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Maintaining upright bipedal posture requires a control system that continually adapts

to changing environmental conditions, such as different support surfaces. Behavioral

changes associated with different support surfaces, such as the predominance of an

ankle or hip strategy, is considered to reflect a change in the control strategy. However,

tracing such behavioral changes to a specific component in a closed loop control system

is challenging. Here we used the joint input–output (JIO) method of closed-loop system

identification to identify the musculoskeletal and neural feedback components of the

human postural control loop. The goal was to establish changes in the control loop

corresponding to behavioral changes observed on different support surfaces. Subjects

were simultaneously perturbed by two independent mechanical and two independent

sensory perturbations while standing on a normal or short support surface. The results

show a dramatic phase reversal between visual input and body kinematics due to the

change in surface condition from trunk leads legs to legs lead trunk with increasing

frequency of the visual perturbation. Through decomposition of the control loop, we

found that behavioral change is not necessarily due to a change in control strategy, but

in the case of different support surfaces, is linked to changes in properties of the plant.

The JIO method is an important tool to identify the contribution of specific components

within a closed loop control system to overall postural behavior and may be useful to

devise better treatment of balance disorders.

Keywords: multi-sensory perturbation, sensory reweighting, direct effect, plant, feedback
,
postural control

INTRODUCTION

Human upright standing is intrinsically unstable, requiring sensory feedback to remain upright.
The feedback process involves the integration of sensory information from multiple sources (e.g.,
visual, vestibular, and somatosensory system) that is continually reweighted due to neurological
injury or when environmental conditions change (van der Kooij et al., 2001; Peterka, 2002; Kiemel
et al., 2008, 2011).

Our current understanding of the mechanisms underlying postural control is best illustrated
through a simple example: the experiments that impose support surface translations on a normal
and shortened surface (Horak and Nashner, 1986). On a normal support surface, subjects adopt
an “ankle pattern,” in response to small disturbances, whereas on a shortened surface, they adopt
a “hip pattern” of control. But what is the mechanistic basis for this pattern switch? How do
different components of human postural control loop contribute to this pattern switch? Does it
entail a change in “control strategy,” a process within the feedback side of the control loop, or
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does standing on a shortened surface change the biomechanical
properties of the body or its mechanical interaction with the
environment (e.g., the mechanical interaction between the feet
and the surface changes when the surface is shortened)? Our
current understanding of such phenomena is descriptive, not
mechanistic. It is a great challenge to trace behavioral deficits to
a particular component of the loop, because of the complicated
interactions between multiple processes that co-exist, as depicted
in Figure 1.

A classic solution to this puzzle is to “open the loop” and study
separate components in isolation. Such techniques, for example,
were used to study the properties of a deafferented muscle by
stimulating the muscle artificially to mimic motor commands
(Houk and Rymer, 1981). Open-loop techniques have also
proven effective in behaviors such as eye movements (Leigh et al.,
1982; Stark, 1984). So why not apply such techniques to postural
control? Because the bipedal body standing on a surface (i.e.,
the plant) is inherently unstable, if all sensory input is removed,
standing upright is no longer possible. For example, individuals
with bilateral vestibular loss cannot stay upright in Condition
6 of the Sensory Organization Test, which removes visual and
proprioceptive input through sway-referencing (Peterka and
Black, 1990). To solve this problem, we recently implemented
an approach called the joint input–output (JIO) method (e.g.,
Fitzpatrick et al., 1996; Katayama, 2005; van der Kooij et al.,
2005; Kiemel et al., 2008, 2011). The JIO method “opens the
loop” for human upright standing by calculating multiple linear
input–output relationships (gain and phase), between various
components of the control loop and then using mathematical
techniques to isolate a particular process (e.g., feedback, see
Materials andMethods Section below). The JIOmethod has been
also applied in clinical studies (Engelhart et al., 2014; Pasma
et al., 2014). For example, van der Kooij’s group used the JIO
method in order to detect asymmetries in balance control of
Parkinson patients with system identification (van der Kooij
et al., 2007; Boonstra et al., 2014). In Pasma’s recent review paper,
they argue that as current clinical balance tests only measure
the ability to maintain standing balance and cannot distinguish
between cause and effect in a closed loop, there is a clear
clinical need for new techniques to assess standing balance. A
way to disentangle cause-and-effect relations to identify primary
defects and compensation strategies is based on the application
of external disturbances and system identification techniques,
applicable in clinical practice (Pasma et al., 2014).

In this study, our goal was to understand how different
components of the control loop contribute to the flexible control
of upright stance on different support surfaces. We attempted
to decode the mechanistic basis behind any changes in body
movements and muscle activations on a normal support surface
in contrast to a short support surface using the JIO system
identification method. The results from the decomposition of
human postural control loop show a dramatic phase reversal
between visual input and body kinematics due to the change
in surface condition from trunk leads legs to legs lead trunk
as frequency of visual perturbation increases. Importantly, we
are able to definitively attribute this change to two different
processes, one in the plant and one in the feedback portion of

the control loop. Considering the many subsystems/processes
involved in human upright stance control, such findings may
have implications for populations with poor balance control,
fostering more precise diagnosis, and treatment.

MATERIALS AND METHODS

Joint Input–Output (JIO) Method
The classical view of human upright standing is a control
system consisting of a plant and a feedback (i.e., neural control)
operating continuously in a closed loop, as shown in Figure 1.
We applied the JIO method for human postural control using
independent sensory perturbations to identify the plant and
independent mechanical perturbations to identify the feedback
(Kiemel et al., 2008, 2011). Figure 1 traces the path from input-
to-output of a visual perturbation, which generates a number of
closed loop frequency response functions (FRFs): EMG (ankle
and hip) responses relative to the visual motion and kinematic
(trunk and leg) responses relative to visual motion. Closed-
loop FRFs reflect the interaction between the plant and the
feedback components of the control loop, as well as properties
of the perturbation. Such interactions make closed-loop FRFs
notoriously difficult to interpret mechanistically. JIO method,
however, states that the relationship between two closed-loop
FRFs depends only on either the plant or the feedback. For
example, dividing the FRF from visual perturbations to trunk/leg
angles by the FRF from visual perturbations to the EMG signals
results in an open-loop FRF from ankle/hip muscular activity
to trunk/leg angles, that is, an open-loop FRF that reflects only
properties of the plant. Essentially the feedback component
is canceled by the ratio of the two closed-loop FRFs because
it is common to both closed-loop FRFs. A similar approach
defines properties of neural feedback through FRFs generated
by mechanical perturbations. An important aspect of the JIO
method is that to completely identify the control loop of the
multi-segmented body, the number of perturbations must match
the number of inputs to the plant or feedback. Thus, the number
of sensory perturbations must equal the number of EMG inputs
(ankle and hip) to the plant and the number of mechanical
perturbations must equal the number of kinematic inputs (trunk
and leg) to feedback. In additional, the JIO-method formulas in
Section Identification of the Direct Effects, the Plant, and the
Feedback Frequency Response Function (FRF) below are based
on the assumption that all perturbation signals are mutually
uncorrelated, which we ensure by designing signals that are
mutually statistically independent.

Experimental Methods
Twenty healthy subjects (10 males, 10 females, age: 21.5 ± 2.5
years, height: 171.6± 12.3 cm, weight: 68.8± 17.4 kg, foot length:
250.3 ± 2.9 mm) who were students in University of Maryland
were participated in this experiment. All the subjects were
physically healthy and active, with no known musculoskeletal
injuries, or neurological disorders that might affect their ability
to maintain balance. The Institutional Review Board at the
University of Maryland approved the experimental protocol.
All the subjects received oral and written instructions for
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FIGURE 1 | Schematic diagram of the human postural control feedback loop. The human postural control feedback loop consists of three major components:

feedback, plant, and direct effect.

the experiment procedures and gave informed written consent
according to guidelines implemented by the Institutional Review
Board at the University of Maryland before undertaking the
experiment.

Figure 2 shows the experimental setup for this study. Two
independent mechanical perturbations (waist and shoulder
perturbation) and two independent sensory perturbations (visual
and proprioceptive perturbations) were applied to the subject
during standing. Subjects stood on different two width (normal
or short) support surface in the middle of the visual cave and
faced the front wall. Subjects assumed a foot position with heels
at a distance of ∼11% of their heights and an angle of 14◦

between each foot and the midline (McIlroy and Maki, 1997).
And each subject’s foot position was marked to keep same foot
position during the experiment. The instruction to the subjects
was to look straight ahead at the front screen and not to focus
on any particular triangle. In addition, subjects were instructed
to maintain a comfortable upright stance with folded hand in
front of body and not to consciously resist any force from the
mechanical perturbations. There were two conditions with all the
perturbations applied simultaneously. One condition is standing
on a normal support surface and another condition is standing
on a short support surface (50% foot length) with no support
under the balls and toes of the feet. The order of condition was
randomized. The length of each trial was 240 s. Another 5 s in the
beginning and at the end were added to allow the motors to speed
up or slow down. Five repetitions were run in each condition for
each subject.

Kinematics were captured by ViconMX digital optical motion
capture system with five infrared cameras (Vicon, UK). The
shoulder (the scapula), hip (the greater trochanter), knee (the
lateral femoral condyle), ankle (the lateral malleolus), and
foot (the first metatarsal head) were measured by attaching
five reflective markers on the right side of the subject to

FIGURE 2 | Experimental setup for this study. Two mechanical

perturbations (waist and shoulder perturbation) and two sensory perturbations

(visual and proprioceptive perturbations) were applied to the subject during

standing. Subjects stood on different two width (normal or short) support

surface in the middle of the visual cave and faced the front wall.

measure subject’s anterior-posterior (AP) movement in the
sagittal plane. Kinematics were sampled at 300 Hz. Muscle
activity was measured using multi-channel telemetric surface
EMG systems (ZeroWire, Aurion, and Trigno Wireless System,
Delsys). Wireless electrodes were placed on the right side of
the body measuring 11 muscles: lateral gastrocnemius, medial
gastrocnemius, soleus, tibialis anterior are for ankle EMG
signals and biceps femoris, semitendinosus, rectus femoris, vastus
lateralis, vastus medialis, rectus abdominus, and erector spinae
muscles of the lumbar spine for hip/lower trunk EMG signals.
EMG signals were sampled at 2400 Hz.
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In order to have uncorrelated signals when applying all
perturbations simultaneously, we used filtered white noise
generated with two low-pass Butterworth filters for the
mechanical perturbations: a first-order filter and an eighth-order
filter with cutoff frequencies of 0.1 and 5 Hz, respectively. The
power spectrum density (PSD) of the white noise was 4 and 2.5
cm2/Hz, respectively, for the waist and shoulder perturbations.
We used different seeds for every trial and subject. The resulting
peak-to-peak amplitude for the waist motor and shoulder motor
displacement was 13–15 and 11.5–13.5 cm, respectively. The
same procedure was used for the visual signal except that the PSD
was 4.05 deg2/Hz and the cutoff frequency of the first filter was
0.02 Hz. The mechanical perturbations were delivered through
two linear motors (LX80L, Parker Hannifin Corporation, USA),
which were positioned behind the subjects and pulled subjects
from their backs. The actual displacements of the motors were
used as mechanical perturbation signals. Weak and continuous
mechanical perturbations were applied to the subject by attaching
springs to a waist belt and shoulder-strap worn by the subject on
one end and computer controlled linear motors on the other. The
spring constants for the waist belt and shoulder-strap were 0.04
and 0.0157 N/mm, respectively.

The visual display was projected by JVC projectors (Model:
DLA-M15U, Victor Company, Japan) to three mirrors, which
reflected and rear-projected onto a visual cave consisting of three
2.67 × 3.33 m screens (Fakespace, Inc., Marshalltown, Iowa,
USA). The visual display consisted of 500 randomly distributed
white triangles (3.4 × 3.4 × 3 cm) on a black background.
To reduce aliasing effects in the foveal region, no triangles
were displayed within a horizontal band of ±5◦ at eye height.
The frame rate of the visual display was 60 Hz. A visual
signal was displayed as a visual rotation around ankle joint.
Bilateral vibration of Achilles tendons was applied through two
20 mm vibrator motors, driven at 80 Hz and 1 mm amplitude
displacement. The vibrators are enclosed in a hollow rectangular
PVC container (3.5 × 3.8 × 3.5 cm) with a flexible recessed
surface mounted on the contact face for comfortable fitting
around the Achilles tendon. The enclosure was held in place by an
elastic strap. The vibrators were randomly turned on and off by
the control signal. Three reflectivemarkers attached on triangular
plane which was connected with each PVC container to measure
vibrations of the vibrator during standing.

Signal Processing
We approximated the body as having two mechanical degrees of
freedom in the sagittal plane (see Discussion). The leg angle θ1(t)
and trunk angle θ2(t) with respect to vertical were determined
by the AP and vertical displacement of the shoulder, hip, ankle
marker, and foot marker, as shown in Figure 3. For the EMG
activity of each muscle, the mean was subtracted from the raw
EMG and then the raw EMG was rectified, resulting in ankle
EMG signals u11(t), u12(t), u13(t), and u14(t) and hip/lower-trunk
EMG signals u21(t), u22(t), ..., u27(t) (i.e., uij(t) was defined as
i = 1 for the ankle EMG signal and j = 1, 2, 3, 4 for four ankle
EMG signals. Also, i= 2 for the hip/lower-trunk EMG signal and
j= 1, 2, 3, 4, 5, 6, 7 for seven hip/lower-trunk EMG signals).

FIGURE 3 | Definition of body segment angles. The leg angle θ1(t) and

trunk angle θ2(t) with respect to vertical were determined by the

anterior-posterior (AP) and vertical displacement of the shoulder, hip, ankle

marker, and foot marker.

For any two signals x(t) and y(t), the power spectral densities
(PSDs) pxx(f ) and pyy(f ) and cross spectral density (CSD) pxy(f ),
where f is frequency, were computed using Welch’s method with
40-s Hanning windows and 50% overlap and then averaged
across trials (Bendat and Piersol, 2000). Complex coherence
is cxy(f ) = pxy(f )/

√

pxx(f )pyy(f ) and (magnitude-squared)

coherence is
∣

∣cxy(f )
∣

∣

2
. Coherence is a measure of the strength

of the linear relationship between x and y.
The closed-loop frequency response function (FRF) from

x(t) to y(t) is Hxy(f ) = pxy(f )/pxx(f ). Gain is the absolute
value of Hxy(f ) and phase is the argument of Hxy(f ), converted
to degrees. A positive phase indicates that y(t) was phase
advanced relative to x(t). Following Kiemel et al. (2008), we
defined the coherence-weighted mean FRF across subjects as
Hxy

(

f
)

= c̄xy(f )
√

p̄yy(f )/p̄xx(f ) , where c̄xy(f ) is the mean
complex coherence and p̄xx(f ) and p̄yy(f ) are the geometric mean
PSDs.

The four ankle EMG signals were used to compute the
weighted ankle EMG signal u1(t) = w11u11(t) + w12u12(t) +

w13u13(t) + w14u14(t). Weights were adjusted using the Matlab
optimization toolbox tomaximize the average coherence between
the four perturbation signals and u1(t) for frequencies from 0.025
to 5 Hz subject to the constraints that w1j ≥ 0 for posterior
muscles, w1j ≤ 0 for anterior muscles, and |w1| + |w2| + |w3| +

|w4| = 1 Similarly, the seven hip and lower-trunk EMG signals
were used to define the weighted hip EMG signal u2(t) =

w21u21(t) + w22u22(t) + · · · + w27u27(t). Each weighted EMG
signal was normalized by dividing by the square root of its power
from 0 to 5 Hz, calculated by integrating its PSD.
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Use of a 40-s spectral window resulted in PSDs and CSDs
computed at 200 frequencies from 0.025 to 5 Hz. To increase
statistical power, frequencies were divided into 10 frequency
bins and PSD and CSD values were averaged within each bin.
Frequency binning was done after finishing EMG normalization
and weighting, and before calculating FRFs. The basic principle
was trying to get 10 equal-spaced bins in a log scale with
additional fine adjustments to ensure that responses were
significantly different from zero. The average frequencies for each
bin were:

[0.062, 0.125, 0.2375, 0.425, 0.637, 0.9625, 1.4375, 1.8875,

3.1625, 4.3875].

In order to understand the dynamic relationship between
trunk and leg segments (or hip muscles and ankle muscles)
during standing on normal support surface and short support
surface with multiple sensory and mechanical perturbation, we
calculated cophase from the complex coherence between the
trunk and legs (or the weighted hip EMG and weighted ankle
EMG). The trunk (or weighted hip EMG) was used as the
reference, so positive cophase means legs leading trunk (or ankle
muscles leading hip muscles).

Identification of the Direct Effects, the
Plant, and the Feedback Frequency
Response Function (FRF)
We applied the JIO method of closed-loop system identification
to postural control in the sagittal plane (Katayama, 2005; van der
Kooij et al., 2005). Previous applications of the JIO method to
postural control have focused on the plant and/or feedback (e.g.,
Fitzpatrick et al., 1996; Kiemel et al., 2008, 2011; Boonstra et al.,
2013; Engelhart et al., 2015). In this study, we proposed to identify
the direct effects of sensory and mechanical perturbations in
addition to the plant and feedback based on the theoretical
framework of Figure 1. The direct sensory effect is the effect
that sensory perturbations would have on EMG signals in a
(hypothetical) open-loop condition in which EMG signals no
longer affect kinematic variables. The direct mechanical effect is
the effect that mechanical perturbations would have on kinematic
variables in a (hypothetical) open-loop condition in which
kinematic variables no long affect EMG signals.

We assumed a linear approximation of each process within
each experimental condition of standing on the normal support
surface and standing on the short support surface respectively.
We carried out JIO method separately for each condition, to
account for non-linearities such as sensory reweighting. Let u(t)
be a nu-by-1 vector of weighted EMG signals, y(t) be a ny-by-1
vector of body segment angles, v(t) be a nv-by-1 vector of sensory
perturbations, and d(t) be a nd-by-1 vector of

Y(f ) = P(f )U(f )+M(f )D(f )+ NP(f ), (1a)

U(f ) = F(f )Y(f )+ S(f )V(f )+ NF(f ), (1b)

where P(f) is the open-loop FRF of the plant, M(f) is an open-
loop FRF characterizing the direct effect of the mechanical

perturbations on body segment angles, NP(f ) is the Fourier
transform of intrinsic noise in the plant, F(f) is the open-loop FRF
of the feedback, S(f) is an open-loop FRF characterizing the direct
effect of the sensory perturbations on the EMG signals, NF(f ) is
the Fourier transform of intrinsic noise in the feedback. Since the
plant and feedback are multiple-input, multiple-output (MIMO),
P(f), F(f), S(f), and M(f) are matrices for each frequency f. The
key to the JIO method is that it uses the relationships among
closed-loop FRFs to identify the plant, feedback and direct effects.
Denoting the closed-loop FRF from a(t) to b(t) by Hab(f ), we
can then use equations (1a) and (1b) to express the relationship
among closed-loop FRFs as:

Hvy(f ) = P(f )Hvu(f ),Hvu(f ) = F(f )Hvy(f )+ S(f ), (2)

Hdu(f ) = F(f )Hdy(f ),Hdy(f ) = P(f )Hdu(f )+M(f ). (3)

Here, we have taken advantage of our choice to make sensory
and mechanical perturbations uncorrelated with each other and
with the noise terms. If the number of sensory perturbations
equals the number of EMG inputs to the plant (nv = nu) and
the number of mechanical perturbations equals the number of
kinematic inputs to feedback (nd = ny), then Hvu(f ) and Hdy(f )
are square matrices. If the effects of different perturbations are
linearly independent so that Hvu(f ) and Hdy(f ) are invertible at
each frequency f, then we can identify all four open-loop FRFs
non-parametrically (without using a model) as:

P(f ) = Hvy(f )Hvu(f )
−1, S(f ) = Hvu(f )− F(f )Hvy(f ), (4)

F(f ) = Hdu(f )Hdy(f )
−1,M(f ) = Hdy(f )− P(f )Hdu(f ). (5)

In additional to these open-loop FRFs, in what follows we also
focus on the closed-loop FRF Hvy(f ) from sensory perturbations
to kinematic signals. From equations (2) we have that,

Hvy

(

f
)

= [I − P
(

f
)

F
(

f
)

]
−1

P
(

f
)

S
(

f
)

, (6)

where I is the 2-by-2 identify matrix. Note that Equation (4) is
linear in S(f ), implying that Hvy(f ) can be written as the sum

Hvy

(

f
)

= Hankle
vy

(

f
)

+H
hip
vy

(

f
)

, (7)

where Hankle
vy

(

f
)

and H
hip
vy

(

f
)

are the effects of the sensory
perturbations on kinematics due to their effects on ankle EMG
and hip EMG, respectively.

Statistical Analysis
We computed bootstrap standard errors (SEs) for the log gain
and phase of all FRFs [Hvy(f ), Hvu(f ), Hdu(f ), Hdy(f ), P(f),
F(f), S(f ), M(f )], using 1000 bootstrap resamples. In addition,
we also computed bootstrap 95% confidence intervals (CIs)
for the surface condition effect as well as the condition-by-
output interaction in log-gain and phase of each FRF using the
percentile-t method with 10,000 bootstrap resamples and 1000
nested bootstrap resamples for variance estimation (Hall, 1988;
Zoubir and Boashash, 1998).
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RESULTS

Phase Relationship during Standing on
Different Support Surface
Figure 4 shows the dynamic relationship between trunk and leg
segments (or hip muscles and ankle muscles) during standing on
normal support surface and short support surface with multiple
sensory and mechanical perturbations.

Figure 4A shows the cophase, which represents the phase
angle between the trunk and legs. The cophase for both
conditions was∼0◦ (in-phase) for lower frequencies (below∼0.4
Hz) and ∼180◦ (anti-phase) for high frequencies (above ∼1.1
Hz). The in-phase and anti-phase relationships are indicative
of the ankle and hip patterns, respectively, demonstrating the
simultaneous existence of these patterns during standing on both
normal and short support surface (Creath et al., 2005). Both
conditions demonstrated a shift from in-phase to anti-phase as
frequency increased in an upward direction, suggesting a legs-
leading shift. The shift from in-phase to anti-phase was more
gradual while standing on short support surface.

Figure 4B shows the complex coherence corresponding to
the frequency range defined by the shaded region shown
in Figure 4A, illustrating how the coordinative relationship
between the trunk and legs changes in the complex plane.
Complex coherence values that lie along the positive real axis
represent the in-phase relationship between trunk and legs while
values that lie along the negative real axis represent the anti-
phase relationship. Likewise, complex coherence values with
imaginary components that are >0 represent a “legs-leading”
coordinative relationship (the trunk was used as the reference in
the calculation of complex coherence) while complex coherence
values with imaginary components that are <0 represent a
“trunk-leading” coordinative pattern. Complex coherence in
both conditions was above the real axis (i.e., the imaginary part
is >0) indicating that the legs are leading the trunk while shifting
from in-phase to anti-phase.

In contrast to the trunk/leg relationship, the temporal
relationship between hip and ankle muscles was in-phase across
all frequencies, as shown in Figure 4C. In Figure 4D, the in-
phase relationship corresponding to the frequency range defined
by the shaded region shown in Figure 4C. Such results indicate
that both hip and ankle muscles activate together regardless of
the support surface condition and there was no change in the
ankle/hip muscle relationship corresponding to the change in the
trunk/leg coordinative relationship shown in Figure 4A.

Decomposition of Human Postural Control
Loop
In order to decode the mechanistic basis underlying the
changes in the coordinative relationship between the trunk/leg
segments on different support surfaces, we identified all four
closed-loop FRFs [Hvu(f ), Hvy(f ), Hdu(f ), and Hdy(f )] and
four open-loop FRFs [P(f), F(f), S(f), and M(f)] by using a
MIMO system identification method. The critical results are the
phase relationships of Hvy(f ), P(f), F(f), and the gains of S(f),
shown in Figure 5. Error bars denote bootstrap standard errors.

Detail descriptions and results of all FRFs are included in the
Supplementary Material.

The most remarkable difference between the normal support
surface and the short support surface occurred in the phase of
the closed-loop FRF, Hvy(f ), between the visual perturbation and
the leg and trunk segment angles (Figures 5A,B). On the normal
support surface, as the frequency of the visual perturbation
increases, larger negative phase values indicate that the legs’
response begins to lag behind the trunk’s response (i.e., trunk
leads legs), as shown in Figure 5A. In contrast, on the short
support surface it is the trunk that lags behind the legs (i.e., legs
lead trunk), as shown in Figure 5B.

This condition difference in the phase of the closed loop
could be due to any combination of three factors. First, the plant
may be different between the two conditions, that is, the same
muscle activation pattern may produce a different kinematic
response because of the resulting mechanical forces imposed
while standing on a short vs. a normal surface. Second, feedback
(i.e., neural feedback component of the control loop) may be
different, because, for example, the nervous system adopts a
different control strategy on a short surface. Third, the direct
effect of the visual perturbation may be different, because the
nervous system may re-weight the use of visual information on
a short support surface.

Effects of Each Component of Human
Postural Control Loop on Condition
Difference
Because we were able to separately identify the plant, feedback
and direct sensory effect, we can evaluate the effects of different
combinations of each component, as illustrated in Figure 6.
Figure 6A shows the closed-loop phase response of the legs and
trunk to the visual perturbation on the normal support surface,
the same results as in Figures 5A, 6B shows a hypothetical case
in which the plant and feedback for the normal support surface
(Figures 5C,E, respectively) are combined with the direct sensory
effect for the short support surface (Figure 5H). Note, that the
change in the direct effect by itself increases the phase lag of the
trunk at high frequencies so that the trunk now lags behind the
legs. Figure 6C shows a second hypothetical case in which the
plant for the normal support surface (Figure 5C) is combined
with the feedback and direct sensory effect for the short support
surface (Figures 5F,H, respectively). The difference in feedback
between Figures 6B,C leads to a relatively minor difference in
the closed-loop response. Finally, Figure 6D shows the closed-
loop response on the short support surface, the same as that in
Figure 5B. The change in the plant from Figures 6C,D decreases
the phase lag of the legs at high frequencies, further increasing
the lag of the trunk behind the legs.

Thus, our analysis suggests that condition differences in both
the direct sensory effect and the plant contribute to the condition
differences seen in the closed-loop responses of the legs and trunk
to movement of the visual scene. These condition differences are
not obvious from the closed loop responses alone. Differences
in the plant necessarily occur when the mechanical interaction
between the feet and the support surface changes. On the other
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FIGURE 4 | Cophase and complex coherence. (A) Cophase between trunk and leg segments, (B) complex coherence of shaded region in (A) between trunk and

leg segments, (C) cophase between weighted hip EMG and weighted ankle EMG, (D) complex coherence of shaded region in (C) between weighted hip EMG and

weighted ankle EMG. Ellipses of complex plane represent 95% confidence region in the complex plane.

hand, condition differences in the direct sensory effect suggest
the existence of an adaptive process such as sensory reweighting.

Differential Sensory Reweighting of the
Direct Effect in Human Postural Control
Loop
To confirm the sensory reweighting hypothesis, we calculated
the gain ratio and phase difference of the FRFs of the direct
sensory effect as shown in Figure 7. The gain ratio was calculated
from the direct-effect FRF of the short support surface divided
by the direct-effect FRF of the normal support surface. The
phase difference was calculated from the direct-effect FRF of the
short support surface minus the direct-effect FRF of the normal
support surface.

Figures 7A,B show the comparison between the direct-effect
FRF from the vision sensory perturbation to the weighted ankle
EMG signal and the direct-effect FRF from the vision sensory
perturbation to the weighted hip EMG signal. Open symbols
represent significant differences between surface conditions and
asterisks represents significant differences between two FRFs as
a condition-by-output interaction (i.e., vision to ankle EMG vs.
hip EMG or vibration to ankle EMG vs. hip EMG) based on the
bootstrap 95% confidence intervals (CIs).

The gain ratio of the direct-effect FRF from the vision sensory
perturbation to the ankle EMG from 2nd to 10th frequency bin
was higher than 1. The gain ratio of the direct-effect FRF from

the vision sensory perturbation to hip EMG of 5th, 7th, 8th,
and 9th frequency bin was higher than 1. This means subjects
upweighted vision for ankle muscles and hip muscles during
standing on the short support surface. In addition, there are
significant differences between two FRFs at 2nd, 3rd, 6th, 7th,
and 10th frequency bins (p = 0.05, p = 0.03, p = 0.002, p =

0.002, and p = 0.02, respectively). In addition, gain ratios
for the direct effect FRF for ankle EMG relative to the visual
perturbation compared to the hip EMG across 10 frequency bins
were significantly higher (p = 0.003), indicating that visual
upweighting was greater for ankle muscles than for hip muscles
and suggesting that visual reweighting differs across actuators
on the short support surface. There were no phase differences
between different surface conditions and also between two FRFs.

Figures 7C,D show the comparison between the direct-effect
FRF from the vibration sensory perturbation to the weighted
ankle EMG signal and the direct-effect FRF from the vibration
sensory perturbation to the weighted hip EMG signal. The gain
ratio of the direct-effect FRF from vibration to ankle EMG
from 3rd to 6th frequency bin was higher than 1. The gain
ratio of the direct-effect FRF from vibration to hip EMG in the
8th frequency bin was lower than 1. In addition, there was a
significant difference between two direct-effect FRFs at the 8th
frequency bin (p = 0.03). This means subjects downweighted
proprioception for ankle muscles and hip muscles around 2
Hz whereas, upweighted vision was constant with increasing
frequency. Additionally, the downweighting was greater for the
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FIGURE 5 | Representative FRFs on a normal and short support surface. (A) phase of closed-loop FRF from visual sensory perturbation to body segment

angels on the normal support surface, (B) phase of closed-loop FRF from visual sensory perturbation to body segment angels on the short support surface, (C) phase

of inferred open-loop plant FRF from weighted EMG signals to body segment angles on the normal support surface, (D) phase of inferred open-loop plant FRF from

weighted EMG signals to body segment angles on the short support surface, (E) phase of inferred open-loop feedback FRF from body segment angles to weighted

EMG signals on the normal support surface, (F) phase of inferred open-loop feedback FRF from body segment angles to weighted EMG signals on the short support

surface, (G) gain of inferred open-loop direct-FRF from visual sensory perturbations to weighted EMG signals on the normal support surface (H) gain of inferred

open-loop direct-FRF from visual sensory perturbations to weighted EMG signals on the short support surface. Error bars denote bootstrap standard errors.

hip muscles than for the ankle muscles only at 2 Hz. However,
there was no significant difference between means across 10
frequency bins of the gain ratio of two FRFs from vibration
perturbations to ankle EMG and hip EMG. There also were no
phase differences between different surface conditions and also
between two FRFs.

DISCUSSION

The aim of this study was to decompose the control
loop for human upright stance and isolate contributions
of particular processes to behavioral change associated with

standing on different support surfaces. By separately identifying
the musculoskeletal and feedback components of the human
postural control loop, as well as the “direct effect” of sensory
perturbations, we found a dramatic phase reversal between
visual input and body kinematics due to the change in surface
condition. Decomposition indicated that the phase reversal is due
to contributions from the plant and the direct effect of visual
input, with no change in overall feedback.

Decomposition of the Control Loop
We found a striking difference in the phase of the closed-loop
kinematic responses to the visual perturbation between the two
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FIGURE 6 | Effects of short support surface relative to direct effect, feedback, and plant FRFs. (A) closed-loop FRF of leg/trunk relative to vision on normal

supporting surface, (B) adding direct effect of short support surface, (C) adding feedback and direct effect of short support surface, (D) adding plant, feedback, and

direct effect of short support surface (i.e., the closed-loop FRF from vision perturbation to body segment angles on short support surface).

surface conditions (Figures 5A,B). The leg segment response
began to lag behind the trunk’s response on the normal support
surface as frequency of visual perturbation increased. In contrast,
the trunk segment response on the short support surface lagged
behind the legs as frequency of visual perturbation increased.
This phase reversal could be due to any combination of three
components: plant, feedback and the direct effect. First, the plant
may be different between the two conditions, that is, the same
muscle activation pattern may produce a different kinematic
response because of the mechanical differences of standing on a
short surface. Second, feedback (i.e., neural feedback component
of the control loop) may be different, because, for example, a
subject adopts a different control strategy on a short surface.
Third, the direct effect of the visual perturbation may be
different, because the nervous system may re-weight the use of
visual information on a short surface. Because we were able to
separately identify the plant, feedback and direct sensory effect
for each of the two surface conditions, we could evaluate the
contribution of each component to the observed phase reversal

between conditions (Figure 6). This evaluation showed that the
phase reversal was largely due to condition differences in the
plant and the direct effect of visual-scene motion.

Thus, our results suggest that the phase reversal between
surface conditions is largely due to the difference in the
mechanical interactions between the feet and the support surface
(a difference in the plant) and sensory reweighting (a difference
in the direct sensory effect). A full understanding of how plant
and direct-effect differences contribute to the phase reversal
would require mathematical modeling, especially because these
contributions depend on the properties of neural feedback
(Equation 4). However, some insight into the contribution
of the direct effect follows from decomposing the direct
effect into components mediated by the ankle EMG and hip
EMG signals [Equation 5]. If these components have different
relative phases between leg and trunk responses, then sensory
reweighting that differentially affects ankle EMG and hip EMG
(Figure 7), will change the relative phase between leg and trunk
responses.
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FIGURE 7 | Comparison of the open-loop direct-effect FRF from sensory perturbations to weighted EMG signals. (A) gain ratio of direct-effect FRFs from

vision to EMGs, (B) phase difference of direct-effect FRFs from vision to EMGs, (C) gain ratio of direct-effect FRFs from vibration to EMGs, (D) phase difference of

direct-effect FRFs from vibration to EMGs. Open symbols represent significant differences between surface conditions and asterisks represent significant differences

between two FRFs based on the bootstrap 95% CIs.

Differential Sensory Reweighting of the
Direct Effect
Sensory reweighting is the process through which the nervous
system changes the “emphasis” of a particular sensory input
due to neurological injury or when environmental conditions
change. Sensory reweighting is typically characterized through
changes in gain (sway amplitude divided by sensory input
amplitude; Hwang et al., 2014). Recent studies suggested that
the source of sensory information used for torque generation
depends upon environmental conditions and the reliability of
sensory orientation and movement information (Peterka, 2002;
Peterka and Loughlin, 2004). They measured the stimulus-
dependent changes in sensory contributions to postural control.
Their results provide estimates of important postural control
parameters (stiffness, damping, time delay) and demonstrated
how these parameters change under different sensory stimulus
conditions. However, they could not determine how sensory
reweighting influenced muscle activation. By identifying FRFs
for each sensory perturbation relative to each muscle, we found
that visual upweighting is greater for ankle EMG than for
hip EMG, suggesting that sensory reweighting differs across
actuators (i.e., muscles) when the subject stands on short support
surface. This emphasizes the interplay between sensory input and
muscle activation for postural control. Such results may provide
an avenue for treatment by developing sensory reweighting
processes to enhance balance ability.

Limitations of our System Identification
Approach
This study belongs to a group of studies that uses the JIO method
to study postural control (e.g., Fitzpatrick et al., 1996; Kiemel
et al., 2008, 2011; Boonstra et al., 2013; Engelhart et al., 2015).
The JIOmethod provides insight into the postural control system
by non-parametrically identifying its components. However, this
advantage of the JIO approach rests on two assumptions. First,
the postural control system is assumed to be approximately linear
in each condition, although certain non-linearities such sensory
reweighting can be addressed by applying the JIO method
separately to each condition. Second, one must approximate
inputs to the plant and feedback using a small number of
signals, since one perturbation is required for each input. To
identify neural feedback, this means that movement of the body
is approximated using a small number of mechanical degrees
of freedom. The initial JIO study of Fitzpatrick et al. (1996)
used a single degree of freedom (an ankle joint), resulting in
identified feedback that was inconsistent with the presence of
a feedback delay. Adding a second degree of freedom (a hip
joint) solved this problem and yielded a plausible estimate of the
neural feedback delay (Kiemel et al., 2011). More recent studies
(Boonstra et al., 2013; Engelhart et al., 2015) have also use this
two-joint (ankle and hip) approximation of body, which can
be viewed as compromise between accuracy and experimental
feasibility.
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CONCLUSIONS

System identification techniques have been used previously,
but primarily to study the behavior of a stable plant, such
as reaching (Lacquaniti et al., 1993). Starting with Fitzpatrick
et al. (1996), the JIO method has been used to infer open-loop
properties for human upright stance, with more recent studies
emphasizing the importance of multi-joint body mechanics
(Kiemel et al., 2008, 2011; Boonstra et al., 2013; Engelhart et al.,
2015). For example, Kiemel et al. (2011) challenged the dogma
that the nervous system tries to minimize sway during standing.
Instead, minimization of muscle activity (i.e., neural effort) is
critical. This is an example of how the JIO method uncovers
important properties that are not discernible from the closed-
loop responses.

To understand how different support surfaces change
the closed-loop postural responses to sensory perturbations,
we isolated contributions of the open-loop plant, neural
feedback, and direct sensory effect. We found that the
change in surface condition led to a dramatic phase reversal
between leg and trunk responses to visual-scene motion.
Additionally, decomposition showed that the phase reversal
is largely due to contributions from the plant and the direct
effect of visual perturbations. The change from a normal
to short surface in the direct effect was due to visual
upweighting being greater for the ankle EMG than for hip

EMG, suggesting that sensory reweighting differs across actuators
(i.e., muscles) when the subject stands on a short support
surface. Such results demonstrate how closed-loop system
identification techniques unravel how different processes within
the control loop interact to stabilize the postural control
system.
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