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Multimodal T cell profiling can enable more precise characterization of elusive cell states 

underlying disease. Here, we integrated single-cell RNA and surface protein data from 500,089 

memory T cells to define 31 cell states from 259 individuals in a Peruvian tuberculosis (TB) 

progression cohort. At immune steady state >4 years after infection and disease resolution, we 

found that, after accounting for significant effects of age, sex, season, and genetic ancestry on T 

cell composition, a polyfunctional Th17-like effector state was reduced in abundance and function 

in individuals who previously progressed from Mycobacterium tuberculosis (M.tb) infection to 

active TB disease. These cells are capable of responding to M.tb peptides. Deconvoluting this state

—uniquely identifiable with multimodal analysis—from public data demonstrated that its 

depletion may precede and persist beyond active disease. Our study demonstrates the power of 

integrative multimodal single-cell profiling to define cell states relevant to disease and other traits.

T cells occupy a complex landscape of functional states characterized by combinations of 

mRNA, surface proteins, transcription factors, and cytokines. These modalities individually 

lend limited insight into cellular function, but jointly they recapitulate the breadth of T cell 

states. However, profiling strategies frequently assay a single modality, average across 

heterogeneous states (e.g., bulk RNA-seq), have limited detection efficiency for key markers 

(e.g., single-cell RNA-seq1), or only target predefined phenotypes of interest (e.g., flow 

cytometry, mass cytometry2). Recent technologies incorporate oligonucleotide-labeled 

antibodies into droplet-based single-cell sequencing to simultaneously measure surface 

markers alongside intracellular mRNA transcripts3,4, enabling comprehensive 

characterization of T cell states.

Interindividual differences in T cell state abundance and function can correlate with 

demographics (e.g., age, sex) or environment5. Moreover, they may underlie divergent 

disease outcomes6, such as response to pathogens like M.tb—a leading infectious cause of 

death. Nearly a quarter of the world’s population is estimated to be infected with M.tb, but 

only 5–15% of infected individuals develop TB disease, causing an estimated 1.5 million 

annual deaths7,8. Given the prevalence of infection and mortality upon progression to active 

disease, there is an urgent need to understand the immune correlates of progression risk. For 

example, people who previously progressed to active TB tend to have higher progression 

risk than others9, which may indicate that persistent baseline immune differences reduce 

capacity to control M.tb infection.

Previous studies implicate key memory T cell states in TB disease progression10–17. 

However, T cell immunoprofiling studies often have key limitations: (1) insufficient clinical 

and demographic data to mitigate confounding, and (2) profiling donors during disease, 

when disease-induced inflammation cannot be disentangled from inherent immune 

differences. Similarly, studies limited to antigen-specific cells may miss broader immune 

context. Here, we use Cellular Indexing of Transcriptomes and Epitopes by Sequencing 

(CITE-seq) to profile >500,000 memory T cells from a TB progression cohort at post-

disease immune steady state (i.e., after treatment and TB disease resolution) and 

multimodally define cell states associated with demographics, environment, and TB 

progression. We utilize this powerful resource to identify a T cell state associated with TB 

progression that responds to ex vivo M.tb peptide stimulation.
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Results

CITE-seq produces 500K multimodal T cell profiles

We re-recruited 264 individuals from a larger epidemiological study (n=14,044) in Lima, 

Peru that identified patients with active TB disease and followed their M.tb-infected 

household contacts for one year to monitor progression to active disease (Fig. 1a)18. We re-

recruited donors 4.72–6.60 years after initial recruitment and classified those who had 

originally been diagnosed with TB as cases. By time of sample collection, cases had been 

treated for TB, which has an estimated cure rate >95%, so we expected they had returned to 

immune steady state without disease-driven perturbation19. This facilitates discovery of 

states associated with disease outcomes, not merely activation during disease. Household 

contacts who had originally been tuberculin skin test (TST)-positive and didn’t develop TB 

disease by time of re-recruitment were controls. The cohort has comprehensive 

documentation of environmental (e.g., socioeconomic status, nutrition, smoking) and 

demographic (e.g., age, sex, weight) traits. Consistent with the larger epidemiological 

study18, TB progression was associated with host traits such as age, height, weight, sex, and 

body mass index (Supplementary Table 1).

We used magnetic sorting to negatively select CD45RA- memory T cells from peripheral 

blood mononuclear cells (PBMCs) from 131 cases and 133 controls (~98.4% purity, Fig. 

1a). Using CITE-seq, we profiled single-cell RNA alongside an optimized panel of 31 

oligonucleotide-tagged antibodies for surface proteins (Supplementary Table 2), including 

markers of lineage (e.g., CD4, CD8), activation (e.g., CD25, HLA-DR), migration (e.g., 

CCR6, CXCR3), and mouse immunoglobulin G as a control4. After cell- and sample-level 

quality control (Fig. 1b,c, Extended Data Fig. 1a–c), the final data set contained 500,089 

memory T cells from 259 individuals (mean: 1,845 cells/sample, 95% confidence interval 

[CI]: 518–3,172, Fig. 1d). By sorting equal numbers of cells where possible, we observed no 

significant difference in cell count per sample between progressors and non-progressors 

(two-sided t test p=0.33; Extended Data Fig. 1d).

Consistent with previous observations, mRNA-protein correlations were positive but modest 

(Extended Data Fig. 1e,f)3,4. We evaluated surface marker measurements with flow 

cytometry of 13 proteins in the same 259 donors (Supplementary Table 3). For 8 surface-

marker-defined populations gated with both CITE-seq and flow cytometry (Supplementary 

Fig. 1), average frequencies correlated between platforms (Pearson r=0.99; Extended Data 

Fig. 2a), as did per-donor frequencies of each population (Pearson r=0.73–0.94; Extended 

Data Fig. 2b).

Multimodal integration defines 31 memory T cell states

As suggested by previous T cell phenotyping efforts1, we assume that biologically relevant 

states have both mRNA and surface protein signatures. To integratively define high-

resolution memory T cell states, we used canonical correlation analysis (CCA) to project 

each cell into a low-dimensional space defined by correlated modules of mRNA transcripts 

and proteins (Fig. 1e). This leverages modality-specific signatures; for example, regulatory T 

cells (Tregs) have high surface expression of CD25 and absence of CD127 but also express 
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FOXP3 transcripts, so we expect to find one or more dimensions driven by correlated 

variation in CD25, CD127, and FOXP3 that delineate Tregs20,21. We selected the top 20 

canonical variates (CVs) with highest mRNA-protein correlations (Extended Data Fig. 3a,b). 

The first CV—capturing the most shared variation—correlated with a previously defined 

gene expression signature of effector potential (Pearson r=0.90) (Extended Data Fig. 3c,d)22.

Batch correction and graph-based clustering of the top 20 CVs defined 31 putative cell states 

with gene and protein markers (Fig. 2, Extended Data Fig. 4; Supplementary Table 4)23. 

Based on surface protein, the majority (23/31) were CD4+, five were CD8+, and one (C-24) 

was a mixture. Two clusters (C-30 and C-31) were CD4-CD8-, likely containing mostly γδ 
T cells that expressed TRDC, the constant region of the T cell receptor (TCR) delta chain, 

but not the αβ TCR surface protein. Despite limited resolution of unconventional T cells 

with 3’ mRNA and these surface markers, one cluster (C-20) contained a subset of CD4-

CD8- and CD8+ cells expressing innate-like T cell markers, including ZBTB16 and CD161 

and CD26 surface protein24,25.

Some CD4+ clusters resembled known T cell phenotypes, such as central memory (CD62L

+)26 and Tregs (C-5 and C-9, CD25+CD127- and expressing FOXP3)20,21. Among CD8+ 

clusters, we identified one central memory cluster (C-25) and distinct GZMK+ (C-28) and 

GZMB+ (C-29) effector subsets, reflecting different cytotoxicities27. Clusters with high 

expression of HLA-DR and CD38 surface protein and proliferation-associated MKI67 
(C-15, C-27) represent chronically activated cells28.

In addition to Th17 (C-12, CCR6+ and RORC) and Th1 (C-17, CXCR3+ and IFNG and 

TBX21)29,30, we identified a heterogeneous continuum of intermediate Th1/17 states (C-13, 

C-16, C-19) with varying degrees of CXCR3, CCR6, CCR5, and CD161 surface protein and 

RORC and TBX21 expression31.

We also identified disease-associated subsets of broader states. For example, we identified a 

CD161+ subset of Th2 cells (C-14), previously described as pathogenic, with higher 

expression of allergy-associated HPGDS and IL17RB32. We found a subset of FOXP3+ 
Tregs (C-5) expressing higher CCR6 surface protein and CTLA4 and RORC than other 

Tregs, resembling Tregs found in tumors and autoimmune diseases33,34. As previous studies 

in blood have shown, CCR6+ memory Tregs have higher CD161 surface protein and lower 

TIGIT surface protein and IKZF2 expression. We also find reduced HLA Class II mRNA 

and surface protein expression, as well as decreased expression of RTKN2, CCR10, and 

TNFRSF9 and higher CD38 surface protein compared to other memory Tregs (C-9). These 

subsets have not been well-defined previously due to limited ability to align definitions 

between assays.

Memory T cell states vary with demographics and environment

Cell state abundance varied across donors but was correlated between technical replicates 

(Pearson r=0.44–1.00) (Fig. 3a, Extended Data Fig. 5), indicating that T cell states may be 

associated with other donor traits. We tested 38 demographic, socioeconomic, and genetic 

ancestry covariates (Supplementary Table 5) for association with T cell states with Mixed-

effects modeling of Associations of Single Cells (MASC)35, a single-cell cluster association 
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model that accounts for cell- and donor-level confounders. We corrected for donor, batch, 

and total unique molecular identifiers (UMIs) and percent mitochondrial (MT) UMIs per 

cell, which all influence a cell’s cluster membership.

For each covariate, we quantified its association with memory T cell composition by 

aggregating independent cluster association p values into a gamma-distributed test statistic 

(Methods; Supplementary Fig. 2). Age, sex, winter blood draw, and proportion of European 

genetic ancestry were significantly and independently associated with T cell state 

composition (Fig. 3b–e). As previous studies suggest5,36, age had the strongest influence 

(gamma p=2.24×10−53), associated with 12/31 states (univariate LRT p<1.6×10−3 = 

0.05/31). Similar to prior findings37, cytotoxic CD4+ T cells (C-23) were expanded ~20% 

per decade of age (odds ratio [OR]=1.19, 95% CI: 1.10–1.28, p=1.59×10−5). We also 

observed that Vδ1 T cells (C-31) were reduced >50% per decade (OR=0.46, 95% CI: 0.39–

0.54, p=5.72×10−24; Fig. 3b; Supplementary Table 5).

Sex was also strongly associated with T cell states (gamma p=8.40×10−28), and we further 

dissected published trends, such as lower CD4:CD8 ratio in males and the inhibitory effect 

of male hormones on Th1 differentiation38,39. We observed expansion of GZMB+ CD8+ T 

cells in males (C-29: OR=1.88 M vs. F, 95% CI: 1.46–2.42, p=1.72×10−6) and Th1s in 

females (e.g., C-17: OR=0.77 M vs. F, 95% CI: 0.71–0.83, p=1.20×10−11) (Fig. 3c; 

Supplementary Table 5).

We observed surprising expansion of Th2 states in samples collected in winter (gamma 

p=4.40×10−24; e.g., C-11: OR=1.24, 95% CI: 1.10–1.39, p=5.13×10−4) (Fig. 3d; 

Supplementary Table 5). To our knowledge, this has not been reported previously, beyond 

general seasonality of cytokine responses40.

Immune function is thought to vary with genetic ancestry41, and in our cohort, all three 

cytotoxic CD4+ clusters were nominally depleted in individuals with higher European 

genetic ancestry (gamma p=2.21×10−5, e.g., C-23: OR=0.14 per 100% European genetic 

ancestry, 95% CI: 0.05–0.48, p=8.70×10−4) (Fig. 3e; Supplementary Table 5).

These associations were significant independently of each other and TB progression status 

(Extended Data Fig. 6a,b; Supplementary Table 6,7). Other covariates did not have 

significant associations with memory T cell composition after adjusting for age, sex, season, 

and genetic ancestry (Fig. 3f).

An RORC+ effector state is reduced in TB progressors

Next, we sought to identify memory T cell states associated with M.tb infection outcome. 

We used MASC to test associations between each cell state and TB disease progression, 

adjusting for potentially confounding covariates (age, sex, winter blood draw, proportion of 

European genetic ancestry) and batch and single-cell technical factors (Methods).

We observed a significant 20% reduction in cluster C-12 in individuals who had progressed 

to active TB disease (OR=0.80, 95% CI: 0.73–0.87, p=1.21×10−6 < 0.05/31) (Fig. 4a; 

Supplementary Table 7). Notably, C-12 was independently reduced with age (OR=0.82, 

p=2.69×10−3) and in males (OR=0.85, p=4.30×10−4) and expanded in winter (OR=1.16, 
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p=1.30×10−3) (Fig. 4b). This covariate-aware, multimodal strategy detects even a modest 

case-control difference in C-12 frequency (mean: 3.0% in cases, 3.6% in controls; Fig. 4c).

Cells in C-12 have a CD4+ effector surface phenotype (CD62L: Expression fold change 

C-12 vs. other [FC]=0.66, p=2.99×10−7, CCR7: FC=0.85, p=9.72×10−3) and lack surface 

markers of activation (HLA-DR: FC=0.39, p=1.86×10−18) or exhaustion (PD-1: FC=0.76, 

p=7.23×10−6). The top surface proteins were CD26, CCR6, and CD161 and the top 

transcripts were CCR6, CTSH, and KLRB1 (Supplementary Table 4), with elevated 

expression of Th17 lineage-defining transcription factor RORC (FC=5.70, p=2.37×10−187) 

compared to all other memory T cells. We also noted reduced expression of Th1 lineage-

defining TBX21 (FC=0.52, p=1.01×10−10) and IFNG (FC=0.30, p=7.23×10−34), although 

absence of transcription-factor- or cytokine-encoding transcripts may reflect (1) poor 

detection, or (2) paucity of pre-formed mRNA22. There were no differentially expressed 

genes between cases and controls in this cluster. This combination of markers suggests that 

C-12 is a Th17 subset29.

When clustering on single modalities—either mRNA or protein—we were unable to 

precisely capture C-12 (Extended Data Fig. 7a–f). Accordingly, no mRNA-based clusters 

were significantly associated with TB progression (Fig. 4d; Supplementary Table 8). Two 

protein-based clusters partially overlapping C-12 were reduced in cases, but less 

significantly (Extended Data Fig. 7f,g; Supplementary Table 8). Another multimodal cluster 

(C-20, innate-like T cells) was also reduced in cases but with modest significance (mean: 

1.1% in cases, and 1.2% in controls; OR=0.76, 95% CI: 0.65–0.89, p=5.95×10−4; Extended 

Data Fig. 7h).

Because our cohort was profiled years after TB diagnosis and treatment, we expected 

minimal differences in activation states. Using MASC, we found no differences in CD4+ 

HLA-DR+ memory T cells (OR=1.02, 95% CI: 0.86–1.22, p=0.79). Additionally, because 

we profiled all memory T cells, progression-associated differences identified in previous 

studies of M.tb antigen-specific T cells were only marginally significant (Supplementary 

Table 9).

Latency and treatment are unlikely to drive C-12 association

To assess whether reduced C-12 abundance is a steady-state correlate of progression risk, we 

considered the alternatives that C-12 is increased by latent TB or decreased by active TB. 

We defined a gene expression score based on sorted T cells and bulk PBMCs that estimates 

C-12 frequency with high cross-validation accuracy (T cell Pearson r=0.78, PBMC r=0.74, 

Extended Data Fig. 8a) and used it to estimate the C-12 proportion in public bulk expression 

data from studies of latent infection or disease (Methods). The highest-weighted genes were 

C-12 markers, including CCR6 and KLRB1 (Supplementary Data). As a negative control, 

we defined a score for C-11 (Th2, cross-validation r=0.73), which was not associated with 

disease progression.

We applied the C-12 score to a cohort from the United Kingdom including healthy 

(uninfected), latently infected, and active disease donors assayed with whole blood RNA 

microarray42. We observed no significant difference in predicted C-12 abundance between 
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latent and BCG-vaccinated healthy donors (latent: mean=0.036; BCG+ healthy: 

mean=0.038; two-sided t test p=0.54, Extended Data Fig. 8b). This suggests that C-12 

abundance is not increased by latency, although we recognize potential estimation error due 

to inter-study differences in tissue type, processing, and RNA assay.

In contrast, untreated donors with active TB disease had significantly lower estimated C-12 

abundance than BCG-vaccinated healthy donors (active: mean=0.025; two-sided t-test 

p=3.63×10−3, Extended Data Fig. 8b). We observed no significant differences in C-11 

(latent: mean=0.047; BCG+ healthy: mean=0.048; active: mean=0.039; two-sided t test 

[latent vs. BCG+ healthy] p=0.91, [active vs. BCG+ healthy] p=0.32, Extended Data Fig. 

8c).

In a small subset of donors (n=7) followed through treatment, C-12 frequencies are initially 

significantly lower than in BCG-vaccinated healthy donors (pre-treatment: mean=0.023; 

BCG+ healthy: mean=0.040; two-sided t test [BCG+ healthy vs. 0 months] p=8.76×10−6, 

Extended Data Fig. 8d). However, during 12 months of anti-mycobacterial treatment, 

estimated C-12 frequencies increase (12 months: mean=0.037; two-sided t test [0 months vs. 

12 months] p=7.27×10−3), contrary to the reduction in progressors observed at post-disease 

steady state, which this data set was underpowered to detect (n=7 post-treatment cases vs. 12 

controls, Extended Data Fig. 8e). This demonstrates that C-12 reduction observed in 

progressors after 4–7 years and anti-mycobacterial treatment is likely not due to treatment, 

which instead counters transient C-12 depletion during disease.

Public data show C-12 depletion may precede TB progression

Next, we considered whether the C-12 reduction seen at post-disease steady state is an 

antecedent or consequence of disease. Using the C-12 score trained on T cells and PBMCs, 

we estimated C-12 abundance in bulk RNA-seq of sorted T cells from a South African 

cohort of M.tb-infected adolescents ≥1 year prior to disease progression in cases (avoiding 

effects of pre-clinical disease) or controls with continued latent infection (n=54 donors at 1–

2 time points, Extended Data Fig. 8f)43. Using a mixed effects linear model correcting for 

age, sex, sequencing platform, and donor, we found that predicted C-12 abundance is 9% 

lower in cases prior to progression compared to latent controls (Δfrequencycase-control=

−0.0031, one-sided t test of βcase-control p=0.038). This effect is comparable to the 13% 

decrease in C-12 proportion computed with the same predictor in former progressors at post-

disease steady state in the Peruvian CITE-seq (LIMAA) cohort (Δfrequencycase-control=

−0.0047, Fig. 4e, Extended Data Fig. 8g). Thus, differences in C-12 abundance likely pre-

date disease progression.

We found no difference in the C-11 score prior to disease progression 

(Δfrequencycase-control= −0.0011, one-sided t test of βcase-control p=0.23, Fig. 4e), 

demonstrating that the reduction is not in all T cell states. We also assessed if the C-12 score 

is spuriously correlated with other clusters and observed that it is most correlated with C-12 

abundance. The score’s correlation with other clusters’ abundances corresponds to those 

clusters’ correlations with true C-12 proportion (Extended Data Fig. 8h). For example, the 

proportion of C-23 (cytotoxic CD4+) is negatively correlated with both C-12 proportion and 
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score, while the proportion of C-9 (Treg) has approximately 0 correlation with C-12 

proportion or score.

CD4+CD26+CD161+CCR6+ captures a TB-associated T cell state

Functional characterization of C-12 required ex vivo sorting based on surface markers of the 

multimodally defined cluster. In addition to observed surface expression of TCRαβ and 

CD4, we built a classification tree and used stepwise backward selection to identify a 

minimal set of candidate markers: CD26+, CD161+, and CCR6+ (sensitivity=54.8%, 

specificity=95.5%; Fig. 5a–d; Methods). While these markers capture not just C-12 cells, 

C-12 comprised the plurality of cells and likely makes the most significant functional 

contributions. The majority of non-C-12 cells in the gate come from the C-4 cluster, with 

high CD27 and CCR7 surface protein and lacking RORC and TBX21 expression, suggesting 

lower differentiation and effector potential44,45.

As expected, MASC modeling demonstrated reduction of this population in TB progressors 

when gated from CITE-seq data (OR=0.75, p=3.56×10−4; Fig. 5e, Supplementary Fig. 3a). 

Removing any individual gate weakens the association. Therefore, these C-12 surface 

markers define a disease-associated population that is a sortable proxy for ex vivo 
investigation.

TB-associated state makes IL-17 and IL-22 upon stimulation

To define the cytokine profile of C-12, we isolated CD4+ T cells from three Boston-based 

donors—likely M.tb infection-naïve given the low TB burden there—and sorted CD45RO

+CD26+CD161+CCR6+ cells (Supplementary Fig. 3b; Supplementary Table 10a)46. For 

comparison, we sorted naive CD4+, other memory CD4+, and Tregs (Methods).

We stimulated each population with CD3/CD28 beads for pan-TCR activation and measured 

T helper cytokines in the supernatant. Compared to other memory CD4+ T cells, the target 

population produced more IL-17A, IL-17F, and IL-22 and less IL-4 and IL-13 (two-sided t 

test, IL-17A: t=5.07, p=0.04; IL-17F: t=6.34, p=0.02; IL-22: t=8.00, p=0.012; IL-4: t=−6.96 

p=0.02; IL-13: t=−4.44, p=0.02; Fig. 6a). To determine if this was robust to stimulation 

condition and assay, we stimulated cells from five Boston donors with phorbol 12-myristate 

13-acetate (PMA) and ionomycin. With intracellular staining, we again found that our target 

population was more likely to produce IL-17A, IL-17F, and IL-22 than other CD4+ memory 

T cells (Cochran-Mantel-Haenszel [CMH] OR, IL-17A:12.6, IL-17F:18.1, IL-22:6.0, all 

p<0.001; Fig. 6b–d, Extended Data Fig. 9). Inverting any surface marker (CD26, CD161, 

CCR6) reduced the proportion of cells expressing IL-17A, IL-17F, and IL-22 (Fig. 6e,f, 

Extended Data Fig. 9). This indicated a Th17-like phenotype. Furthermore, the target 

population was polyfunctional: Although it produced IFNγ and TNF at rates similar to 

CD4+ memory T cells overall (CMH OR, IFNγ:0.72, TNF:1.59, all p<0.001), it had >3 

times as many IFNγ-producing cells as the rest of the Th17 compartment (two-sided t test 

vs. CD26-CD161+CCR6+, p=2.23×10−5; Fig. 6g).
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TB-associated state makes IL-17 at lower rates in progressors

Because IL-17 and IL-22 best characterized this population’s functional phenotype in non-

Peruvian donors, we next measured these cytokines in Peruvian donors with a history of 

M.tb infection. We selected eight pairs of cases and controls from our original CITE-seq 

cohort—matched for age, sex, season of blood draw, and proportion of European genetic 

ancestry—and isolated CD4+ T cells. The target population’s (CD45RO

+CD26+CD161+CCR6+) frequency correlated well with per-donor abundance of cluster 

C-12 (r=0.61; Fig. 7a) and gated proportions (r=0.62; Fig. 7b) in CITE-seq data.

We stimulated samples with PMA and ionomycin and measured IL-17A and IL-22 in target 

and control populations. Similar to Boston samples, in Peruvians the target population 

contained more cells that produced IL-17A (mean=4.7±1.5% of cells in gate) or IL-22 

(mean=2.9±2.0%) than any other Boolean combination of the three gates (Fig. 7c). In fact, 

despite making up on average only 6.6% of CD4+ memory T cells, the target population 

comprised over one-third of total IL-17A or IL-22-producing CD4+ memory T cells 

(IL-17A:49.2%, IL-22:33.2%) (Fig. 7d) and was 14.3 and 6.7 times as likely to produce 

IL-17A or IL-22, respectively (CMH OR, p<0.001; Fig. 7e).

We hypothesized that in individuals who progress to TB disease, C-12 may also have 

reduced function. To test this, we compared cytokine production in the target population 

between matched cases and controls. In response to PMA and ionomycin, only 3.8% of 

CD4+CD26+CD161+CCR6+ memory T cells in cases produced IL-17A, compared to 5.5% 

in controls (one-sided paired Wilcoxon signed-rank test p=0.0039; Fig. 7f). This functional 

deficiency was specific to our target population compared to broader populations, including 

CD4+ memory T cells (p=0.097). IL-22 production was also lower in cases than controls in 

CD4+CD26+CD161+CCR6+ memory T cells, but with weaker difference (p=0.025; Fig. 

7f). IL-22 production was also significantly lower in cases among all CD4+ memory T cells.

TB-associated state has IL-17/IFNγ response to M.tb peptide

We investigated whether C-12 contains cells that respond to M.tb antigens. We stimulated 

PBMCs from six additional Peruvian donors with prior M.tb infection ≥4 years earlier (3 

progressors, 3 non-progressors) with an M.tb peptide megapool (“MTB300”, Methods)47. 

Given its Th17-like phenotype with IFNγ production capacity, we measured IL-17A and 

IFNγ in the target population defined by C-12’s surface markers (CD4+CD45RO

+CD26+CD161+CCR6+; Extended Data Fig. 10a,b). We assayed two Boston-based control 

donors who were likely M.tb-naïve, given lack of IL-17A or IFNγ T-cell response to M.tb 
stimulation (Extended Data Fig. 10c). We observed a response to MTB300 in the C-12 cells 

from formerly infected Peruvian donors: An average of 1.05% of cells per donor in the 

target population produced IL-17A or IFNγ with antigen stimulation, 2.3-fold higher than 

without antigen (Wilcoxon signed-rank p=0.031, Fig. 7g). In comparison, only 0.26% of 

target cells in controls produced IL-17A or IFNγ upon megapool stimulation (one-sided 

Wilcoxon rank-sum [TB cohort vs. control, with M.tb stim] p=0.036).

Nathan et al. Page 9

Nat Immunol. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

In immunoprofiling studies, T cells repeatedly emerge as a likely contributor to disease48–50, 

but further investigation has been limited by the complexity of cell states and their 

interactions with non-immune factors. Here, we present an atlas of >500,000 memory T 

cells with unbiased multimodal single-cell measurements from a TB progression cohort with 

extensive demographic and environmental data. After defining cell states with a novel 

integrative approach, we identified associations between state frequencies and demographic 

and environmental factors, particularly age, sex, season, and genetic ancestry. Understanding 

how these factors influence T cells can inform the design of more robust T cell profiling 

experiments, for example by ensuring experimental groups are unbiased by these 

confounders or adjusting for them post hoc during analysis.

In this study, we leveraged the unique technical and analytical advances of this memory T 

cell dataset to identify states associated with TB disease progression. We focused on 

memory T cells because of previous studies that found immune10,14,51,52 and genetic53–55 

evidence that TB progression is influenced by host memory T cells but did not 

comprehensively illuminate the landscape of progression-associated memory T cell 

differences outside disease-induced inflammation. Memory T cells are also involved in long-

term immunity upon pathogen exposure. One practical limitation of our approach is 

excluding naïve and CD45RA+ TEMRA cells. This large dataset captures even rare memory 

subsets, defined through multimodal single-cell data. Moreover, by profiling donors in the 

absence of active disease, this resource is suitable for further investigation of unperturbed 

memory T cell phenotypes.

We found that the most significant steady-state differences between progressors and non-

progressors reside in a rare (3% of memory T cells) multimodally defined Th17 subset 

(C-12) marked by a CD4+CD45RO+CD26+CD161+CCR6+ surface phenotype. These 

markers have each previously been associated with the IL-17-producing Th17 state31,56,57 

and other functions: CD26 is a costimulatory molecule that promotes cytotoxicity57,58, 

CD161 is associated with innate-like function59, and CCR6 is a homing marker that directs 

migration to inflamed sites60.

We assayed donors who recovered from TB, suggesting that observed differences in C-12’s 

abundance and function may either be a long-term consequence of prior TB disease or 

predispose individuals to TB disease progression. Previous immunoprofiling studies have 

shown that changes in the T cell compartment persist immediately after TB disease and 

wane with time61,62. Although our study design limits our ability to conclusively disentangle 

disease sequelae from baseline differences, there is evidence suggesting that reduction in 

C-12 may precede disease.

First, we demonstrate in previously published cohorts that despite modulation during 

ongoing TB disease or treatment, C-12’s gene expression signature is elevated in latently 

infected controls compared to active TB cases even one year prior to progression. We trained 

a linear model on memory T cell and PBMC data and used it to estimate C-12 frequencies in 
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a large public dataset from a closely matched cell type (sorted T cells) assayed pre-disease, 

motivating confidence in these inferences.

Second, mutations in RORC—the Th17 lineage-defining transcription factor that is highly 

expressed in C-12—increase susceptibility to mycobacterial diseases54. Mutations in IL17A 
and IL17F have also been associated with TB susceptibility, and blocking IL-17 in mice 

reduces capacity for anti-M.tb immunity after vaccination63,64.

Third, we show that C-12 cells respond to M.tb peptide antigens with IL-17A or IFNγ 
production. Previous studies in latent infection have mapped the bulk of M.tb antigen-

specific cells to a Th1/17 CCR6+CXCR3+ state (distinct from C-12) that is expanded in 

latent compared to uninfected individuals29,65. Although these cells produced only IFNγ 
upon ex vivo M.tb antigen stimulation in those studies, in non-human primates they also 

produce IL-17 in bronchoalveolar lavage and expand in the lungs during latent infection 

compared to TB disease66 and upon intravenous Bacillus Calmette-Gueérin (BCG) 

vaccination67. IL-17 and IL-22 production and other aspects of the C-12 phenotype have 

also been previously identified in M.tb antigen-specific cells during active TB 

disease14,15,43. Considering previously described TB vaccine-induced Th1-polarization of 

lung-homing memory Th17s in mice68, C-12’s polyfunctional response to M.tb peptides 

may reflect anti-mycobacterial potential and this state may be a worthwhile target in vaccine 

design.

C-12’s potential to be a baseline correlate of TB progression risk is further supported by its 

depletion with increased age, in males, and outside of winter, all of which have been 

associated with TB risk8,69. These host variables may in part increase TB risk by reducing 

C-12 frequencies. Additionally, C-12 does not have an activated or exhausted phenotype, 

arguing that it is not the consequence of chronic stimulation. Further prospective studies 

profiling the immune system prior to infection are required in order to conclusively link 

baseline C-12 with response to M.tb infection.

Our results demonstrate the power of high-dimensional multimodal T cell profiling to 

identify steady-state immune differences between divergent disease outcomes. With 

consistent results across multiple modalities and datasets, we offer evidence supporting a 

hypothesis for how differences in memory T cell composition may reflect inadequate host 

response to M.tb. We also provide a resource to enable further robust study of numerous 

memory T cell phenotypes.

Methods

Clinical cohort

Our cohort is a subset of 14,044 individuals from a large epidemiological parent study of 

risk factors for TB infection and disease conducted between 2008–2012 (protocol approved 

by the Harvard University Institutional Review Board [ref. #19332] and the Research Ethics 

Committee of the National Institute of Health of Peru)18. All study participants were 

recruited from 106 district health centers in Lima, Peru and provided written informed 

consent. We enrolled index patients aged 16 or older with microbiologically confirmed 
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pulmonary TB. Within two weeks of enrolling an index patient, we enrolled their household 

contacts who were assessed for co-prevalent TB disease by clinical evaluation and for M.tb 
infection by a tuberculin skin test (TST). Household contacts were reassessed at 2, 6, and 12 

months for evidence of new M.tb infection or TB disease.

At time of enrollment, we collected demographic, health, and socioeconomic data from both 

index patients and household contacts, including age, sex, height, weight, alcohol use, 

smoking, prior incarceration, Bacillus Calmette-Guérin (BCG) vaccination scars, isoniazid 

preventative therapy, and previous TB diagnosis (Supplementary Table 1). Nutritional status 

was determined for children (age ≤ 19) based on the World Health Organization BMI z-

score tables and for adults based on BMI thresholds: underweight (children: z-score ≤ −2; 

adults: BMI < 18.5), normal weight (children: −2 < z-score ≤ 2; adults: 18.5 ≤ BMI < 25), or 

overweight (children: z-score > 2; adults: BMI ≥ 25). Alcohol use was categorized as non-

drinker (0 alcoholic drinks per day), light (< 40 grams or < 3 alcoholic drinks per day), or 

heavy (≥ 40 grams or ≥ 3 alcoholic drinks per day). Smoking was categorized as non-smoker 

(0 cigarettes per day), light (1 cigarette per day), or heavy (> 1 cigarette per day). BCG 

vaccination status was self-reported. Number of BCG scars was based on physician’s 

observation. Socioeconomic status (SES) was categorized into tertiles based on a principal 

component analysis (PCA) that included type of housing, access to a water supply, and 

sanitation. Season of blood draw was classified based on local temperatures: winter (June-

September), spring (October-December), summer (January-May)

For this study, we re-consented and enrolled a subset of 264 participants whom we visited to 

obtain information on their TB history subsequent to the completion of the parent study and 

to obtain PBMCs. We considered index patients and household contacts who develop TB 

disease during follow up as cases, and TST-positive household contacts who did not develop 

TB disease as controls. We excluded participants if they did not consent to re-enrollment or 

were HIV-positive. We collected blood a median of 5.7 years after enrollment in the parent 

study (range 4.72–6.60). All cases had been infected with drug-sensitive strains and received 

treatment before re-recruitment. Controls were excluded if they were first-degree relatives of 

their index patient.

We calculated associations between each covariate and TB disease status with either a two-

sided t test (continuous covariates) or a chi-squared test (categorical covariates). For 

significantly associated covariates, we re-estimated associations in a multivariate logistic 

regression model and determined significance based on coefficient p values.

Sample Processing

PBMC Sample Preparation.—Within 6–8 hours of obtaining blood samples, we purified 

PBMCs using Ficoll-Hypaque as described70, followed by cryopreservation at a 

concentration of 5 million cells/mL for shipping to Boston.

We quickly thawed cryopreserved PBMCs (10 million cells) and added each sample 

dropwise to pre-warmed complete RPMI (cRPMI) (RPMI 1640 supplemented with 10% 

heat inactivated fetal bovine serum (Gemini), nonessential amino acids (Gibco), 2-

mercaptoethanol (Gibco), penicillin/streptomycin (Gibco), L-glutamine (Gibco)). We 
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washed and resuspended cells in 1 mL of cRPMI and saved an aliquot of each sample (5% 

of total cells) at 4° C for flow cytometry staining.

Flow cytometry of total PBMCs.—We processed 12 samples per day on 23 days over a 

15-week period. In total, we collected flow cytometric data on 276 samples (264 unique 

donors, with 12 technical replicates run in separate batches on consecutive weeks). We 

washed PBMCs in PBS and stained with blue fluorescent Live/Dead fixable dead cell stain 

(1:1000) (Invitrogen). We covered each sample in foil, and incubated for 20 minutes at room 

temperature. After centrifugation, we stained samples with an antibody master mix 

(Supplementary Table 3) in Brilliant Stain buffer (BD Bioscience, Cat #566349). We 

covered in foil and incubated for 25 min at 4° C. We washed samples with MACS buffer (pH 

7.4 PBS, 2 mM EDTA , 2% FBS) and filtered through 40 um mesh prior to flow cytometry 

using a BD LSRFortessa™ and analysis with FACSDivva (version 8.0.1) and FlowJo 

(version 10.6.2). We used the gating strategy shown in Supplementary Fig. 2b to identify 

lymphocytes and memory subpopulations.

CITE-seq of isolated memory T cells.—We applied an optimized version of CITE-seq 

to memory T cells from 276 samples (264 unique donors, with 12 technical replicates)4. We 

processed 12 samples per day on 23 days over a 15-week period. We ran technical replicates 

in separate batches on consecutive weeks.

To isolate memory T cells, we modified the Pan T cell negative Isolation magnetic-activated 

cell sorting (MACSR) kit (Miltenyi Biotec, Cat #130-096-535) by adding anti-CD45RA 

biotin (Miltenyi Biotec, Clone REA1047, 2 uL per stain) to the antibody cocktail. For 

expected input of 10 million cells, we used 2x reagents to achieve high purity. After isolating 

memory T cells, we stained up to 300,000 memory T cells per donor. Then we centrifuged 

and stained each sample with FcX True Stain (BioLegend) with 0.2 ug/uL dextran sulfate 

sodium (Sigma-Aldrich, Cat #RES2029D-A707X) in labeling buffer (PBS 7.4 with 1% 

UltraPure Bovine Serum Albumin (BSA)) for 10 min at 4° C.

We then added a TotalSeq™-A (BioLegend) oligonucleotide-labeled antibody mix (anti-

CCR6 suspended in 10 uL of labeling buffer) and incubated all samples at room temperature 

for 25 min. Next, we stained with the remaining 30 TotalSeq™-A antibodies (Supplementary 

Table 2) for 25 min at 4° C and washed cells three times with 2 mL, 1 mL, and 1 mL of 

labeling buffer sequentially. Each sample was passed through a 40 um filter and kept on ice 

prior to sorting on a BD FACSAria™ Fusion cell sorter.

We sorted up to 10,000 live cells from each sample based on forward and side scatter gating 

to remove non-lymphocytes, dead cells, and other impurities. We then pooled cells into 

batches of six donors. Batch assignments were randomized, requiring that no two donors in 

the same batch had a relatedness estimation in admixed populations (REAP) kinship score 

greater than 0.125 (at most, second cousins) based on genotype to facilitate post hoc 
demultiplexing71. Pools of 6 samples were sorted into one Eppendorf tube prepared with 

200 uL of 0.04% BSA in PBS and each pool was processed as one scRNA-seq sample.
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We prepared mRNA and surface marker libraries for each batch at the Brigham and 

Women’s Hospital Single Cell Genomics Core using the Chromium Single Cell 3’ v3 kit 

(10x Genomics). Pairs of libraries prepared on the same day were pooled and sequenced to a 

depth of 400 million reads per lane on an Illumina HiSeq X with paired-end 150 base-pair 

reads. In total, we sequenced 276 samples across 46 pooled libraries in 6 sequencing runs.

Bulk RNA sequencing.—PBMCs were thawed in warm cVIVO15 (X-VIVO™ 15 Media 

(Lonza) supplemented with 5% FBS (Gemini Bio), 55 uM 2-mercaptoethanol (Sigma), and 

10 mM N-acetyl-L cysteine (Sigma)). We washed cells twice with cVIVO15, resuspended in 

PBS and spun down. Cell pellets were resuspended in RLT+ buffer (Qiagen) and flash 

frozen on dry ice. For RNA isolation, we thawed, vortexed, and incubated samples for 5 

minutes at room temperature before RNA isolation using the Qiagen RNeasy extraction kit. 

After isolation, libraries were generated at the Molecular Biology Core Facilities at the 

Dana-Farber Cancer Institute and sequenced on an Illumina NovaSeq.

Genotyping and genetic data processing.—We genotyped all individuals on the 

LIMAArray, a previously described custom Affymetrix array designed based on whole-

exome sequencing from 116 Peruvian individuals with active TB55. Genotypes were called 

for all 4002 individuals in the original genetic study with the apt-genotype-axiom program. 

We excluded individuals with high genotype missingness (≥ 5% of loci) or high 

heterozygosity rate (±3 standard deviations). We excluded loci with significant association 

with batch (p < 1 × 10−5), low call rate (< 95%), large difference in per-single nucleotide 

polymorphism (SNP) missingness rate between cases and controls (> 10−5), Hardy-

Weinberg (HWE) p-value below 10−5 in controls, and duplicated position markers. After 

individual and SNP-level quality control, there were 263 donors and 677,385 SNPs 

remaining.

To measure global genetic ancestry proportions for each donor, we joined our cohort with 

previously published genotypes from the 1000 Genomes Project phase 3 (2,054 individuals 

from 26 populations)72, Siberians (245 individuals from 17 populations, and Native 

Americans (493 individuals from 57 populations) based on variant-level matching73. After 

removing variants with minor allele frequency (MAF) < 1%, 34,936 variants remained. We 

performed PCA and pruned for linkage disequilibrium (LD, r2 > 0.1 between any pair of 

markers within a sliding window of 50 markers with 10-marker offset) with PLINK (version 

1.90b3w)74. We used the 22,266 remaining variants to measure global genetic ancestry with 

ADMIXTURE (version 1.3) at K = 475. Because of the admixed nature of the cohort, we 

calculated an admixture-aware genetic relatedness matrix with the REAP kinship score to 

account for linkage disequilibrium differences71.

We pre-phased genotypes with SHAPEIT2 and imputed genotypes at untyped autosomal 

loci with IMPUTE2, using the 1000 Genomes Project Phase 3 dataset as a reference 

panel76,77. After removing SNPs with INFO scores less than 1, 738,194 SNPs remained.

Statistical Analysis of Genomic Data

Aligning single-cell data and quantifying features.—We used Cell Ranger (version 

3.1.0) to conduct all alignment and feature quantification of multimodal single-cell 
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sequencing data. For mRNA, we aligned reads to the human genome (GRCh38 for 

transcriptomic analysis and hg19 for genotype-based demultiplexing). We aligned surface 

protein reads to a dictionary of feature tags. We collapsed reads mapping to the same gene or 

surface marker in the same cell to a single unique molecular identifier (UMI).

Single-cell sample demultiplexing.—We demultiplexed the six samples within each 

pooled batch based on genotypes at 738,194 SNPs. We used Demuxlet with default 

parameters, removed cells with ambiguous or doublet assignments78, and verified the 

accuracy by correlating the number of cells demultiplexed per sample with the number of 

live cells sorted after memory T cell isolation.

Single-cell sequencing data quality control.—We removed cells that expressed fewer 

than 500 genes or had more than 20% of their UMIs mapping to MT genes. Gene expression 

UMI counts were normalized per cell for library size and log-transformed:

lnfeature counts x10000
total counts

For samples with high live cell counts but low numbers of demultiplexed cells, we merged 

single-cell sequencing reads assigned to each donor and called variants from merged data 

using bcftools (v1.9)79. We quantified the concordance between sequencing-based 

genotypes and array-based genotypes and corrected the donor labels for 4 samples. We 

identified and removed an additional 4 mislabeled samples. One more sample was removed 

for high genotype missingness and heterozygosity rate.

We normalized the surface marker UMI counts using a centered log ratio transformation for 

each cell. We used an in silico gating strategy to identify and remove contaminating non-

memory T cells: We biaxially plotted cells based on their normalized expression of CD3 and 

CD45RO, manually determined thresholds of each marker’s expression to separate discrete 

subpopulations, and removed cells with expression of either marker below those thresholds. 

We additionally removed cells that were in clusters dominated by non-memory T cells.

Unimodal pipeline for dimensionality reduction.—For each modality, we selected 

the union of the top 1000 features with highest variance in each library preparation pool, and 

scaled the expression of each feature across all cells to have mean = 0 and variance = 1. For 

the mRNA expression, we also cosine normalized the scaled expression values. We used 

truncated PCA (irlba R package) to reduce the data into 20 dimensions and then corrected 

these PCs for donor and library preparation batch effects using Harmony23. With uniform 

manifold approximation and projection (UMAP), we reduced the batch-corrected 

embeddings into two dimensions for visualization80.

Multimodal pipeline for dimensionality reduction.—For each modality, we selected 

the union of the top 1000 features with highest variance in each library preparation pool and 

scaled the normalized expression of each feature across all cells to have mean = 0 and 

variance = 1. We excluded T cell receptor genes because of potential mapping errors due to 

recombination and sequence similarity. Then, we used CCA as implemented in the cc 
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function (CCA R package) to calculate canonical dimensions81. This method finds 

maximally correlated linear combinations of features from each modality, i.e., calculates 

vectors a and b for mRNA matrix X and surface protein matrix Y to maximize cor(Xa, Yb) 

subject to the constraint that var(Xa) = var(Yb) = 1. We defined canonical variates by 

projecting cells onto each canonical dimension in the mRNA space (CV1 = Xa1) and 

selecting the top 20 dimensions defined by highest canonical correlations cor(Xai, Ybi) 

between mRNA and protein. We corrected donor and batch effects with Harmony and 

reduced the batch-corrected embeddings into two dimensions with UMAP.

Clustering and annotating cell states.—Cells were clustered based on low 

dimensional embeddings (PCs or CVs). We constructed a shared nearest neighbor graph 

(Seurat R package) and conducted Louvain modularity clustering at a range of resolutions. 

Results are shown at a resolution of 2.00, which yielded 31 CCA-based clusters with at least 

10 cells from more than five donors.

To annotate clusters as cell states, we identified pseudo-bulk differentially expressed mRNA 

and surface protein features between cells inside and outside of each cluster. We collapsed 

single-cell expression profiles for each modality into pseudo-bulk profiles by summing the 

raw UMI counts for each gene or surface protein across all cells from the same donor, batch, 

and cluster. For mRNA, we limited differential expression analysis to genes that had at least 

30 UMIs detected in at least 120 pseudo-bulk samples (n = 4,540), and for both modalities, 

we normalized counts for each feature in each pseudo-bulk sample into counts per million 

(CPM). We used separate linear models to estimate the effect of each cluster on pseudo-bulk 

expression of each gene, accounting for donor, batch, and the number of UMIs assigned to 

each pseudo-bulk sample. P values were obtained through a likelihood ratio test (LRT) 

between the models with and without the cluster term. We considered a gene or surface 

protein to be a marker of a cluster if it had a p<0.05/(4,540 genes × 31 clusters) = 3.6×10−7 

and a fold-change>2. We manually annotated each cell state based on literature.

Aligning bulk RNA-seq data and quantifying features.—We used STAR (version 

2.7.6a) to conduct all alignment of bulk RNA-seq data82. Paired-end reads were aligned to 

the human transcriptome (GRCh38), and we quantified gene-level expression with RSEM 

(version 1.3.1)83. We normalized gene expression within each sample to log2(transcripts per 

million [TPM]).

Testing cell populations for association with TB disease progression

We tested the association of each cell state with TB disease status with MASC35. We 

specified the number of UMIs and percent MT UMIs as cell-level covariates, and donor and 

library preparation batch as random effects, and fit the following logistic model for each 

cluster j:

log
Y i, j

1 − Yi, j
= θj + βcaseXi, case + βcovXd, cov + βtecℎXi, tecℎ + ϕd |d + κb |b
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where Yi,j is the odds of cell i being in cluster j, θj is the intercept for cluster j, βcase is the 

effect estimate (log(OR)) for case-control status, βcov is a vector of effect estimates for each 

donor-level covariate, βtech is a vector of effect estimates for each technical cell-level 

covariate, and Xs are the corresponding values for either cell i or donor d, as appropriate. (ϕd 

| d) is a random effect for cell i from donor d, and (κb | b) is a random effect for cell i from 

batch b.

With stepwise forward selection, we identified donor-level covariates that significantly 

influence cell state abundance. We used MASC to test for differentially abundant clusters 

associated with each covariate individually (univariate model), after correcting for the cell-

level and batch covariates. For each covariate, this test yielded 31 cluster-specific LRT p 

values. Under a null hypothesis—where the covariate is not significantly associated with cell 

state abundance—and when clusters are independent, the test statistic computed from these 

cluster p-values −∑k = 1
31 ln pk  follows a gamma distribution parametrized by rate=31 (the 

number of clusters) and scale=1. To assess independence, we ran 1,000 trials of a MASC 

model testing the association of cluster abundances with permuted TB disease status, 

adjusting for age, sex, donor, batch, percent MT UMIs per cell and number of UMIs per cell. 

We binned percent MT UMIs and number of UMIs into quintiles. We then measured the 

Pearson correlation between −ln(p values) under this null hypothesis for each pair of 

clusters. Furthermore, to determine if the test statistics produced under the null hypothesis 

followed the gamma distribution, we computed the p value for each of the 1,000 trials under 

the Gamma(31,1) distribution, and compared the observed −ln(p values) to uniformly 

distributed quantiles.

We then calculated a gamma test statistic and p value quantifying how much the distribution 

of p values for each of the 38 donor-level covariates deviates from the null, and selected the 

most significant covariate to add to the model. Then, we repeated this process for each 

remaining covariate with the expanded model, for a total of 5 iterations.

Based on this model selection process, we specified age, sex, winter blood draw, and 

percentage of European genetic ancestry as donor-level fixed effects, number of UMIs and 

percent MT UMIs as cell-level fixed effects, and donor and library preparation batch as 

random effects in our full MASC model:

log
Y i, j

1 − Yi, j
=  θj +  βcaseXi, case +  βageXd, age +  βage2Xd, age2 +  βsexXd, sex +  βwinterXd, winter

+  βEURXd, EUR +  βnUMIXi, nUMI +  βMTXi, MT   +   ϕd  |  d + κb  |  b

Age was included as both a linear and a quadratic effect to capture non-linear effects. We 

used Bonferroni adjustment to account for multiple hypothesis testing. To verify that MASC 

has a well-controlled type 1 error, we ran 1,000 trials of a MASC model testing the 

association of cluster abundances with permuted TB disease status, described above. To 

measure case-control associations with populations from previous TB disease progression 

studies (Supplementary Table 9), we gated these populations based on normalized surface 

protein expression measured in CITE-seq, and used the same MASC model specified above 

to estimate the OR.
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Constructing a linear predictor of C-12 abundance

We trained a linear model on pseudo-bulk T cell and bulk PBMC training data from our 

cohort to estimate the abundance of C-12 based on bulk RNA expression profiling data. For 

T cells, we computed pseudo-bulk expression of each gene in each sample (n = 271, 

including 12 technical replicates) by summing the gene’s counts across all cells from that 

sample, removed genes with <30 counts in any sample, and normalized these measurements 

within each sample to log2(CPM). For each sample, we computed the proportion of cells in 

C-12 out of all memory T cells passing QC in the CITE-seq dataset, and we measured bulk 

gene expression in PBMCs from a subset (n=15) of the T cell samples chosen to maximize 

variation of measured C-12 proportions. Genes with average expression<2 were removed 

and we normalized each gene to log2(TPM).

The predictor was a linear model with a ridge regularization term to avoid overfitting. We 

used 10-fold cross-validation to compute the optimal value of the ridge parameter (λ = 

0.0020). We used the glmnet R package to train a ridge regression model with this parameter 

to predict the proportion of C-12 cells in each sample based on gene expression84. Features 

were limited to the 2,355 genes at the intersection of most variable genes and genes 

measured in the training and target dataset for prediction. To evaluate accuracy, we used 10-

fold cross validation to train the model on 90% of samples and predict C-12 abundance in 

the remaining 10% of samples, and computed the Pearson correlation (r) between predicted 

and actual abundance. These predicted abundances in LIMAA samples were later used for 

comparison with predicted abundances in other cohorts.

We obtained RNA microarray data from Berry, et al. from the Gene Expression Omnibus 

(GSE19439 and GSE19435)42. These samples were collected as part of a multi-ethnic adult 

cohort recruited in the United Kingdom. Active cases were diagnosed by culture of sputum 

of bronchoalveolar lavage, latently infected donors were asymptomatic and positive by TST 

and interferon gamma release assay (IGRA), and healthy controls had no exposure to TB 

and were negative by TST and IGRA. Data were pre-processed as described in the original 

paper, and we used the trained linear predictor to estimate the abundance of C-12 in each 

donor. One dataset contained 3 groups of donors: BCG-vaccinated healthy uninfected, active 

TB, and latent infection. The other contained a subset of active TB donors followed 

longitudinally during anti-mycobacterial treatment (0, 2, and 12 months), and BCG-

vaccinated healthy controls. We compared C-12 proportions between pairs of donor groups 

within each dataset with a two-sided t test.

To compute our power to detect the 20% case-control difference from LIMAA in C-12 in 

Berry, et al.’s sample, we repeatedly downsampled the LIMAA memory T cell data set to 7 

cases (progressors) and 12 controls (non-progressors) 1,000 times. In each trial, we 

computed a p value for the difference between the average C-12 proportion in cases vs. 

controls with a two-sided t test. Then, we calculated power at significance level α=0.05 as 

the proportion of trials with p<α.

We also obtained RNA-seq data from Scriba, et al.43 from the Gene Expression Omnibus 

(GSE79362 and GSE103147) and selected unstimulated T cell samples from two pre-disease 

progression time points. These samples were nested from a prospective longitudinal cohort 
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of asymptomatic M.tb-infected South African adolescents (age 12–18), monitored for 2 

years for incident TB disease. All donors (n=54) were infected with M.tb prior to sample 

collection and either progressed to active TB at time point 0 (microbiologically confirmed, 

n=25) or remained latently infected (IGRA and/or TST-positive controls, n = 29). Controls 

were matched for age and sex. Each donor was sampled at 1–2 time points for a total of 98 

samples. Data were normalized in each sample to log2(CPM), and we used the trained linear 

predictor to estimate the C-12 proportion in each sample. To compute the difference in C-12 

frequency between cases and controls, accounting for repeated measures, we used a linear 

mixed model correcting for age, sex, sequencing technology, and donor (random effect) to 

regress predicted C-12 abundance on TB status. We obtained p values through two methods: 

(1) t test of the beta calculated for the TB progression term, using Satterthwaite’s method to 

approximate degrees of freedom as implemented in the lmerTest R package85, (2) 

comparison to a null distribution constructed through permutation of TB progression status 

across donors (10,000 iterations, p = 0.050).

To assess the specificity of the C-12 score for estimating the C-12 abundance, we used the 

C-12 ridge-regularized linear model trained on pseudobulk T cell and bulk PBMC 

expression data and computed a C-12 score for each of the 271 memory T cell samples in 

this study through 10-fold cross-validation (described above). We measured the Pearson 

correlation of these estimates with the proportion of each of the 31 clusters across the 271 

samples and also correlated the proportion of C-12 with the proportion each of the 31 

clusters across the 271 samples.

Defining sortable surface markers in silico

We used the single-cell surface marker expression to define flow-cytometry gates to isolate 

the CCA-defined cluster shown to be expanded in latent controls. We started with TCRαβ+, 

CD4+, and CD8− gates based on observed protein markers in the CITE-seq data. Then, 

using a classification and regression tree (CART) model implemented with the rpart R 

package, we defined a classification tree trained on the normalized expression of individual 

surface markers to partition the cells into subsets with the goal of isolating the cells in the 

cluster of interest. Gates were set manually based on discrete separation in the normalized 

expression distributions. We sequentially added gates until including another gate would 

reduce our sensitivity below 50%. We defined eight populations from Boolean combinations 

of these three gates: CD26+CD161+CCR6+, CD26−CD161+CCR6+, 

CD26+CD161−CCR6+, CD26+CD161+CCR6−, CD26−CD161−CCR6+, 

CD26−CD161+CCR6−, CD26+CD161−CCR6−, CD26−CD161−CCR6−.

Processing Boston donor samples

PBMCs were isolated from <6hr leukoreduction collars from the Specimen Bank at Brigham 

and Women’s Hospital using Ficoll-Hypaque as described above. All were discarded 

samples, collected under IRB protocol 2002P00127, and cryopreserved at 100 million or 50 

million cells/mL in 50% FBS, cRPMI, and 5% DMSO in a Freezer buddy.
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Bead-based quantification of cytokine production

We thawed aliquots of 150–200 million PBMCs from 3 Boston donors as described above. 

Samples were washed twice and resuspended in MACS buffer. We magnetically isolated all 

CD4+ T cells from each sample using a human CD4+ T cell negative isolation kit (Miltenyi 

biotec, Cat #130-096-533) per manufacturer instructions. We counted CD4+ T cells in each 

sample after isolation using a Countess™ II Automated Cell Counter and plated each in 

cRPMI at a concentration of 12.5 million/mL in a 96-well round bottom plate. Cells were 

incubated overnight at 37°C. After resting the cells, we combined all wells per donor and 

aliquoted 20 million cells from each donor for flow cytometry staining.

We centrifuged the samples and resuspended each in 1 mL of an antibody master mix 

consisting of Brilliant Buffer (BD Biosciences) and anti-CCR6 - PECy7 (BioLegend, Clone 

G03409). We covered in foil and incubated for 25 min at room temperature. Then we added 

1 mL of a second antibody master mix consisting of Brilliant Buffer (BD Biosciences) and 9 

markers for four-way sorting (Supplementary Table 10a). We incubated the samples for 25 

minutes at 4°C. After staining, we washed the samples twice in 5 mL of MACS buffer, 

filtered through a 40um mesh filter, resuspended each in 1 mL MACS buffer, and kept all 

samples on ice in preparation for cell sorting.

We sorted each sample into 4 populations using a BD FACSAria™ Fusion cell sorter. Cells 

were collected in FACS tubes containing 50% FBS and 50% MACS buffer. Each population 

was gated on lymphocytes using forward and side scatter and further sorted: 1) Naïve CD4 T 

cells: CD3+CD4+CD45RO−CD62L+, 2) Other memory CD4 T cells: CD3+CD4+CD45RO

+CCR6−/+CD26−/+CD161−/+, 3) Tregs: CD3+CD4+CD25+CD127low, 4) Target 

population: CD3+CD4+CD45RO+CCR6+CD26+CD161+.

After sorting, we resuspended each sample in cRPMI, counted using a Countess™ II 

Automated Cell Counter, and plated each sample population at 125,000–250,000 cells per 

well in a 96-well round bottom plate. We stimulated one well per population per sample with 

an equal volume of cRPMI containing a 1:1 ratio of washed CD3/CD28 Dynabeads™ 

(Thermofisher, Cat #11131D) or with cRPMI for non-stimulated controls. All conditions 

were incubated overnight at 37°C.

After incubation, we transferred the supernatant from each well into a new 96-well round 

bottom plate and froze the plate at −20°C. We followed manufacturer instructions for the 

LEGENDplex™ Human Th Panel (13-plex) kit (BioLegend, Cat #740722) in a 96-well V 

bottom plate. We tested for IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, 

IL-21, IL-22, IFNγ, and TNF. After thawing the supernatants, we diluted our samples 1:10 

using Assay Buffer and collected data on a BD LSRFortessa™. We analyzed data using 

LEGENDplex™ Data Analysis Software. To estimate cytokine concentration in each sorted 

population, we averaged measurements across 2 technical replicates for each of 3 donors. 

We compared estimated cytokine concentration between populations with a two-sided t test.

Intracellular flow cytometry staining

In two experiments, we thawed aliquots of 50–200 million PBMCs from 5 Boston donors 

and magnetically isolated CD4+ T cells as described previously. We counted the remaining 
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CD4+ T cells in each sample using Trypan blue and a hemocytometer. Then we plated each 

in cRPMI at a concentration of 10–12.5 million/mL in a 96-well round bottom plate and 

incubated samples overnight at 37°C. After resting the cells, we recombined all wells per 

donor and aliquoted 800,000 – 1,000,000 cells into new wells for stimulation. We stimulated 

cells with an equal volume of 2X PIM (81 nM PMA, 1.34uM ionomycin, and 5 ug/mL 

brefeldin), and kept the remaining wells unstimulated by adding only an equal volume of 2X 

brefeldin (5 ug/mL, BioLegend). We incubated plates at 37°C for 4 hours.

After stimulation, we transferred the samples to FACS tubes and washed twice with 500 uL 

cRPMI. We resuspended the samples in 500 uL of blue fluorescent Live/Dead fixable dead 

cell stain with PBS (1:1000) (Invitrogen) for 20 min at room temperature. After washing, we 

resuspended in 50 uL of the first antibody master mix consisting of Brilliant Stain Buffer 

(BD Biosciences) and CCR6 - PE/Cy7 (BioLegend, Clone G03409). We covered each in foil 

and incubated for 25 min at room temperature. Then we added 50 uL of a second antibody 

master mix consisting of Brilliant Stain Buffer (BD Biosciences) and 11 surface markers 

(Supplementary Table 10b). We incubated the samples for 25 minutes at 4°C. After staining, 

we washed the samples once in MACS buffer.

Next, we followed manufacturer instructions to fix and permeabilize the samples using a 

Cyto-Fast™ Fix/Perm Buffer Set from BioLegend (Cat #426803). We divided the 

unstimulated cells per donor in half and stained one tube of unstimulated cells and one tube 

of stimulated cells per donor with an intracellular antibody master mix consisting of anti-

IL17A – APC (BioLegend, Clone BL168) and PE conjugated to either anti-IL-4, anti-IFNy, 

anti-IL2, anti-IL5, anti-IL9, anti-IL10, anti-IL13, anti-IL17F, anti-IL21, anti-IL22, or anti-

TNF in the provided wash buffer (Supplementary Table 10c). Samples were covered in foil 

and incubated for 20 min at room temperature. Samples were washed twice in 1 mL of wash 

buffer and run on a BD LSRFortessa™. Data were analyzed using FlowJo version 10.6.2. 

The gating structure is shown in Supplementary Fig. 3.

In two subsequent experiments, we repeated the intracellular staining experiment above 

using 5 million PBMCs from 8 pairs of cases and controls from our Peruvian cohort 

matched for age (+/− 5 years), sex, season of blood draw, and proportion of European 

genetic ancestry (+/− 0.05). We stimulated 500,000 cells per condition and, after 

extracellular staining, we stained all samples with anti-IL17A – APC (BioLegend, Clone 

BL168) and anti-IL22 – PE (BioLegend, Clone 2G12A41). We collected data using two BD 

LSRFortessa™ analyzers.

To compare cytokine production across CD4+ T cell subsets, we gated all CD4+ T cells, all 

memory CD4+ T cells, all naïve CD4+ T cells, Tregs, and eight populations on Boolean 

combinations of three surface markers: CD26+CD161+CCR6+, CD26−CD161+CCR6+, 

CD26+CD161−CCR6+, CD26+CD161+CCR6−, CD26−CD161−CCR6+, 

CD26−CD161+CCR6−, CD26+CD161−CCR6−, CD26−CD161−CCR6−. We calculated the 

OR of cells in a given population producing each cytokine, across all donors, with the 

Cochran-Mantel-Haenszel method. We compared the percent of cells producing IL-17A or 

IL-22 between cases and controls with a one-sided Wilcoxon signed rank test.
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MTB300 peptide megapool stimulation of PBMCs

PBMCs were thawed in warm cVIVO15, washed twice, filtered through 70 uM cell 

strainers, and rested overnight in a tissue culture incubator (5% CO2) in 96-well U bottom 

plates at a concentration of 2 million cells/well. The next day, cells were recovered, counted, 

and cultured in 96-well U bottom plates at a concentration of 1 million cells/well. We added 

LEAF-purified anti-CD28 (BioLegend CD28.2), anti-CD40 (BioLegend HB14), and anti-

CD49d (BioLegend 9F10) to all the wells to a final concentration of 1 ug/mL. To the peptide 

stimulated well, we added MTB300 megapool (reagent provided by Dr. Cecilia Lindestam 

Arlehamn) to a final concentration of 2 ug/mL. After incubation for 2 hours, we added 

Brefeldin A (BioLegend) and Monensin (BioLegend) to a final concentration of 5ug/mL and 

2uM, respectively, and incubated cells for 16–18 hours in a tissue culture incubator. After 

stimulation, cells were recovered, transferred to 96-well V bottom plates, stained with 

conjugated antibodies, fixed and permeabilized, stained with antibodies for intracellular 

IL-17A and IFNγ, and analyzed on a BD LSRFortessa™ as previously described in the 

PMA and ionomycin stimulation experiment. We also used the same antibodies and 

concentrations as in that experiment (Supplementary Table 10b–c).

To assess M.tb response across all T cells, we gated CD3+ live cells, and for C-12 cells, we 

gated CD4+CD45RO+CD26+CD161+CCR6 non-Treg T cells. For both analyses, we 

quantified the percent of cells producing IL-17A or IFNγ in the unstimulated and stimulated 

samples from each donor, and calculated a fold change in the mean percent cytokine-

producing cells (across donors) between stimulated and unstimulated cells. P values were 

obtained from the two-sided Wilcoxon signed-rank test for paired samples. To compare 

cytokine production between CD26+CD161+CCR6+ cells from Boston control donors and 

TB cohort donors, we computed a p value from the Wilcoxon rank-sum test.

Data availability

Single-cell sequencing data are available on dbGaP; count matrices and meta data are on 

GEO (GSE158769). Single cell expression and cluster abundance data can also be explored 

in an interactive browser at https://immunogenomics.io/tbru/. Genotype data is available on 

dbGaP (accession: phs002025.v1.p1).

Code availability

Custom analysis scripts are available on GitHub (https://github.com/immunogenomics/

TB_Tcell_CITEseq).
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Extended Data

Extended Data Fig. 1. CITE-seq cell and feature quality
a, In silico memory T cell gating. Each cell is plotted based on its normalized surface 

expression of CD3 and CD45RO, measured through CITE-seq. Gates are demarcated with 

red dashed lines. Red cells were removed. Counts represent the number of cells in each 

quadrant. b, UMAP representation of gated cells. Red cells were gated out in (a) and cells 

clustering with them in the UMAP (shown in black in (a) and (b)) were also removed. c, 
Normalized CD3 and CD45RO surface protein expression. d, Number of cells per sample 

after QC, stratified by TB progression status. P value is from a two-sided t test comparing 

mean cell counts in each group. e, Pearson correlation coefficient (r) was calculated between 

normalized mRNA and surface protein expression for each marker across cells passing QC. r 

is plotted against average normalized mRNA expression for each protein. f, Each cell is 

plotted based on normalized expression of each marker in surface protein and mRNA, both 

measured through CITE-seq, with density contours. We fit a best-fit line (in blue) with a 

linear model.
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Extended Data Fig. 2. Comparing proportions of eight major T cell states between flow 
cytometry and CITE-seq
a, Average percents per population in CITE-seq vs. flow cytometry. Gates in (b). Dashed 

line indicates the identity line. b, For each population, proportions plotted across 259 

donors. Flow cytometry gating occurred after gating T cells. CITE-seq gating occurred after 

isolation of memory T cells. The dashed line indicates the identity line, and we calculated 

Pearson correlation coefficients (r) for each state.
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Extended Data Fig. 3. Multimodal integration with canonical correlation analysis
a, Correlations for the top 20 canonical dimensions used in downstream analysis. Bars 

represent the Pearson correlation between mRNA and protein projections for each 

dimension. b, Marker correlation with canonical variates (CVs). Each marker is plotted 

based on its mRNA and protein correlation with CV1 (left) or CV2 (right). c, Innateness 

scores. UMAP is colored based on a gene expression-derived cytotoxicity score defined in 

Gutierrez-Arcelus, et al. d, Correlation between innateness score and CV1. Each cell is 

plotted based on its innateness score from (c) and its CV1 projection, and we report the 

Pearson correlation coefficient.
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Extended Data Fig. 4. Single-cell expression of surface proteins, measured with CITE-seq
Each cell is colored according to its expression of each protein and plotted in UMAP space. 

Colors are scaled independently for each marker from minimum (blue) to maximum 

(yellow) expression.

Extended Data Fig. 5. Technical replicate consistency
For each of the 31 clusters, we plotted each multimodal donor based on its proportion in 

replicate 1 and in replicate 2. We calculated the Pearson correlation coefficients (r) for each 

cluster.
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Extended Data Fig. 6. Effects of donor covariates on memory T cell states
Effects of age, sex, winter blood draw, and proportion of European genetic ancestry in (a) 
model correcting for technical covariates (# UMIs/cell, % MT UMIs/cell), donor, batch, and 

TB disease status, and (b) full model with TB disease status, age, sex, winter blood draw, 

proportion of European genetic ancestry, technical covariates, donor, and batch. For all, 

n=271 samples from 259 independent donors. For each cluster, data are presented as the 

MASC OR of a cell being in each cluster given the contrast covariate (95% CI error bars), 

and the −log(LRT p value) of the association. The dashed horizontal line corresponds to a 

Bonferroni p-value threshold of 0.05/31. Labeled clusters are significant at this threshold.
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Extended Data Fig. 7. Unimodal clusters and associations with TB disease progression
a–c, mRNA clusters. d–f, protein clusters. a and d, UMAPs colored by unimodal clusters. 

Clusters boxed in red are CD4+, purple are mixed CD4+ and CD8+, blue are CD8+, and 

green are CD4−CD8−. b and e, Expression of major lineage-defining surface markers 

measured through CITE-seq. The UMAPs are colored by the expression of five markers 

measured through CITE-seq. Colors are scaled independently for each marker from 

minimum (blue) to maximum (yellow) expression. c and f, Heatmap of overlap between 

mRNA and multimodal clusters. Colors indicate the proportion of the multimodal cluster 

(column) overlapping with the mRNA cluster (row). g, Associations between TB disease 

status and unimodal protein clusters. For each cluster, the data are presented as MASC ORs 

of a cell being in each cluster for cases vs. controls (95% CI error bars), and the −log(LRT p 

value) of the association (n=271 samples from 259 independent donors). The dashed 

horizontal line corresponds to a Bonferroni p-value threshold of 0.05/40. Labeled clusters 
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are significant at this threshold. h, Abundance of C-20 in 128 cases and 131 controls. P 

value is from an LRT with 1 d.f. Boxplots show the median (vertical bar), 25th and 75th 

percentiles (lower and upper bounds of box, respectively), and 1.5×IQR (or minimum/

maximum if they lie within that range; end of whiskers).

Extended Data Fig. 8. Cell state signature extrapolation in public data
a, Correlation between actual and predicted C-12 proportion, per sample in memory T cell 

CITE-seq study (n = 271, black) and bulk PBMC RNA-seq (n = 15, blue). Line represents 

the identity line and we calculated the Pearson correlation coefficients (r) for T cell samples 

and bulk PBMC samples separately. Predicted (b) C-12 or (c) C-11 (Th2, negative control) 

proportion in 3 categories of donors from Berry, et al. d, Predicted C-12 proportion in active 

donors at 3 time points during anti-mycobacterial treatment (0, 2, 12 months) and uninfected 

controls. In b–d, we calculated p-values with a two-sided t test. e, Histogram of two-sided t 

test p values from 1,000 trials of downsampling LIMAA cohort to 7 cases and 12 controls 

(as in Berry, et al.) and comparing the average C-12 proportion in cases vs controls. Dashed 

line is the significance threshold of p = 0.05 (power = 0.15). f, Predicted C-12 proportion in 

active cases and latent controls at 2 pre-disease-progression time points in Scriba, et al. g, 
Predicted C-12 proportion in active cases and latent controls in pre- and post-disease 

cohorts. Pre-disease data are aggregated across 2 time points. In f and g, p-values are from a 

one-sided t-test (Satterthwaite’s d.f. method) of the beta estimate for TB progression status 

in the linear mixed model. h, Concordance of Pearson correlations between each cluster’s 

proportion and the C-12 score or the C-12 cluster’s proportion. Pearson correlation 

coefficients were computed for each cluster across 271 memory T cell samples. Each point 

represents one of the 31 clusters, and the dashed line is the identity line. All boxplots show 

the median (vertical bar), 25th and 75th percentiles (lower and upper bounds of box, 

respectively), and 1.5xIQR (or minimum/maximum if they lie within that range; end of 

whiskers).
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Extended Data Fig. 9. Cytokine production in Boston donors
Bars represent the mean and error bars show standard error of the mean across 5 Boston 

donors unascertained for TB. a, Per-donor percent of cells producing each cytokine in gated 

populations. b, Per-donor percent of total cytokine-producing memory CD4+ T cells in each 

gated population.
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Extended Data Fig. 10. M.tb antigen-specific response in CD4+CD26+CD161+CCR6+ memory T 
cells
a, Biaxial plots showing representative gating of CD3+CD4+CD45RO

+CD161+CCR6+CD26+ cells in a Boston donor. b, Intracellular staining for IL-17A and 

IFNγ in a Boston control donor and two Peruvian TB cohort donors after either no peptide 

stimulation (control) or stimulation with the MTB300 megapool. c, IL-17A or IFNγ 
response to MTB300 stimulation in all CD3+ T cells from either Boston control donors (n = 

2) or Peruvian TB cohort donors (n = 6). Each point corresponds to the percent of cells 

producing IL-17A or IFNγ from one donor, measured with intracellular cytokine staining. 

Lines connect measurements from the same donor before and after stimulation with 

MTB300 peptide megapool. Boxplots show the median (vertical bar), 25th and 75th 

percentiles (lower and upper bounds of box, respectively), and minimum/maximum (end of 

whiskers). P values are from a two-sided Wilcoxon signed-rank test comparing donors 

before and after antigen stimulation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design and quality control.
a, We obtained PBMCs from a Peruvian TB cohort (n=264 donors and 12 technical 

replicates, over 46 independent experiments), profiled memory T cells with CITE-seq, and 

integrated multimodal single-cell profiles to define cell states and case-control differences. 

b, Cell counts over six quality control steps. c, Single-cell quality metrics. Each cell is 

plotted according to the proportion of MT UMIs and the number of genes expressed. QC 

thresholds are demarcated with dashed lines. Counts indicate the number of cells in each 

quadrant. d, Distribution of post-QC cell yields for 259 samples. e, Schematic of canonical 

correlation analysis.
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Figure 2. Landscape of memory T cell states.
a, UMAP colored by 31 multimodal clusters. Cluster annotations are based on top 

differentially expressed genes and surface proteins. Clusters boxed in red are CD4+, purple 

are mixed CD4+ and CD8+, blue are CD8+, and green are CD4−CD8−. b, Expression of 

major lineage-defining surface proteins measured through CITE-seq. Colors are scaled 

independently for each marker from minimum (blue) to maximum (yellow) expression. c, 
Heatmap of selected marker genes. Surface protein heatmap colors are uniformly scaled for 

each protein. mRNA heatmap colors reflect z-scores for each gene.
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Figure 3. Memory T cell state associations with demographic and environmental factors.
a, Distribution of cluster proportions across donors (n = 259). Boxplots show the median 

(vertical bar), 25th and 75th percentiles (lower and upper bounds of box, respectively), and 

1.5xinterquartile range (IQR) (or minimum/maximum if they lie within that range; end of 

whiskers). Only non-zero proportions are plotted. b–e, Effects of age, sex, winter blood 

draw, and proportion of European genetic ancestry in univariate model correcting for 

technical covariates (# UMIs/cell, % MT UMIs/cell), donor, and batch. Error bars show the 

95% confidence interval. f, Associations of covariates with T cell composition. Each column 

represents associations from a MASC model fit with the indicated covariate (row) as the 

contrast, and correcting for the indicated covariates (cumulative column headings, from left) 

as fixed effects and donor and batch as random effects. Heatmap colors correspond to 

gamma test p-values, white indicates that the covariate is not significant after multiple 

testing correction (p>.05/38), and gray indicates that the covariate has already been added to 
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the model. Age and age2 are linear and quadratic terms of age at blood draw. Technical 

effects are # UMIs/cell and % MT UMIs/cell. IPT = isoniazid preventative therapy. BMI = 

body mass index. SES = socioeconomic status. BCG = Bacillus Calmette-Guérin. For all, 

n=271 samples from 259 independent donors.
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Figure 4. Identification and isolation of a depleted memory T cell state in TB cases.
a, Associations between TB disease status and memory T cell states. Data are presented as 

the MASC odds ratio (OR) of a cell being in each multimodal cluster for cases vs. controls 

(95% confidence interval [CI] error bars), and the −log(LRT p-value) of the association. The 

dashed horizontal line corresponds to a Bonferroni p-value threshold of 0.05/31. Labeled 

clusters are significant at a nominal threshold of p<0.05. b, C-12’s association with each 

covariate in the full model. Data are presented as the MASC OR of a cell being in C-12 

based on each covariate (95% CI error bars). P values are from an LRT with 1 degree of 

freedom (d.f.) c, Abundance of C-12 in 128 cases and 131 controls. Boxplots show the 

median (horizontal bar), 25th and 75th percentiles (lower and upper bounds of box, 

respectively), and 1.5xIQR (or minimum/maximum if they lie within that range; end of 

whiskers). P values are from an LRT with 1 d.f. d, Associations between TB disease status 

and unimodal mRNA clusters. Data are presented as the MASC OR of a cell being in that 
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cluster for cases vs. controls (95% CI error bars), and the −log(LRT p value) of the 

association. The dashed horizontal line corresponds to a Bonferroni p value threshold of 

0.05/37. e, Difference in C-12 or C-11 proportion (case-control) in pre- or post-disease 

cohorts, estimated by linear mixed model correcting for age, sex, sequencing technology, 

and donor. Pre-disease data are aggregated across 2 time points (n=98 samples from 54 

independent donors. Data are presented as the beta estimate for TB progression status in 

each data set/cell state (95% confidence interval error bars) and corresponding p values from 

a one-sided t-test (Satterthwaite’s d.f. method). For LIMAA (a-e), n=271 samples from 259 

independent donors.
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Figure 5. Identifying sortable markers of C-12 for ex vivo isolation.
a, Surface protein markers of C-12. Colors are scaled independently for each marker from 

minimum (blue) to maximum (yellow) expression. b, Classification tree to gate C-12 in 

CITE-seq data. Each level of the tree represents an additional gate. True positives (TP) are 

cells in C-12 that are in the gate. False positives (FP) are cells not in C-12 that are in the 

gate. True negatives (TN) are cells not in C-12 that are not in the gate. False negatives are 

cells in C-12 that are not in the gate. Sensitivity =TP/(TP + FN). Specificity = TN/(TN + 

FP). c, Comparison of C-12 and gated population in UMAP space. d, Distribution of each 

gate across clusters. e, Association of gated populations with TB progression status. For 

each gated population, data are presented as the MASC OR of a cell having that phenotype 

for cases vs. controls (95% CI error bars; n=271 samples from 259 independent donors). P 

values are from an LRT with 1 d.f.
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Figure 6. Defining C-12’s cytokine profile in a Boston donor.
a, Cytokine expression in supernatant for four CD4+ T cell subsets after CD3/CD28 bead 

stimulation. We estimated cytokine concentrations and averaged across donors (n = 3), 

scaled by cytokine, and binned into sextiles. b, Cytokine expression in gated population 

based on ICS (n = 5). Data are presented as Cochran-Mantel-Haenszel ORs of cytokine 

production inside vs. outside the gate (95% CI error bars). c, Gating strategy to isolate 

CD26+CD161+CCR6+ memory CD4+ T cells. Intracellular staining for IL-17A and IL-22 

is shown without stimulation and d, after stimulation with PMA/ionomycin. e–g, Per-donor 

percent of cells producing (e) IL-17A, (f) IL-22, and (g) IFNγ in gated populations. Bars 

represent the mean and error bars show standard error of the mean across 5 Boston donors 

unascertained for TB.
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Figure 7. Characterizing C-12 as an IL-17+ state with reduced function in Peruvian TB cases.
a, Correlation between abundance of flow-gated population (CD4+CD45RO

+CD26+CD161+CCR6+) and C-12, per donor. b, Correlation between abundance of flow-

gated population (CD4+CD45RO+CD26+CD161+CCR6+) and in silico-gated population, 

per donor. In, (a) and (b), we calculated a linear best fit line and Pearson correlation 

coefficient (r) across 16 donors. c, Per-donor percent of cells producing IL-17A (left) and 

IL-22 (right) in populations gated in Peruvian TB cohort donors. d, Percent of IL-17A (left) 

or IL-22 (right)-producing cells in gated populations. In (c) and (d), bars represent the mean 

and error bars show standard error of the mean across 16 donors. e, IL-17A or IL-22 

production in gated populations. Data are presented as Cochran-Mantel-Haenszel ORs of 

cytokine production inside vs. outside the gate (95% CI error bars; n=16 independent 

samples). f, Case-control comparison of per-donor percent of cells in indicated gates 

producing IL-17A (top) or IL- 22 (bottom). Paired samples were matched for age, sex, 

season of blood draw, and proportion of European ancestry. P values are from a one-sided 

Wilcoxon signed-rank test. g, M.tb-specific IL-17A or IFNγ response to MTB300 

Nathan et al. Page 45

Nat Immunol. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stimulation in CD4+ CD26+CD161+CCR6+ memory T cells from either Boston control 

donors (n = 2) or Peruvian TB cohort donors (n = 6). Each point corresponds to the percent 

of cells producing IL-17A or IFNγ from one donor, measured with intracellular cytokine 

staining. Lines connect measurements from the same donor before and after stimulation with 

MTB300 peptide megapool. P values are from a two-sided Wilcoxon signed-rank test 

comparing donors before and after antigen stimulation. In (f) and (g), Boxplots show the 

median (vertical bar), 25th and 75th percentiles (lower and upper bounds of box, 

respectively), and 1.5×IQR (or minimum/maximum if they lie within that range; end of 

whiskers).
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