝑗

𝑖+1 + (
𝑈𝑗+1
𝑖+1

4∆𝑥
−
𝐷𝑖+1

2∆𝑥2
)𝐶𝑗+1

𝑖+1 =  

(
𝐷𝑖

2∆𝑥2
+
𝑈𝑗−1
𝑖

4∆𝑥
)𝐶𝑗−1

𝑖 + (
1

∆𝑡
−

𝐷𝑖

∆𝑥2
− 𝐾)𝐶𝑗

𝑖 + (
𝐷𝑖

2∆𝑥2
−
𝑈𝑗+1
𝑖

4∆𝑥
)𝐶𝑗+1

𝑖  ,        (24) 

where 𝐶𝑗−1
𝑖+1, 𝐶𝑗

𝑖+1, 𝐶𝑗+1
𝑖+1 are unknown items to be solved at time i+1; all on the right side are known items at time i. 

If the maximum time length that a distributed cohort spends from the hatching area to the river mouth is TM, and 

the numbers of space nodes (m) and time nodes (n) are: 

{
𝑚 =

𝐿

∆𝑥
+ 1

𝑛 =
𝑇𝑀

∆𝑡
+ 1

                                                                      (25) 

Therefore, the linear equation set in the calculation is: 

(

 
 

𝛽1 𝛼 𝛾3 0 0
⋯ ⋯ ⋯ ⋯ ⋯
0 𝛽j−1 𝛼 𝛾𝑗+1 0

⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 𝛽𝑚−2 + 𝛾𝑚 𝛼)

 
 

(

 
 

𝐶1
𝑖+1

⋮
𝐶𝑗
𝑖+1

⋮
𝐶𝑚−1
𝑖+1 )

 
 

 = 

(

 
 

−𝛽1
′𝐶1
𝑖 + 𝛼′𝐶2

𝑖 − 𝛾3
′𝐶3
𝑖

⋮
−𝛽𝑗−1

′ 𝐶𝑗−1
𝑖 + 𝛼′𝐶𝑗

𝑖 − 𝛾𝑗+1
′ 𝐶𝑗+1

𝑖

⋮
−(𝛽𝑚−2

′ + 𝛾𝑚
′ )𝐶𝑚−2

𝑖 + 𝛼′𝐶𝑚−1
𝑖 )

 
 
,      (26) 

where α =
1

∆𝑡
+
𝐷𝑖+1

∆𝑥2
;  𝛽𝑗−1 = −

𝑈𝑗−1

4∆𝑥
−
𝐷𝑖+1

2∆𝑥2
;  𝛾𝑗+1 =

𝑈𝑗+1

4∆𝑥
−
𝐷𝑖+1

2∆𝑥2
;  α′ =

1

∆𝑡
−

𝐷𝑖

∆𝑥2
− 𝐾; 𝛽𝑗−1

′ = −
𝑈𝑗−1

4∆𝑥
−

𝐷𝑖

2∆𝑥2
;  𝛾𝑗+1

′ =
𝑈𝑗+1

4∆𝑥
−

𝐷𝑖

2∆𝑥2
 



Matlab solutions of the set of linear equations  

The linear equations set (Eq.26) can be expressed by AC = B. A is a matrix of m rows and n columns, B is a matrix 

of m rows and one column, and C is a matrix of m rows and one column. The matrixes are as follows: 

A = 

(

 
 

𝛽1 𝛼 𝛾3 0 0
⋯ ⋯ ⋯ ⋯ ⋯
0 𝛽j−1 𝛼 𝛾𝑗+1 0

⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 𝛽𝑚−2 + 𝛾𝑚 𝛼)

 
 

                                          (27) 

𝐵 =

(

 
 

−𝛽1
′𝐶1
𝑖 + 𝛼′𝐶2

𝑖 − 𝛾3
′𝐶3
𝑖

⋮
−𝛽𝑗−1

′ 𝐶𝑗−1
𝑖 + 𝛼′𝐶𝑗

𝑖 − 𝛾𝑗+1
′ 𝐶𝑗+1

𝑖

⋮
−(𝛽𝑚−2

′ + 𝛾𝑚
′ )𝐶𝑚−2

𝑖 + 𝛼′𝐶𝑚−1
𝑖 )

 
 

                                            (28) 

𝐶 =

(

 
 

𝐶1
𝑖+1

⋮
𝐶𝑗
𝑖+1

⋮
𝐶𝑚−1
𝑖+1 )

 
 

                                                                                      (29) 

The Matlab software platform provides various calculation methods for the linear equation set, AC = B, such as the 

left division (C = A\B) and inversion method (C = inv (A) × B). The inversion method requires that A is a square 

matrix. Therefore, we use the left division method in this study. 

The density distributions of juveniles in the downriver migration process can be calculated based on the above 

methods and procedures. 

Initial and boundary conditions in the calculation 

The spawning activity of Chinese sturgeon was affected by the gonadal development and environment, but with a 

small change of the spawning time for pre-GD and post-GD. The activity was mainly due to the environmental 

change caused by the transfer of the spawning ground from upstream to 1,000 km downstream, so that the spawning 

time was delayed from mid-October to late-October. The incubation period of eggs was 5 days, which has remained 

unchanged. 

In pre-GD, the first spawning time was October 20 on average (YARSG, 1988), and the spawners participating in 

breeding accounted for 70% of the population size (Huang & Wang, 2018). The first batch of eggs hatched on 

October 25, which was counted as 0 dph. On November 12, the larva reached the age of 18 dph and entered the self-

migration stage. The second spawning time was five days later (October 25), and the remaining 30% of the 

population size finished breeding and entered the self-migration stage on November 17. 

In post-GD, the dam had effects on the spawning activities of Chinese sturgeon, resulting in a delay of spawning 

time. We adopt that the average spawning time was October 27, so that larvae hatched on November 1 for the age 

of 0 dph and reached 18 dph on November 19, entering the self-migration stage. 

The number of early larvae (18 dph) for pre-GD was N = 780,000 individuals. For post-GD, N = 185,000 individuals. 

Calculated river length: L = 2,850 km for pre-GD; L = 1,675 km for post-GD. 

Initial larval distribution: uniform within the typical spawning site such as Sankuaishi of pre-GD and Huyatan of 

post-GD at ΔL = 30 km. 



Model Verification 

Li (2014) reported that cultured juveniles had formed a saltwater adaptation mechanism after 5 months of age. Zhao 

et al. (1986) observed that the earliest juvenile fish appeared in the estuary from 1982 to 1985 was early May, which 

is consistent with the results of this paper. The data of year-long investigation in the estuary by Yi (1994) (Figure 

S4A) and Li L.X. et al. (2011) (Figure S4B) showed that the peak time of juveniles occurred in mid-June, which is 

consistent with the calculated results in Figure 4B. Chen et al. (2016) analyzed the occurrence time in the Yangtze 

estuary from 2005 to 2013 and concluded that in most years, the earliest occurrence time was concentrated in the 

period of May to mid-June, and the final departure time was from mid-July to late-August; the average occurrence 

time lasted 82 days (about 2.7 months). These survey findings are very similar to the calculated results in this paper. 

We used the dekad (10-day) data from Yi (1994) and Li L.X. et al. (2011) to verify the theoretical model. Because 

of the small number of samples collected each year relative to the fecundity of the fish, we used the average values 

of the sampling data of 1987–1992 and 2002–2009 to eliminate the random error caused by the small sample size. 

The initial conditions of the calculations for 1987–1992 and 2002–2009 are shown in Table S3; these include the 

spawning time, incubation period and self-migration starting time. We used the average values listed in Table S3 in 

the calculations. Therefore, we compared the fishing data with the calculated results to verify the rationality and 

reliability of the model. 

East Beach data (1987–1992) of Chongming Island 

Quantitative verification: Figure S4A shows the comparison between the measured and calculated values of the 

occurrence frequency of juveniles in the eastern beach of Chongming Island, which is the core zone of the National 

Nature Reserve of Juvenile Chinese sturgeon and is the last stop for the downriver migration of juveniles. Therefore, 

the eastern beach of Chongming is an ideal site for population surveillance. The occurrence frequency of juveniles 

is indicated by the proportion of the collected amount per ten days to the annual collection. Hence, we processed 

the daily data in the calculation into dekad (10-d) data for comparison. Additionally, we multiplied the daily 

frequency by 10 and drew it in the same figure. The calculated results in this paper are in good agreement with the 

annual average data from 1987 to 1992, demonstrating the rationality of the theoretical model. 

Qualitative verification: Yi (1994) reported a simple description of the juvenile occurrence downstream of the GD 

in places such as Yisha, Yueyang, Jiujiang, Nanjing, and Zhenjiang sections. Excluding the Yisha section located 

in the spawning ground, we calculated the density distributions of juveniles in Yueyang (401 km), Jiujiang (882 

km), Nanjing (1,328 km), and Zhenjiang (1,402 km) sections to qualitatively verify the correctness of the model, as 

shown in Figure S4C. In summary, the calculated results of this paper are consistent with the recorded data (Yi, 

1994), which shows the rationality of the model’s calculations.  

Xupu data (2002–2009) of Changshu City 

The density distribution of juveniles at Xupu (1,575 km) of Changshu City was simulated. Figure S4B shows that 

the calculated results are in good agreement with the fishing data at Xupu from 2002 to 2009, verifying that our 

model is reasonable and feasible. 

Data and Software Availability 

Raw data for the model parameters and calculated results (Figure 4) and their Matlab software code are available 

online via a Mendeley Data repository with DOI links at doi:10.17632/gyg6gg4mtk.1. 
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