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SUMMARY

We propose CX-ToM, short for counterfactual explanations with theory-of-mind,
a new explainable AI (XAI) framework for explaining decisions made by a deep
convolutional neural network (CNN). In contrast to the current methods in XAI
that generate explanations as a single shot response, we pose explanation as
an iterative communication process, i.e., dialogue between the machine and hu-
man user. More concretely, our CX-ToM framework generates a sequence of ex-
planations in a dialogue by mediating the differences between the minds of the
machine and human user. To do this, we use Theory of Mind (ToM) which helps
us in explicitly modeling the human’s intention, the machine’s mind as inferred
by the human, as well as human’s mind as inferred by the machine. Moreover,
most state-of-the-art XAI frameworks provide attention (or heat map) based ex-
planations. In our work, we show that these attention-based explanations are not
sufficient for increasing human trust in the underlying CNNmodel. In CX-ToM, we
instead use counterfactual explanations called fault-lines which we define as fol-
lows: given an input image I for which a CNN classification modelM predicts class
cpred, a fault-line identifies the minimal semantic-level features (e.g., stripes on
zebra), referred to as explainable concepts, that need to be added to or deleted
from I to alter the classification category of I by M to another specified class calt.
Extensive experiments verify our hypotheses, demonstrating that our CX-ToM
significantly outperforms the state-of-the-art XAI models.

INTRODUCTION

Intelligence (AI) systems are becoming increasingly ubiquitous from low risk environments such as movie

recommendation systems and chatbots to high-risk environments such as medical-diagnosis and treat-

ment, self-driving cars, drones and military applications (Chancey et al., 2015; Gulshan et al., 2016; Lyons

et al., 2017; Mnih et al., 2013; Gupta et al., 2012; Pulijala et al., 2013; Dasgupta et al., 2014; Agarwal

et al., 2017; Palakurthi et al., 2015; Akula et al., 2021a, 2021b, 2021c, 2021d). In particular, AI systems built

using black box machine learning (ML) models – such as deep neural networks and large ensembles (Lip-

ton, 2016; Ribeiro et al., 2016; Miller, 2018; Yang et al., 2018; Sundararajan et al., 2017; Ramprasaath et al.,

2016; Zeiler and Fergus, 2014; Smilkov et al., 2017; Kim et al., 2014; Akula, 2015; Akula et al., 2013, 2020a) –

perform remarkably well on a broad range of tasks and are gaining widespread adoption. However, under-

standing and developing human trust in these systems remains a significant challenge as they cannot

explain why they reached a specific recommendation or a decision. This is especially problematic in

high-risk environments such as banking, healthcare, and insurance, where AI decisions can have significant

consequences.

In light of aforementioned issues, eXplainable Artificial Intelligence (XAI) has become an active area of in-

terest in the research community and industry. XAI models, through explanations, aim at making the under-

lying inference mechanism of AI systems transparent and interpretable to expert users (system developers)

and nonexpert users (end-users) (Lipton, 2016; Ribeiro et al., 2016; Hoffman, 2017). In this work, we focus

mainly on increasing justified human trust (JT) in a deep convolutional neural network (CNN), through ex-

planations (Hoffman et al., 2018; Akula et al., 2019a, 2019b). Justified trust is computed based on human
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judgments of CNNmodel’s prediction (more details on this are described in how human trust is measured

in CX-ToM?). Despite an increasing amount of work on XAI (Smilkov et al., 2017; Sundararajan et al., 2017;

Zeiler and Fergus, 2014; Kim et al., 2014; Zhang et al., 2018a; Akula et al., 2019c), providing explanations

that can increase justified human trust remains an important research problem (Jain and Wallace, 2019).

Our work is motivated by the following two key observations:

1. Attention is not a Good Explanation: Previous studies have shown that trust is closely and positively

correlated to the level of how much human users understand the AI system — understandability —

and how accurately they can predict the system’s performance on a given task— predictability (Hoff-

man, 2017; Lipton, 2016; Hoffman et al., 2018; Miller, 2018). Hence, there has been a growing interest

in developing explainable AI systems (XAI) aimed at increasing understandability and predictability

by providing explanations about the system’s predictions to human users (Lipton, 2016; Ribeiro et al.,

2016; Miller, 2018; Yang et al., 2018). Current works on XAI generate explanations about their perfor-

mance in terms of, e.g., feature visualization and attention maps (Sundararajan et al., 2017; Rampra-

saath et al., 2016; Zeiler and Fergus, 2014; Smilkov et al., 2017; Kim et al., 2014; Zhang et al., 2018a).

However, solely generating explanations, regardless of their type (visualization or attention maps)

and utility, is not sufficient for increasing understandability and predictability (Jain and Wallace,

2019). We verify this in our experiments.

2. Explanation is an Interactive Communication Process: We believe that an effective explanation

cannot be one shot and involves an iterative process of communication between the human and

the machine. The context of such interaction plays an important role in determining the utility of

the follow-up explanations (Clark and Schaefer, 1989). As humans can easily be overwhelmed with

too many or too detailed explanations, interactive communication process helps in understanding

the user and identify user-specific content for explanation. Moreover, cognitive studies (Miller,

2018) have shown an explanation can only be optimal if it is generated by taking the user’s percep-

tion and belief into account.

Based on the above two key observations, we introduce an interactive explanation framework, CX-ToM.

Unlike current XAI methods that model the explanation as a single shot response, in CX-ToM, we pose

the explanation generation as an iterative process of communication between the human and themachine.

Central to our approach is the use of Theory-of-Mind (ToM) (Devin and Alami, 2016; Goldman, 2012; Pre-

mack and Woodruff, 1978; Bara et al., 2021) in driving the iterative dialogue by taking into account three

important aspects at each dialogue turn: (a) human’s intention (or curiosity), (b) human’s understanding

of the machine, and (c) machine’s understanding of the human user. Specifically, in our framework, the ma-

chine and the user are positioned to solve a collaborative task, but the machine’s mind (M) and the human

user’s mind (U) only have a partial knowledge of the environment (see Figure 1). Hence, the machine and

user need to communicate with each other, using their partial knowledge, otherwise they would not be able

to optimally solve the collaborative task. The communication consists of two different types of question-

answer (QA) exchanges — namely, a) Factoid question-answers about the environment (W-QA), where

the user asks ‘‘WH’’-questions that begin with what, which, where, and how; and b) Explanation seeking

question-answers (E-QA), where the user asks questions that begin with why about themachine’s inference.

In addition, we propose novel counterfactual explanations called fault-lines and show that they are superior

to attention based explanations. Fault-lines are the high-level semantic aspects of reality that humans

zoom in on when they imagine an alternative to it. More concretely, given an input image I for which a

CNNmodelM predicts class cpred, our fault-line based explanation identifies aminimal set of semantic fea-

tures, referred to as explainable concepts (xconcepts), that need to be added to or deleted from I to alter

the classification category of I by M to another specified class calt (Byrne, 2002, 2017; Kahneman and Tver-

sky, 1981; Akula et al., 2020b; Hoffman et al., 2017; Ruth, 2007). For example, let us consider a training data-

set for an image classification task shown in Figure 2 containing the classes Dog, Thylacine, Frog, Toad,

Goat and Sheep, and a CNN based classification model M which is trained on this dataset. To alter the

model’s prediction of input image I1 from Dog to Thylacine, the fault-line (J+
I1 ;cpred ;calt

) suggests adding

stripes to the Dog. We call this a positive fault-line (PFT) as it involves adding a new xconcept, i.e., striped-

ness, to the input image. Similarly, to change the model prediction of I2 from Toad to Frog, the fault-line

(J�
I2 ;cpred ;calt

) suggests removing bumps from the Toad. We call this a negative fault-line (NFT) as it involves

subtracting xconcept, i.e., bumpedness, from the input image.
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In most cases, both PFT and NFT are needed to successfully alter the model prediction. For example, in

Figure 2, to change the model prediction of I3 from Goat to Sheep, we need to add a xconcept wool

(PFT) to I3 and also remove xconcepts beard and horns (NFT) from I3. As we can see, these fault-lines

can be directly used to make the internal decision making criteria of deep neural networks transparent

to both expert and nonexpert users. For instance, we answer the question ‘‘Why does the model classify

the image I3 as Goat instead of Sheep?’’ by using PFT J+
I3 ;cpred ;calt

and NFT J�
I3 ;cpred ;calt

as follows: ‘‘Model

thinks the input image is Goat and not Sheep mainly because Sheep’s feature woolly is absent in I3 and

Goat’s features beard and horns are present in I3’’. It may be noted that there could be several other fea-

tures of Sheep and Goat that might have influenced the model’s prediction. However, fault-lines only cap-

ture the most critical (minimal) features that highly influenced the model’s prediction.

Note that fault-lines are counter-factual in nature, i.e., they provide a minimal amount of information

capable of altering a decision. This makes them easily digestible and practically useful for understanding

the reasons for a model’s decision (Wachter et al., 2017). For example, consider the fault-line explanation

for image I3 in Figure 2. The explanation provides only the most critical changes (i.e., adding wool and

removing beard and horns) required to alter the model’s prediction from Goat to Sheep, though several

other changes may be necessary. Although there are recent works on generating pixel-level counter-

factual and contrastive explanations (Hendricks et al., 2018; Dhurandhar et al., 2018; Goyal et al., 2019),

to the best of our knowledge, this is the first work to propose a method for generating explanations that

are iterative, counter-factual as well as conceptual.

It may be noted that there exists multiple fault-lines that could be used to explain the model’s decisions. In

this work, we pick the most optimal fault-line, i.e., the one that is most influential and suitable given the

user’s current understanding of CNN model, by using Theory-of-Mind (ToM) (Yoshida et al., 2008; Rabino-

witz et al., 2018; Pearce et al., 2014; Raileanu et al., 2018; Ramırez and Geffner, 2011; Edmonds et al., 2019;

Zhang and Zhu, 2018).

Example of a ToM based fault-line selection process

Given an input image and two output categories, fault-lines show the most important features or attributes

that influence the model’s decision in classifying the image as one among the two output categories. In

most cases, there exist several thousands of output categories and it is impossible for the human user to

Figure 1. CX-ToM: Our interactive and collaborative XAI framework based on the Theory of Mind

The interaction is conducted through a dialogue where the user poses questions about facts in the environment (W-QA)

and explanation seeking questions (E-QA).
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verify the model’s reasoning and behavior by constructing a fault-line between all the possible pairs of

output categories. Therefore, it is important for the model to automatically select the most important

pair for constructing fault-line explanation that helps human users to quickly understand the model’s

strengths or weaknesses. CX-ToM addresses this by incorporating Theory-of-Mind framework which helps

in explicitly tracking human user’s beliefs. More concretely, at each turn in the dialogue, we estimate the

human’s understanding of the CNN model and generate a most suitable fault-line explanation aimed at

increasing human understanding (and therefore trust) of the model. It may be noted that we are not trying

to estimate or build a rich and dynamic true state of a human mind using ToM - a grand challenge for AI.

Instead, similar to prior works on ToM (Yoshida et al., 2008; Rabinowitz et al., 2018; Pearce et al., 2014; Rai-

leanu et al., 2018; Ramırez and Geffner, 2011; Zhu et al., 2020), we cast ToM framework as a simple learning

problem that enable us to better understand user preferences that improve the utility of the explanations.

For example, consider an input image shown in Figure 3, where the CNN model classifies the image as a

Woman. The possible output categories are Woman, Man, and Deer. Generating a most suitable fault-line

explanation to help users understand the model’s reasoning process requires understanding the human

user’s current understanding of the model. If the user knows that the model performs well at identifying

Person but not very certain in its ability to correctly classify between Man and Woman, then the fault-line

for the class pair <Woman, Man> is a most appropriate explanation for the user. However, if the user is not

certain about the model’s ability in correctly classifying Person, then the fault-line for the class pair

<Woman, Deer> is the most appropriate explanation.

In summary, CX-ToM constructs explanations in the dialogue using fault-lines and picks an optimal expla-

nation based on ToM.We perform extensive human study experiments to demonstrate the effectiveness of

our approach in improving human understanding of the underlying classification model. Through our ab-

lations and human studies, we show that our CX-ToM explanations significantly outperform the baselines

(i.e., attribution techniques and pixel-level counterfactual explanations) in terms of qualitative and quanti-

tative metrics such as Trust and Explanation Satisfaction (Hoffman et al., 2018).

How is human trust measured in CX-ToM?

In this work, we focus mainly on measuring and increasing Justified Positive Trust (JPT) and Justified Nega-

tive Trust (JNT) (Hoffman et al., 2018) in image classification models. We measure JPT and JNT by evalu-

ating the human’s understanding of the machine’s (M) decision-making process. For example, if the image

Figure 2. Example of a ToM based Fault-Line Selection Process: The interaction is conducted through a dialogue where the user seeks

explanations about CNN output predictions

CX-ToM picks an optimal fault-line as an explanation based on the user’s (estimated) current understanding of the model.
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classificationmodelM predicts images in the setC correctly andmakes incorrect decisions on the images in

the setW. Intuitively, JPT will be computed as the percentage of images in C that the human subject feltM

would correctly predict. Similarly, JNT (also called as mistrust), will be computed as the percentage of im-

ages inW that the human subject feltMwould fail to predict correctly. In other words, given an image, justi-

fied trust evaluates whether the users could reliably predict the model’s output decision. Note that this

definition of justified trust is domain generic and can be easily adapted to any task. For example, in an

AI-driven clinical world, our definitions of JPT and JNT can effectively measure how much doctors and pa-

tients understand the AI systems that assist in clinical decisions.

Our contributions are summarized below:

� We introduce a new XAI framework based on Theory-of-Mind and counterfactual explanations.

� We present a ToM based approach to automatically select the most important pair of output cate-

gories for constructing fault-line explanation.

� We show that the CX-ToM XAI framework qualitatively and quantitatively outperforms baselines in

improving human understanding of the classification model.

The remainder of this paper is organized as follows. Related work reviews the previous work done in ex-

plaining image classification models. CX-ToM framework introduces our CX-ToM explanation framework.

In experiments, we present our experimental results, draw conclusions, and point to future directions for

research.

RELATED WORK

The importance of generating explanations or justifications of decisions made by an AI system has been

emphasized and widely explored in numerous works over the past decades (Alang, 2017; Bornstein,

2016; Champlin et al., 2017; Bach et al., 2015; Shrikumar et al., 2017; Zhou et al., 2016; Berry and Broadbent,

Figure 3. We select a fault-line explanation by estimating human user’s current understanding of the model

(A) For example, consider the first scenario (A), where CX-ToM estimates that the user is not confident in the model’s ability to correctly classify between

Woman and Man. Therefore, CX-ToM generates a fault-line explanation using the output categories Woman and Man.

(B) Whereas in the second scenario (B), CX-ToM thinks that users do not trust the model’s ability in correctly classifying Person, and therefore shows a fault-

line explanation using categories Woman and Deer.
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1987; Biran and Cotton, 2017; Darlington, 2013; Doshi-Velez and Kim, 2017a, 2017b; Goodman and Flax-

man, 2017; Hoffman, 2017; Hoffman and Klein, 2017; Keil, 2006; Kulesza et al., 2010, 2011; Moore and Swart-

out, 1990;Walton, 2004; Douglas, 2007; Walton, 2011; Sheh, 2017; Sheh andMonteath, 2018; Tapaswi et al.,

2016; Williams et al., 2016; Agarwal et al., 2018; Akula et al., 2018, 2019a, 2019b, 2019c, 2021d; Akula and

Zhu, 2019; Gupta et al., 2016; Bivens et al., 2017; Zhang et al., 2019a, 2020a, 2020b). Most prior work in ex-

plaining CNN’s predictions has focused on generating explanations using feature visualization and

attribution.

Feature visualization techniques typically identify qualitative interpretations of features used for making

predictions or decisions. For example, gradient ascent optimization is used in the image space to visualize

the hidden feature layers of unsupervised deep architectures (Erhan et al., 2009). In addition, convolutional

layers are visualized by reconstructing the input of each layer from its output (Zeiler and Fergus, 2014).

Recent visual explanation models seek to jointly classify the image and explain why the predicted class la-

bel is appropriate for the image (Hendricks et al., 2016). Other related work includes a visualization-based

explanation framework for Naive Bayes classifiers (Szafron et al., 2003), an interpretable character-level lan-

guage models for analyzing the predictions in RNNs (Karpathy et al., 2015), and an interactive visualization

for facilitating analysis of RNN hidden states (Strobelt et al., 2016).

Attribution is a set of techniques that highlight pixels of the input image (saliency maps) that most caused

the output classification. Gradient-based visualization methods (Zhou et al., 2016; Selvaraju et al., 2017a)

have been proposed to extract image regions responsible for the network output. The LIME method pro-

posed by (Ribeiro et al., 2016) explains predictions of any classifier by approximating it locally with an inter-

pretable model. SHAP (Lundberg and Lee, 2017), another common attribution technique, uses shapley

values to explain output predictions of a model for given input by computing the contribution of each

feature to the prediction.

There are few recent works in the XAI literature that go beyond the pixel-level explanations. For example,

the TCAV technique proposed by (Kim et al., 2018) aims to generate explanations based on high-level user

defined concepts. Contrastive explanations are proposed by (Dhurandhar et al., 2018) to identify minimal

and sufficient features to justify the classification result (Goyal et al., 2019). proposed counterfactual visual

explanations that identify how the input could change such that the underlying vision system would make a

different decision. More recently, few methods have been developed for building models which are intrin-

sically interpretable (Zhang et al., 2018a). In addition, there are several works (Miller, 2018; Hilton, 1990;

Lombrozo, 2006) on the goodness measures of explanations which aim to assess the underlying character-

istics of explanations.

We further categorize above works on feature visualization and attribution as follows:

Intrinsic vs post-hoc explanations

Explanations that are derived (or understood) directly from the model’s internal representation or the

output parse structure are called Intrinsic Explanations (Doshi-Velez and Kim, 2017b; Zhang et al., 2018a;

Stone et al., 2017). For example, the reasoning behind the predictions made by linear regression models,

decision trees, and And-Or Graphs (Li et al., 2013; Zhang et al., 2017) is easier to understand without using

any external XAI models and hence are considered as intrinsically explainable. These models, because of

their simple structure, typically do not fare well in terms of performance compared to black-box models

such as deep neural nets. Majority of the work in XAI is focused on generating post-hoc (Lei et al., 2016;

Ribeiro et al., 2016; Kim et al., 2014, 2015, 2018; Wang et al., 2016) explanations where an external XAI

model is employed to explain the model. More recently, there are efforts in making the complex deep neu-

ral networks intrinsically explainable (Zhang et al., 2018a; 2018b; 2019b). For example (Zhang et al., 2019b),

proposed a decision tree to encode decision modes in fully-connected layers and thereby quantitatively

explain the logic for each CNN prediction.

Model-agnostic vs model-specific explanations

Explainable AI models that do not require CNN model specific details (for example, weights of CNN) for

generating explanations are called model-agnostic models (Ribeiro et al., 2018). In other words, they sim-

ply analyze the dependencies of input features against the output predictions to explain the model’s
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decision. It may be noted that intrinsic explanations are typically model-specific whereas post-hoc XAI

models are model-agnostic. Several XAI works belong to this category, to name a few:

1. Local Interpretable Model-Agnostic Explanation (LIME) (Ribeiro et al., 2016). LIME produces an

attention map as an explanation, generated through super-pixel based perturbation. Though

LIME is a post-hoc model-agnostic model, it generates explanations by approximating the model

(locally) with an intrinsic model-specific XAI model.

2. Contrastive Explanation Methods (CEM) (Dhurandhar et al., 2018). CEM provides contrastive expla-

nations by identifying pertinent positives and pertinent negatives in the input image.

3. Counterfactual Visual Explanations (CVE) (Goyal et al., 2019). CVE provides counterfactual explana-

tion describing what changes to the situation would have resulted in arriving at the alternative

decision.

Human interpretable explanations (concept activation vectors)

Most XAI models represent the explanations using attention maps (saliency). However, these explanations

are difficult for humans to understand. For example, authors in (Jain and Wallace, 2019) considered NLP

tasks (text classification, natural language inference (NLI), and question answering) to show that attention

mechanisms are not useful for humans. Therefore, there is a dire need to represent and generate human-

friendly explanations. Recent work by (Kim et al., 2018) presents a first step toward this goal. They propose a

technique called TCAV that takes the user defined concept (X) represented using a set of example images

and maps it to the activation space of any given layer l in the network. It then constructs a vector represen-

tation of each concept, called CAV (denoted as vX), by using a direction normal to a linear classifier trained

to distinguish between the concept activations from the random activations. The sensitivity of network pre-

dictions toward a concept is gauged by computing directional derivatives (Sc,X) to produce estimates of

how important the concept X was for a CNN’s prediction of a target class c, e.g., how important is the

concept stripedness for predicting the zebra class.

Sc;X = Vgcðf ðIÞÞ,vX (Equation 1)

where gc denotes the classifier component of CNN that takes output of f and predicts log-probability of

output class c. Because TCAV provides explanations using high-level concepts, it is expected to achieve

higher human trust and reliance values compared to the attention based explanations (Selvaraju et al.,

2017a; Ribeiro et al., 2016).

Proxy or surrogate models

A Proxy or surrogate model is a simpler interpretable model that approximates the behavior of the com-

plex model (Ribeiro et al., 2016; Alvarez-Melis and Jaakkola, 2018; Sato and Tsukimoto, 2001; Augasta and

Kathirvalavakumar, 2012). It reduces the complexity of the original model but produces similar output

estimates. Most surrogate XAI models are model-agnostic. A surrogate model that is trained to explain in-

dividual instances is referred to as local surrogate model. For example, LIME (Ribeiro et al., 2016) approx-

imates amodel with a local linear model that serves as a surrogate for themodel in the neighborhood of the

input. Similarly, neural networks are locally approximated by using decision trees (Sato and Tsukimoto,

2001; Zhang et al., 2017). This notion of using proxy models is also referred to as Knowledge Distillation

(Hinton et al., 2015; Hernández-Garcı́a and König, 2018; Polino et al., 2018) and Rule Extraction (Zilke

et al., 2016).

Perturbation analysis

Perturbation analysis helps in measuring the feature importance for the predictions made by model (Fisher

et al., 2018; Moosavi-Dezfooli et al., 2017). The assumption here is that the model’s confidence in the pre-

diction will be low if an important feature has been removed (or masked) after perturbing the input features.

Adversarial analysis (Goodfellow et al., 2014) and Probing techniques (Clark et al., 2019) are few popular

techniques for perturbation analysis.

Counterfactual explanations

Counterfactual (and Contrastive) explanations provide aminimal amount of information capable of altering

a model’s decision. In other words, they aim at describing the causal situations such as ‘‘What would be the
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output of the model if X had not occurred?’’. This makes them easily digestible and practically useful for

understanding the reasons for a model’s decision (Pedreschi et al., 2018; Wachter et al., 2017; Goyal

et al., 2019; Van Looveren and Klaise, 2019).

For example (Fong and Vedaldi, 2017), propose a counterfactual reasoning framework to find the part of an

imagemost responsible for a classifier decision. This saliency based explanation framework helps in under-

standing where the model looks by discovering which parts of an image most affect its output score when

perturbed (Goyal et al., 2019) and proposes a counterfactual explanation framework to identify how the

input image could be changed such that the model would output a different specified class. To do this,

they select a distractor image that the model predicts as class c1 and identify spatial regions such that re-

placing the identified region in input image with the regions from the distractor image would push the

model toward classifying I as c2. Contrastive explanations are proposed by (Dhurandhar et al., 2018) to

identify minimal and sufficient features to justify the classification result. Unlike these prior counterfactual

explanation frameworks which mainly focus on pixel-level explanations (viz. saliency maps), our proposed

ToM based counterfactual explanations, i.e., fault-lines, are concept-level explanations. Pixel-level expla-

nations are not effective at human scale, whereas concept level explanations are effective, less ambiguous,

and more natural for both expert and nonexpert users in building a mental model of a vision system (Kim

et al., 2018). Moreover, with conceptual explanations, humans can easily generalize their understanding to

new unseen instances/tasks.

Partial dependence plots

Partial dependence plots (PD) is a model-agnostic XAI technique that helps in understanding the relation-

ships between one or more input variables as well as marginal effect of a given variable on a model’s de-

cision (Friedman, 2001; Hastie et al., 2001; Molnar, 2019).

Class Activation Mapping (CAM)

CAM produces an attention map as an explanation, i.e., it highlights the important regions in the image for

predicting a target output. Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al.,

2017a) uses the gradients of the target class flowing into the final convolutional layer to produce an atten-

tion map as explanation. Layer-wise Relevance Propagation (LRP) (Bach et al., 2015) generates attention

map by propagating classification probability backward through the network and then calculates relevance

scores for all pixels. SmoothGrad (Smilkov et al., 2017) produces an attention map as an explanation by

adding Gaussian noise to the original image and then calculating gradients multiple times and averaging

the results.

CX-TOM FRAMEWORK

In this section, we first demonstrate the importance of ToM based explanations by designing a collabora-

tive task-solving game for visual recognition (importance of ToM). We next present the fault-lines as an

alternative to attention based explanations (fault-lines as an alternative to attention based explanations).

Finally, we detail our CX-ToMmodel which integrates both ToM and fault-lines into one single explanation

framework (CX-ToM framework).

Importance of ToM

We test the importance of ToM for providing effective explanations by designing a collaborative task-solv-

ing game for visual recognition. In this game, the machine is given an original image and is supposed to

detect and localize objects and parts of interest or a human activity appearing in the image. The user is

given a blurred version of the original image, and the user seeks the machine’s help essentially through

the explanations generated by the machine to recognize objects/parts in the blurred image. This provides

a unique collaborative setting where the system is motivated to provide a human-understandable expla-

nation for its visual recognition and the user is motivated to seek the system’s recognition and explanation

to help his/her own understanding. To facilitate this collaborative interaction, we use ToM to explicitly

model mental states of visual understanding (‘‘minds’’) of the machine and user using parse graphs (pg)

in the form of And-Or Graph (AOG) (Zhu and Mumford, 2007). In a pg, nodes represent objects and parts

detected in the image, and edges represent spatial relationships identified between the objects. As shown

in Figure 4, we have three main components as part of this interaction:
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� A Performer that generates image interpretations (i.e., machine’s mind represented as pgM) using a

set of computer vision algorithms;

� An Explainer that generates maximum utility explanations in a dialogue with the user by accounting

for pgM and pgUinM using reinforcement learning;

� An Evaluator that quantitatively evaluates the effect of explanations on the human’s understanding

of the machine’s behaviors (i.e., pgMinU) and measures human trust by comparing pgMinU and pgM.

The game consists of two phases. In the first phase, the user is shown a blurred image and given a task to

recognize what the image shows. The machine has access to the original (unblurred) image and the ma-

chine’s (i.e., Performer’s) inference result pgM. The user is allowed to ask questions regarding objects

and parts in the image that the user finds relevant for his/her own recognition task. Using the detected ob-

jects and parts in pgM, Explainer provides visual explanations to the user, as shown in Figure 5. This process

allows the machine to infer what the user sees and iteratively update pgUinM, and thus select an optimal

explanation at every turn of the game. Optimal explanations generated by the Explainer are the key to

maximize the human trust in the machine.

The second phase is specifically designed for evaluating whether the explanation provided in the first

phase helps the user understand the system behaviors. The Evaluator shows a set of original (unblurred)

images to the user that are similar to (but different from) the ones used in the first phase of the game

(i.e., the set of images shows the same class of objects or human activity). The user is then given a task

to predict in each image the locations of objects and parts that would be detected by the machine (i.e.,

in pgM) according to his/her understanding of the machine’s behaviors. Based on the human predictions,

the Evaluator estimates pgMinU and quantifies human trust in the machine by comparing pgMinU and pgM.

The three minds pgM, pgMinU, and pgUinM are subgraphs of an And-Or Graph (AOG) defining all objects,

parts, and their relationships and attributes of the visual domain considered. The AOG uses AND nodes

to represent decompositions of human body parts into subparts and OR nodes for alternative decompo-

sitions. Each node is characterized by attributes that pertain to the corresponding human body part,

including the pose and action of the entire body. In addition, edges in the AOG capture hierarchical

and contextual relationships of the human body parts. Our AOG-based performer uses three inference

processes a, b, and g at each node. Figure 5 shows an example part of the AOG relevant for human

body pose estimation (Park et al., 2018). Thea process detects nodes (i.e., human body parts) of the

AOG directly based on image features, without taking advantage of the surrounding context. The b pro-

cess infers nodes of the AOG by binding the previously detected children nodes in a bottom-up fashion,

Figure 4. Our collaborative ToM based interaction framework for a visual recognition task consists of three

distinct parse graphs (pg’s): pgM representing the machine’s interpretation of the image, pgUinM — the human’s

mind as inferred by the machine, and pgMinU — the machine’s mind as inferred by the human

Nodes of a parse graph represent objects and parts appearing in the image, and edges represent spatial relationships of

the objects. We use ToM to optimize explanations so as to reduce a difference among the three parse graphs.
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where the children nodes have been detected by the a process (e.g., detecting human’s upper body from

the detected right arm, torso, and left arm). Note that the b process is robust to partial object occlusions as

it can infer an object from its detected parts. The g process infers a node of the AOG top-down from its

previously detected parent nodes, where the parents have been detected by the a process (e.g., detecting

human’s right leg from the detected outline of the lower body). The parent node passes contextual infor-

mation so that the performer can detect the presence of an object or part from its surroundings. Note that

the g process is robust to variations in scale at which objects appear in images.

The explainer, in the first phase of the game, makes the underlying a, b, and g inference process of the

performer more transparent to the human through a collaborative dialogue. At one end, the explainer is

provided access to an image and the performer’s inference result pgM on that image. At the other end,

the human is presented with a blurred version of the same image, and asked to recognize a body part,

or pose, or human action depicted (e.g., whether the person is running or walking). To solve the task,

the human may ask the explainer various ‘‘what’’, ‘‘where,’’ and ‘‘how’’ questions (e.g., ‘‘Where is the left

arm in the image’’). We make the assumption that the human will always ask questions that are related

to the task at hand so as to solve it efficiently. As visual explanations, we use ‘‘bubbles’’ (Gosselin and

Schyns, 2001), where each bubble reveals a circular part of the blurred image to the human. The bubbles

coincide with relevant image parts for answering the question from the human, as inferred by the performer

in pgM. For example, a bubble may unblur the person’s left leg in the blurred image, because that image

part has been estimated in pgM as relevant for recognizing the human action ‘‘running’’ occurring in the

image.

Figure 5. An example of the first phase of our ToM based collaborative game aimed at estimating pgUinM: The user is shown a blurred image and

given a task to recognize if the person in the image is running or walking

The machine has access to the original (unblurred) image and pgM. The user then asks questions regarding objects and parts in the image. Using the

detections in pgM, the machine provides visual explanations as ‘‘bubbles’’ that reveal the corresponding image parts in the blurred image. The generated

explanations are used to update pgUinM.
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The second phase of the X-ToM game serves to assess the effect of the explainer on the human’s under-

standing of the performer. This assessment is conducted by the evaluator. The human is presented with a

set of (unblurred) images that are different from those used in the first phase. For every image, the evaluator

asks the human to predict the performer’s output. The evaluator poses multiple-choice questions and the

user clicks on one or more answers. As shown in Figure 6, we design these questions to capture different

aspects of human’s understanding of a, b, and g inference processes in the performer. Based on responses

from the human, the evaluator estimates pgMinU. By comparing pgMinU with the actual machine’s mind pgM

(generated by the performer), we have defined the following metrics to quantitatively assess human trust

(Hoffman, 2017; Hoffman et al., 2010, 2018; Miller, 2018) in the performer:

(1) Justified Positive and Negative Trust: It is possible for humans to feel positive trust with respect to

certain tasks, while feeling negative trust (i.e., mistrust) on some other tasks. The positive and nega-

tive trust can be a mixture of justified and unjustified trust (Hoffman, 2017; Hoffman et al., 2018). We

compute justified positive trust (JPT) and negative trust (JNT) as follows:

JPT=
1

N

X

i

X

z =a;b;g

DJPTði; zÞ;

DJPTði; zÞ=

���
���pgMinU

i;z;+ XpgM
i;+

���
���

����pgM
i;+

���� ;

JNT=
1

N

X

i

X

z =a;b;g

DJNTði; zÞ;

DJNTði; zÞ= kpgMinU
i;z;� XpgM

i;�k����pgM
i;�
���� ;

Figure 6. An example of second phase of ToM game where we estimate pgMinU and also quantitatively compute justified trust
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whereN is the total number of games played. z is the type of inference process. DJPT(i,z), DJNT(i,z) denote

the justified positive and negative trust gained in the i-th turn of a game on the z inference process, respec-

tively. pgMinU
i;z;+ denotes the nodes in pgMinU

i for which the user thinks the performer is able to accurately

detect in the image using the z inference process. Similarly, pgMinU
i;z;� denotes nodes in pgMinU

i for which

the user thinks the performer would fail to detect in the image using the z inference process. jjpgjj is the
size of pg. Symbol X denote the graph intersection of all nodes and edges from two pg’s.

(2) Reliance: Reliance (Rc) captures the extent to which a human can accurately predict the performer’s

inference results without over- or under-estimation. In other words, Reliance is proportional to the

sum of JPT and JNT.

Rc=
1

N

X

i

X

z =a;b;g

DRcði; zÞ;

DRcði; zÞ=

���
���pgMinU

i;z XpgM
i;z

���
���

kpgM
i k

:

We deployed the ToM game on the Amazon Mechanical Turk (AMT) and trained the Explainer through the

interactions with turkers. All the turkers have a bachelor’s degree or higher. We used three visual recogni-

tion tasks to our experiments, namely, human body parts identification, pose estimation, and action iden-

tification. We used 1000 images randomly selected from Extended Leeds Sports (LSP) dataset (Johnson

and Everingham, 2010). Each image is used in all the three tasks. During training, each trial consists of

one ToM game where a turker solves a given task on a given image. We restrict Turkers from solving a

task on an image more than once. In total, about 2400 unique workers contributed in our experiments.

We performed off-policy updates after every 200 trials, using Adam optimizer (Kingma and Ba, 2015)

with a learning rate of 0.001 and gradients were clipped at [-5.0, 5.0] to avoid explosion. We used ε-greedy

policy, which was annealed from 0.6 to 0.0. We stopped the training once the model converged. Using our

Evaluator module, we conduct human subject experiments to assess the effectiveness of the ToM

Explainer, that is trained on AMT, in increasing human trust through explanations. We recruited 120 human

subjects from our institution’s Psychology subject pool (these experiments were reviewed and approved by

our institution’s IRB). We applied between-subject design and randomly assigned each subject into one of

the three groups. One group used ToM Explainer, and two groups used the following two baselines,

respectively:

� UQA: we measure the gains in human trust only by revealing the answers for the tasks without

providing any explanations to the human.

� USalience: in addition to the answers, we also provide saliency maps generated using attribution tech-

niques to the human as explanations (Zhou et al., 2016; Selvaraju et al., 2017b).

Within each group, each subject will first go through an introduction phase where we introduce the tasks to

the subjects. Next, they will go through a familiarization phase where the subjects become familiar with the

machine’s underlying inference process (Performer), followed by a testing phase where we apply our trust

metrics and assess their trust in the underlying Performer.

Figure 7 compares the justified positive trust (JPT), justified negative trust (JPT), and Reliance (Rc) of the

ToM Explainer with the baselines. As we can see, JPT, JNT, and Rc values of ToM based framework are

significantly higher than UQA and USalience (p < 0.01). In addition, it should be noted that attribution tech-

niques (USalience) did not perform any better than the UQA baseline where no explanations are provided

to the user. This could be attributed to the fact that, though saliency maps help human subjects in local-

izing the region in the image based on which the performer made a decision, they do not necessarily

reflect the underlying inference mechanism. In contrast, ToM Explainer makes the underlying inference

processes (a, b, andg) more explicit and transparent and also provides explanations tailored for individ-

ual user’s perception and understanding. Therefore, ToM explanations lead to the significantly higher

values of JPT, JNT, and Rc, confirming our hypothesis that ToM helps in providing effective explanations

to the user.
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Fault-lines as an alternative to attention based explanations

In this section, we detail our ideas and methods for generating fault-line explanations. Without loss of gen-

erality, we consider a pre-trained CNN (M) for image classification. Given an input image I, the CNN pre-

dicts a log-probability output log PðYjIÞ over the output classes Y. Let c denote a dataset of training im-

ages, where cc3c represents the subset that belongs to category c˛Y, (c = 1, 2, ., C). We denote the

score (logit) for class c (before the softmax) as yc and the predicted class label as cpred. Our high-level

goal is to find a fault-line explanation (J) that alters the CNN prediction from cpred to another specified

class calt using a minimal number of xconcepts. We follow (Kim et al., 2018) in defining the notion of xcon-

cepts where each xconcept is represented using a set of example images. This representation of xconcepts

provides great flexibility and portability as it will not be constrained to input features or a training dataset,

and one can utilize the generated xconcepts across multiple datasets and tasks.

We represent the quadruple <I, cpred, calt> as a human’s query Q that will be answered by showing a

fault-line explanation J. We use S to represent all the xconcepts mined from c. The xconcepts specific

to the class cpred and calt are represented as Spred and Salt, respectively. Our strategy will be to first iden-

tify the xconcepts Spred and Salt and then generate a fault-line explanation by finding a minimal set of

xconcepts from Spred and Salt. Formally, the objective is to find a fault-line that maximizes the posterior

probability:

argmax
J

P
�
J;Spred ;Salt ;S

�� Q
�

(Equation 2)

Mining xconcepts

We first compute PðS j c;MÞ by identifying a set of semantically meaningful superpixels from every

image and then performing clustering such that all the superpixels in a cluster are semantically similar.

Each of these clusters represents an xconcept. We then identify class specific xconcepts i.e.,

PðSpred

�� S;c; I; cpred ;MÞ and PðSalt j S;c; I;calt ;MÞ.

Finding semantically meaningful super-pixels as xconcepts. Figure 8 shows the overall algorithm for

computing PðS j c;MÞ. As deeper layers of the CNN capture richer semantic aspects of the image, we

construct the xconcepts by making use of feature maps from the last convolution layer. Let f denote the

feature extractor component of the CNN and g denote the classifier component of the CNN that takes

the output of f and predicts log-probabilities over output classes Y. We denote the m feature maps pro-

duced at layer L of the CNN as Am;L = faL��aL = f ðIÞg which are of width u and height v. We consider each

feature map as an instance of an xconcept and obtain its localization map (i.e., super-pixels of each feature

map). To produce the localization map, we use Grad-CAM (Selvaraju et al., 2017a) to compute the gradi-

ents of ycwith respect to the feature mapsAm,L and are then spatially pooled using Global Average Pooling

(GAP) to obtain the importance weights (ac
m;L) of a feature map m at layer L for a target class c:

Figure 7. Gain in Justified Positive Trust, Justified Negative Trust and Reliance: our ToM framework (denoted as

X-ToM) vs baselines (QA, Saliency Maps)

Error bars denote standard errors of the means.
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ac
m;L =

1

Z

X

i

X

j

vyc

vAm;L
ij

(Equation 3)

Each element in the feature map Am;L is indexed by i, j, and Am;L
ij refers to the activation at location (i,j) of the

feature map Am,L. Z denotes the proportionality constant representing the total number of elements in

Am,L. Intuitively, Grad-CAM uses the gradient information flowing into the last convolutional layer of the

convolution network to assign importance values to each neuron. In other words, the gradients flowing

back are global-average-pooled over the width and height dimensions to compute the importance weights

ac
m;L.

Using the importance weights, we select top p super-pixels for each class. Given that there are C output

classes in the dataset c, we get p*C super-pixels from each image in the training dataset. We apply K-

means clustering with outlier removal to group these super-pixels into G clusters where each cluster rep-

resents an xconcept (as shown in Figure 8). For clustering, we consider the spatial feature maps f(I) instead

of the super-pixels (i.e., actual image regions) themselves. We use the silhouette score value of a different

range of clusters to determine the value of K.

Identifying class-specific xconcepts. For each output class c, we learn the most common xconcepts

that are highly influential in the prediction of that class over the entire training dataset c. We use the

TCAV technique (Kim et al., 2018) to identify these class-specific xconcepts. Specifically, we construct

a vector representation of each xconcept, called a CAV (denoted as vX), by using a direction normal

to a linear classifier trained to distinguish between the xconcept activations from the random activations.

We then compute directional derivatives (Sc,X) to produce estimates of how important the concept X was

for a CNN’s prediction of a target class c, e.g., how important the xconcept stripedness is for predicting

the zebra class.

Sc;X = Vgcðf ðIÞÞ,vX (Equation 4)

where gc denotes the classifier component of the CNN that takes the output of f and predicts log-proba-

bility of output class c. Note that directional derivatives represent the derivative of logit values with respect

to activations at the layer of interest, which helps in quantifying the model prediction’s sensitivity to a xcon-

cept. We argue that these class-specific xconcepts facilitate in generating meaningful explanations by

pruning out incoherent xconcepts. For example, the xconcepts such as wheel and wings are irrelevant in

explaining why the network’s prediction is a zebra and not a cat.

Figure 8. We consider feature maps from the last convolutional layer as instances of xconcepts and obtain their localization maps (i.e.,

superpixels) by computing the gradients of the output with respect to the feature maps

We select highly influential superpixels and then apply K-means clustering with outlier removal to group these superpixels into clusters where each cluster

represents an xconcept.
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Fault-line generation

In this subsection, we describe our approach to generate a fault-line explanation using the class-specific

xconcepts. Let us consider that npred and nalt xconcepts have been identified for output classes cpred

and calt, respectively, i.e.,
��Spred

��=npred and jSalt j = nalt . We denote CAVs of the npred xconcepts belonging

to the class cpred as vpred = fvipred ; i = 1; 2;.;npredg and CAVs of the nalt xconcepts belonging to the class calt

as valt = fvialt ; i = 1; 2;.;naltg. We formulate finding a fault-line explanation as the following optimization

problem:

minimize
dpred ;dalt

aD
�
dpred ; dalt

�
+ b

����dpred
����
1
+ lkdaltk1;

D
�
dpred ; dalt

�
=max

�
gpredðI0Þ � galtðI0Þ;�t

�
;

I0 =Am;L+vu
preddpred+v

u
altdalt ;

dipred˛f�1; 0g; dialt˛f0; 1gci and a;b; l; tR0:

(Equation 5)

We elaborate on the role of each term in Equation 5 as follows. Our goal here is to derive a fault-line expla-

nation that gives us the minimal set of xconcepts from Spred and Salt that will alter the model prediction

from cpred to calt. Intuitively, we try creating new images (I0) by removing xconcepts in Spred from I and add-

ing xconcepts inSalt to I until the classification result changes from cpred to calt. To do this, we do not directly

perturb the original image but change the activations obtained at the last convolutional layer Am,L instead.

It may be noted that our goal is not to produce realistic images I’. We instead pick themost influential xcon-

cepts by directly modifying the activation maps at a convolution layer (it is a very difficult task to produce

realistic resulting images for datasets that have a diverse set of target classes).

To perturb the activations, we take the Hadamard product (+) between the activations (Am,L), vupreddpred , and

vualtdalt . The difference between the new logit scores for cpred (i.e., g
pred(I0)) and calt (i.e,. g

alt(I0)) is controlled
by the parameter t.

For any given confidence t> 0, the loss functionD(dpred,dalt) is minimizedwhen the new logit scores for cpred i.e.,

gpred(I0) is smaller than logits for calt i.e,. g
alt(I0) by at least t. Similar to (Dhurandhar et al., 2018), the terms

b
����dpred

����
1
, lkdaltk1 in the optimization are introduced as L1 regularizers to select sparse features. We apply a

projected fast iterative shrinkage-thresholding algorithm (FISTA) (Beck and Teboulle, 2009; Dhurandhar

et al., 2018) for solving the above optimization problem. We outline our method in Algorithm 1.

Algorithm 1. Generating Fault-Line Explanations

input image I, classification model M, predicted class label cpred, alternate class label calt, and training dataset c

1. Find semantically meaningful superpixels in c,

ac
m;L =

1

Z

X

i

X

j

vyc

vAm;L
ij

2. Apply K-means clustering on superpixels and obtain xconcepts (S).

3. Identify class specific xconcepts (Spred and Salt) using TCAV,

Sc;X = Vgcðf ðIÞÞ,vX

4. Solve Equation 5 to obtain fault-line J,

J) min
dpred ;dalt

aD
�
dpred ; dalt

�
+ bkdpredk1 + ljjdalt jj1

return J.
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CX-ToM framework

In CX-ToM, we integrate both the ToM (importance of ToM) and fault-lines (fault-lines as an alternative to

attention based explanations) into one single explanation framework. Essentially, CX-ToM performs fault-

line selection using ToM. Given an input image and two output categories, fault-lines show themost impor-

tant features or attributes that influence a model’s decision in classifying the image as one among the two

output categories. In most cases, there exist several thousands of output categories and it is impossible for

the human user to verify the model’s reasoning and behavior by constructing a fault-line between all the

possible pairs of output categories. Therefore, we learn an optimal policy to automatically select the

most important pair for constructing fault-line explanations that helps human users to quickly understand

the model’s strengths or weaknesses. This eliminates the need for the human user to see a large number of

fault-lines before understanding the model’s behavior.

We cast this as a reinforcement learning (RL) problem where CX-ToM interacts with several human users

in a dialogue to learn user preferences/utilities that help them to understand the model in fewer dia-

logues (i.e., less number of fault-lines). We express reward in terms of a user feedback and the number

of dialogue turns (less the number of dialogues, higher is the reward). Figures 9 and 10 show the user

interaction interface. In the interaction, the user is first asked to select an image from a list of randomly

drawn images from the training data (we only consider image classes for which we extracted xconcepts).

After the input image is selected, the user is then asked to select an alternate class to which the model

needs to modify its decision through fault-lines. We show the list of alternate classes through a drop-

down list. The entries in this dropdown are dynamically loaded based on the model’s current state of

the RL policy. CX-ToM shows the optimal fault-line to the user and tracks the sequence of user’s prefer-

ences through the RL policy. After showing the fault-line, the CX-ToM assesses the user’s understanding

of the model’s important features in classifying the input image. If the user correctly answers the ques-

tion, the reward is considered positive, otherwise negative. The RL policy is updated after every 15 dia-

logue interactions.

The RL policy is learned by a standard recurrent neural network, called Long-Short Term Memory (LSTM)

(Hochreiter and Schmidhuber, 1997). In this paper we use a 2-layer LSTM parameterized by q. Thus, the

goal of the policy learning is to estimate the LSTM parameters q. We use actor-critic with experience replay

for policy optimization (Wang et al., 2017). The training objective is to find parameterized policy pðaijsi ; qÞ
that maximizes the expected reward J(q) over all possible fault-line sequences given a starting state. The

state of the RL policy (s) captures whether an image class is already selected in the dialogue to generate

a fault-line for the input image. Our goal is to learn the best user preferred alternate image classes for

each prediction class. Similarly, the action space (a) constitutes the set of all image classes. The gradient

of the objective function has the following form:

VqJðqÞ = E½Vqlogpqðaijsi ; qÞAðsi; aiÞ� (Equation 6)

Figure 9. User interaction with CX-ToM in dialogue to learn user preferences/utilities

User is first asked to select an input image.
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where Aðsi; aiÞ=Qðsi; aiÞ � VðsiÞ is the advantage function (Sutton et al., 2000). Q(si,ai) is the standard Q-

function, and V(si) is the value (baseline) function aimed at reducing the variance of the estimated gradient.

Intuitively, the above policy optimization can be seen as the task of learning to select the sequence of re-

sponses (actions) at each turn whichmaximizes the long-term objective defined by the reward function. The

learning agent uses the value of the value function to update the optimal policy function. The policy func-

tion represents the probabilistic distribution of the action space. In other words, the learning agent deter-

mines the conditional probability that the agent chooses the action a when in state s. We use the same

specifications ofQ(si,ai) and V(si) as in (Sutton et al., 2000). As in (Sutton et al., 2000), we sample the dialogue

experiences randomly from the replay pool for training.

EXPERIMENTS

We conducted extensive human subject experiments to quantitatively and qualitatively assess the effec-

tiveness of the proposed CX-ToM explanations in helping expert human users and nonexpert human users

understand the internal workings of the underlying model. We chose an image classification task for our

experiments (although the proposed approach is generic and can be applied to any task). We use the

following metrics (Hoffman, 2017; Hoffman et al., 2018) to compare our method with the baselines (we

empirically observed that themetrics Justified Trust and Explanation Satisfaction are effective in evaluating

the core objective of XAI, i.e., to evaluate whether the user’s understanding of the model improves with

explanations. These metrics are originally defined at a high-level in the work by (Hoffman et al., 2018)

and we adapt them for the image classification task.).

1. Justified Trust (Quantitative Metric). Justified Trust is computed by evaluating the human’s under-

standing of the model’s (M) decision-making process. In other words, given an image, it evaluates

whether the users could reliably predict the model’s output decision. More concretely, let us

consider that M predicts images in a set C correctly and makes incorrect decisions on the images

in the set W. Justified trust is given as sum of the percentage of images in C that the human subject

thinksM would correctly predict and the percentage of images inW that the human subject thinksM

would fail to predict correctly.

Figure 10. After the input image is selected by the user, user is then asked to select an alternate class to modify

the model’s decision

User is then shown a question to assess his/her understanding of the model’s important features in classifying the input

image. If the user correctly answers the question, the reward is considered positive, otherwise negative.
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2. Explanation Satisfaction (ES) (Qualitative Metric). We measure human subjects’ feeling of satisfac-

tion at having achieved an understanding of the machine in terms of usefulness, sufficiency, appro-

priate detail, confidence, and accuracy (Hoffman, 2017; Hoffman et al., 2018). We ask the subjects to

rate each of these metrics on a Likert scale of 0–9.

We used the ILSVRC2012 dataset (Imagenet) (Russakovsky et al., 2015) and considered VGG-16 (Simonyan

and Zisserman, 2014) as the underlying network model. We randomly chose 80 classes in the dataset for our

experiments and identified 57 xconcepts using our algorithm (we manually removed noisy xconcepts and

fault-lines. We couldn’t find an automatic approach to filter them. We leave this for future exploration).

We recruited 150 human subjects from our institution’s Psychology subject pool (these experiments were

reviewed and approved by our institution’s IRB). These subjects have no background in computer vision,

deep learning or NLP and we considered them as nonexpert users. We recruited an additional 60 human

subjects with a background in computer vision. These subjects are experienced in training an image clas-

sification model using CNN, and therefore we considered them as expert users.

We applied between-subject design and randomly assigned subjects into eleven groups. We perform this

separately with an expert user pool and nonexpert user pool. Each group in the nonexpert pool is assigned

12 subjects and each group in the expert pool is assigned 5 subjects. Within each group, each subject will

first go through a familiarization phase where the subjects become familiar with the underlying model

through explanations (with 25 training images), followed by a testing phase where we apply our evaluation

metrics and assess their understanding (on 8 test images) in the underlying model. We trained our ToM

policy through the interactions with 15 subjects. In the testing phase, the human will be given only I and

will not see cpred, calt, and explanations, and we evaluate whether the human can correctly identify cpred
based on his/her understanding of the model gained in the familiarization phase. All our data and code

will be made publicly available.

For the first group, called NO-X (short for no-explanation group), we show the model’s classification output on

all the 25 images in the familiarization phase but we do not provide any explanation for the model’s prediction.

For the subjects in groups two to nine, in addition to the model’s classification output, we also provide expla-

nations in the familiarization phase for themodel’s prediction generated using the following state-of-the-art XAI

models, respectively: CAM (Zhou et al., 2016), Grad-CAM (Selvaraju et al., 2017a), LIME (Ribeiro et al., 2016), LRP

(Bach et al., 2015), SmoothGrad (Smilkov et al., 2017), TCAV (Kim et al., 2018), CEM (Dhurandhar et al., 2018), and

CVE (Goyal et al., 2019). For the subjects in the 10th group, we show the fault-line explanations without incor-

porating ToM policy. For the subjects in the 11th group, we show the fault-line explanations selected based on

our trained ToMpolicy. It may be noted that, in the testing phase, the humanwill be shown only the image I and

will not be provided cpred, calt, and explanations.

RESULTS

Table 1 compares the Justified Trust (JT) and Explanation Satisfaction (ES) of all the groups in expert subject

pool and nonexpert subject pool. As we can see, JT and ES values of attention map based explanations

such as Grad-CAM, CAM, and SmoothGrad do not differ significantly from the NO-X baseline, i.e., attention

based explanations are not effective at increasing human trust and reliance (we did not evaluate ES for NO-X

group as these subjects are not shown any explanations). This finding is consistent with the recent study by

(Jain and Wallace, 2019) which shows that attention is not an explanation. On the other hand, concept based

explanation framework TCAV andcounterfactual explanation frameworks CEM andCVE performed significantly

better than theNO-X baseline (in both expert and nonexpert pool). Our CX-ToMbased explanations, which are

both conceptual and counterfactual, significantly outperformed all the baselines. Note that, fault-lines with ToM

policy performs better than randomly selecting a fault-line. Interestingly, expert users preferred LRP (JT = 51.1%)

to LIME (JT = 42.1%) and nonexpert users preferred LIME (JT = 46.1%) to LRP (JT = 31.1%).

Furthermore, human subjects in our CX-ToM group, compared to all the other baselines, found that expla-

nations are highly useful, sufficient, understandable, detailed, and are more confident in answering the

questions in the testing phase. These findings verify our hypothesis that fault-line explanations with ToM

policy are lucid and easy for both expert and nonexpert users to understand (interestingly, we did not

find significant differences across all the groups in terms of response time in answering the questions.
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We did an additional study with four subjects in each of the groups to verify this and again found similar

results. We leave this observation for future exploration).

Comparison with SHAP baseline

We conduct an additional study to compare how the proposed method compares with SHAP approach (Lund-

berg and Lee, 2017). SHAP, using shapley values, explains output predictions of a model for given input by

computing the contribution of each feature to the prediction. Specifically, we use GradientExplainer (https://

shap.readthedocs.io/en/latest/image_examples.html) implementation to compute SHAP explanations for the

image classifier. We experiment with additional 12 human subjects (nonexperts) to measure Justified Trust

and Explanation Satisfaction. As shown in Table 1, SHAP underperforms compared to CX-ToM and shows

similar performance to LIME. This is expected as both LIME and SHAP are attribution based techniques.

Gain in justified trust over time

We hypothesized that subjects’ justified trust in the CNNmodel might improve over time. This is because it can

be harder for humans to fully understand the machine’s underlying inference process in one single session.

Therefore, we conducted an additional experiment with eight human subjects (nonexperts) for each group

where the subjects’ reliance was measured after every session. Note that each session consists of a familiariza-

tion phase followed by a testing phase. The results are shown in Figure 11. As we can see, the subjects’ JT in

Table 1. Quantitative (Justified Trust) and Qualitative (Explanation Satisfaction) comparison of CX-ToM with random guessing baseline, no

explanation (NO-X) baseline, and other state-of-the-art XAI frameworks such as CAM, Grad-CAM, LIME, LRP, SmoothGrad, TCAV, CEM, and CVE

XAI framework

Justified

trust (Gstd)

Explanation satisfaction (Gstd)

Confidence Usefulness

Appropriate

detail Understandability Sufficiency

Non-expert subject pool

Random guessing 6.6% NA NA NA NA NA

NO-X 21.4 G 2.7% NA NA NA NA NA

CAM (Zhou et al., 2016) 24.0 G 1.9% 4.2 G 1.8 3.6 G 0.8 2.2 G 1.9 3.2 G 0.9 2.6 G 1.3

Grad-CAM (Selvaraju et al., 2017a) 29.2 G 3.1% 4.1 G 1.1 3.2 G 1.9 3.0 G 1.6 4.2 G 1.1 3.2 G 1.0

LIME (Ribeiro et al., 2016) 46.1 G 1.2% 5.1 G 1.8 4.2 G 1.6 3.9 G 1.1 4.1 G 2.0 4.3 G 1.6

SHAP (Lundberg and Lee, 2017) 40.9 G 2.0% 4.8 G 3.0 3.9 G 1.1 3.6 G 1.9 3.8 G 1.4 4.0 G 2.3

LRP (Bach et al., 2015) 31.1 G 2.5% 1.1 G 2.2 2.8 G 1.0 1.6 G 1.7 2.8 G 1.0 2.1 G 1.8

SmoothGrad (Smilkov et al., 2017) 37.6 G 2.9% 1.4 G 1.0 2.2 G 1.8 2.8 G 1.0 3.1 G 0.8 2.9 G 0.8

TCAV (Kim et al., 2018) 49.7 G 3.3% 3.6 G 2.1 3.2 G 1.8 3.3 G 1.6 3.6 G 2.1 3.9 G 1.1

CEM (Dhurandhar et al., 2018) 51.0 G 2.1% 4.1 G 1.4 3.4 G 1.4 3.1 G 2.1 2.9 G 0.9 3.3 G 1.6

CVE (Goyal et al., 2019) 50.9 G 3.0% 3.8 G 1.9 3.1 G 0.9 3.6 G 2.1 4.1 G 1.2 4.2 G 1.2

Fault-lines without ToM 69.1 G 2.1% 6.2 G 1.2 6.6 G 0.7 7.2 G 0.9 7.1 G 0.6 6.2 G 0.8

CX-ToM (fault-lines with ToM) 72.1 G 1.1% 6.9 G 0.8 6.5 G 0.9 7.8 G 1.2 7.7 G 0.2 6.9 G 0.6

Expert subject pool

NO-X 28.1 G 4.1% NA NA NA NA NA

CAM (Zhou et al., 2016) 37.1 G 3.9% 3.2 G 1.8 3.3 G 1.4 3.1 G 2.1 3.1 G 1.8 2.9 G 1.9

Grad-CAM (Selvaraju et al., 2017a) 39.1 G 2.1% 3.7 G 1.2 3.1 G 2.2 2.7 G 1.9 3.7 G 1.1 3.4 G 1.6

LIME (Ribeiro et al., 2016) 42.1 G 3.1% 3.1 G 2.2 3.0 G 1.2 2.8 G 1.9 3.1 G 2.2 2.8 G 1.7

LRP (Bach et al., 2015) 51.1 G 3.1% 3.2 G 4.1 3.5 G 1.6 4.2 G 1.5 4.3 G 1.0 3.9 G 0.9

SmoothGrad (Smilkov et al., 2017) 40.7 G 2.1% 3.1 G 1.0 2.9 G 1.2 3.8 G 1.5 3.3 G 1.1 3.1 G 1.0

TCAV (Kim et al., 2018) 55.1 G 3.3% 3.9 G 2.8 3.6 G 1.6 4.1 G 1.3 4.9 G 1.2 3.9 G 0.8

CEM (Dhurandhar et al., 2018) 61.1 G 2.2% 4.8 G 1.6 3.7 G 1.6 4.0 G 1.2 3.7 G 1.0 4.0 G 1.1

CVE (Goyal et al., 2019) 64.5 G 3.7% 4.1 G 2.3 3.9 G 1.5 4.6 G 1.5 4.5 G 1.4 3.9 G 1.2

Fault-lines without ToM 70.5 G 1.3% 5.7 G 1.1 4.9 G 0.8 5.8 G 1.2 6.9 G 1.1 6.4 G 1.0

CX-ToM (fault-lines with ToM) 74.5 G 0.7% 6.1 G 0.8 5.3 G 0.4 5.9 G 1.2 7.1 G 0.8 6.9 G 0.7

ll
OPEN ACCESS

iScience 25, 103581, January 21, 2022 19

iScience
Article

https://shap.readthedocs.io/en/latest/image_examples.html
https://shap.readthedocs.io/en/latest/image_examples.html


CX-ToMgroup increased at a higher-rate compared to other baselines. However, wedid not find any significant

increase in JT after the fifth session across all the groups. This is consistent with our expectation that it is difficult

for humans to focus on a task for longer periods (in the future, we also intend to experiment with subjects by

arranging sessions over days or weeks instead of having continuous back to back sessions). It should be noted

that the increase in JT with attention map based explanations such as Grad-CAM and CAM is not significant.

This finding again demonstrates that attention maps are not effective to improve human trust.

Subjective evaluation of justified trust

In addition to the quantitative evaluation of the justified trust, we also collect subjective trust values (on a

Likert scale of 0–9) from the subjects. This helps in understanding to what extent the users think they trust

the model. The results are shown in Figure 12. As we can see, these results are consistent with our quan-

titative trust measures except that qualitative trust in Grad-CAM, CAM, and, SmoothGrad is lower

compared to the NO-X group.

Case study

Figure 13 shows examples of the xconcepts (cropped and rescaled for better view) identified using our

approach. As we can see, our method successfully extracts semantically coherent xconcepts such as

pointed curves of deers, stripedness of zebras, and woolliness of deerhounds from the training dataset.

In addition the fault-lines generated by our method correctly identify the most critical xconcepts that

can alter the classification result from cpred to calt. For example, consider the image of deerhound shown

in Figure 13. Our fault-line explanation suggests removing woolliness and adding black and white pattern

to alter the model’s classification on the image from deerhound to greyhound.

Additional experiments

In this section, we further assess the effectiveness of the proposed CX-ToM framework using more diverse

and recent models as the underlying convolution neural network.

ResNet50

ResNet (He et al., 2016) is a relatively deeper convolution neural network than VGG-16. It incorporates skip

connections and batch normalization which greatly improves model’s generalization capability and perfor-

mance. More specifically, each ResNet block is 3 layer deep consisting of 1 3 1, 3 3 3, 1 3 1 convolutions,

respectively. The 13 1 convolution layers are useful in reducing and then restoring the dimensions. Finally,

the average pooling is performed and ended itwith a fully connected layer.

We apply our CX-ToM framework to ResNet. As discussed in fault-lines as an alternative to attention based

explanations and Algorithm 1, we mine xconcepts from ResNet by producing localization maps. The

Figure 11. Gain in Justified Trust over time
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average pooling layer is used to obtain importance weights of a feature map at a layer L for a given target

class. We obtain class-specific xconcepts using concept activation vectors. Finally fault-lines are generated

by solving the optimization problem in Equation (5).

We use the ILSVRC2012 dataset for our experiments. We compare our approach against the following

baselines: Grad-CAM (Selvaraju et al., 2017a), LIME (Ribeiro et al., 2016), TCAV (Kim et al., 2018), and

CVE (Goyal et al., 2019). Similar to our experiments with VGG-16, we use the metrics Justified Trust (JT)

and Explanation Satisfaction (ES) to compare our approach with baselines. We recruited human subjects

from our institution’s Psychology subject pool. We apply between-subject design and randomly assigned

subjects into six groups. Each group in the nonexpert pool is assigned 4 subjects and each group in the

expert pool is assigned 2 subjects. We have identified 15 xconcepts and closely followed the experiment

setup and design used in our experiments on the VGG-16 model.

Table 2 summarizes the JT and ES results of all the six groups. Similar to the results with VGG-16, trust im-

provements with Grad-CAM on both expert and nonexpert pools is the least compared to other baselines.

Among the baselines, TCAV is the best performing model, implying that concept level explanations are

relatively more scalable to deeper networks than attention based explanations. Our CX-ToM based frame-

work shows significant improvements over the TCAV baseline. The subjective evaluation of JT and ES

shows in Figure 14 further validate our hypotheses.

PAC networks

Recently a pixel-adaptive convolution network called PAC (Su et al., 2019) is proposed to address the con-

tent-agnostic limitations of traditional CNNs. Specifically, in traditional CNNs, the same convolutional filter

banks are applied to all the input images irrespective of their content. However, image content varies sub-

stantially across the input images, and therefore, applying content-agnostic filter banks may not be optimal

for all image types as well as different pixels in an image. In PAC networks, content-adaptive convolution

operations are performed where a standard spatially invariant convolution filter W is multiplied with a

adapting kernel K. These networks are shown to be effective in a wide range of computer vision problems

such as depth and optical flow upsampling tasks (Su et al., 2019).

We apply our CX-ToM framework to PACNet. Using Algorithm 1, we extract xconcepts from PACNet and

obtain class-specific xconcepts using concept activation vectors. Finally fault-lines are generated by

Figure 12. Average Qualitative Justified Trust (on a Likert scale of 0–9)

Error bars denote standard errors of the means.
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solving the optimization problem in Equation 5. We use ILSVRC2012 dataset and consider the following

baselines: Grad-CAM (Selvaraju et al., 2017a), LIME (Ribeiro et al., 2016), TCAV (Kim et al., 2018), and

CVE (Goyal et al., 2019). We use the metrics Justified Trust (JT) and Explanation Satisfaction (ES) to

compare our approach with baselines. We recruited human subjects from our institution’s Psychology sub-

ject pool. We apply between-subject design and randomly assigned subjects into six groups. Each group in

the nonexpert pool is assigned 4 subjects and each group in the expert pool is assigned 2 subjects. We

have identified 18 xconcepts and closely followed the experiment setup and design used in our experi-

ments on VGG-16 and ResNet models.

We present the JT and ES of all the six groups in Table 3. As we can see, trust improvements with Grad-CAM

on PACNet are relatively lower compared to VGG-16 and ResNet. This indicates that attention based ex-

planations need more fine-tuning on the non-traditional CNN architectures. TCAV and CVE clearly outper-

form other baselines. Our CX-ToM based framework shows relatively significant improvements over all the

baselines indicating that our approach generalizes well to the recent CNN models. The subjective evalu-

ation results of JT and ES shown in Figure 15 are consistent with our quantitative results.

Competency testing

We perform a competency testing experiment where we train two different CNNs, namely, AlexNet and

ResNet-50. It may be noted that ResNet-50 is known to be more reliable and accurate than AlexNet. We

show the predictions and the explanations from each of the two networks to the subjects (4 subjects in

each of the above groups) and ask them to compare the reliability (competency) of the models relative

to each other. We record the subjects’ confidence scores in their answers on a Likert scale of 0–9. We chose

only those images for which both models made the same prediction as ground truth. The assumption here

is that an effective and useful explanation helps the subject to distinguish between a reliable model and an

unreliable model easily. We find that human subjects, who are shown CX-ToM explanations, are able to

identify the more accurate and reliable classifier (i.e., ResNet-50) with high confidence (average confidence

score = 7.7). Human subjects who are shown explanations based on Grad-CAM, CEM, and TCAV also iden-

tified ResNet-50 as more reliable than AlexNet. However, they are not confident in their answers (avg. con-

fidence scores are 2.6 (Grad-CAM), 4.9 (TCAV), and 4.2 (CEM)). Subjects in the remaining groups failed to

identify the more reliable classifier.

Computational cost

We run all components of our framework on one RTX 2080ti GPU. The extraction of super-pixels using

Grad-CAM, discussed in fault-lines as an alternative to attention based explanations, takes about 17 h

Figure 13. Examples of xconcepts (Left) and fault-line explanations (Right) identified by our method
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(15 min per 100 images in the training dataset). The clustering of these super-pixels is relatively fast and

completes within 3 h to extract the 57 xconcepts from 80 image classes. Using TCAV technique to learn

CAVs takes about 15 h on RTX 2080ti and then identifying the directional derivatives takes about 2 h for

the extracted 57 xconcepts (discussed in fault-lines as an alternative to attention based explanations).

Finally, the optimization step to select the appropriate fault-line takes about 40 s per image.

Conclusions

In this paper, we introduced a new explainable AI (XAI) framework, CX-ToM, based on Theory of Mind and

fault-lines. We argue that, because of their iterative, conceptual, and counterfactual nature, CX-ToM based

explanations are lucid, clear, and easy for humans to understand. We proposed a new method to automat-

ically mine explainable concepts from a given training dataset and to derive fault-line explanations. More-

over, we show that estimating the human’s understanding of the CNNmodel using Theory-of-Mind helps in

generating more appropriate fault-lines. Using qualitative and quantitative evaluation metrics, we demon-

strated that CX-ToM significantly outperforms baselines in improving human understanding of the under-

lying classification model.
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Table 2. Justified Trust and Explanation Satisfaction Results of CX-ToM and baselines on ResNet-50

XAI framework

Justified

trust (Gstd)

Explanation satisfaction (Gstd)

Confidence Usefulness

Appropriate

detail Understandability Sufficiency

Non-expert pool

Grad-CAM (Selvaraju et al., 2017a) 21.6 G 2.8% 3.2 G 1.5 3.2 G 1.6 2.7 G 2.8 3.0 G 2.0 2.9 G 0.9

LIME (Ribeiro et al., 2016) 26.9 G 3.5% 3.3 G 2.5 3.1 G 2.1 3.7 G 1.9 3.1 G 1.8 4.0 G 1.3

TCAV (Kim et al., 2018) 42.2 G 2.6% 4.1 G 2.7 3.2 G 2.4 3.8 G 1.9 4.0 G 1.5 3.5 G 1.8

CVE (Goyal et al., 2019) 38.1 G 3.5% 2.7 G 2.5 2.6 G 1.5 3.0 G 2.0 3.2 G 1.1 3.2 G 1.9

Fault-lines without ToM 54.2 G 2.4% 6.1 G 1.7 5.9 G 1.2 6.6 G 1.5 6.4 G 0.9 6.2 G 1.1

CX-ToM (fault-lines with ToM) 58.3 G 1.8% 6.3 G 1.8 6.2 G 1.6 6.9 G 1.1 7.2 G 0.8 7.2 G 1.6

Expert pool

Grad-CAM (Selvaraju et al., 2017a) 20.1 G 1.8% 2.5 G 2.2 2.5 G 1.8 1.7 G 1.9 3.0 G 1.9 3.0 G 1.2

LIME (Ribeiro et al., 2016) 25.4 G 2.7% 3.0 G 1.6 3.2 G 2.9 3.8 G 2.1 2.6 G 1.0 2.5 G 2.9

TCAV (Kim et al., 2018) 46.0 G 2.4% 3.5 G 1.4 3.8 G 1.7 3.6 G 2.2 3.8 G 2.1 4.0 G 1.9

CVE (Goyal et al., 2019) 43.1 G 3.1% 3.2 G 2.3 3.2 G 0.9 3.0 G 1.8 3.0 G 1.3 3.4 G 1.8

Fault-lines without ToM 54.9 G 1.6% 6.2 G 2.1 6.0 G 1.2 5.3 G 1.6 6.0 G 1.5 5.9 G 1.5

CX-ToM (fault-lines with ToM) 56.0 G 1.9% 5.8 G 1.6 6.1 G 1.0 6.1 G 1.0 7.0 G 1.5 7.0 G 1.2
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Table 3. Justified Trust and Explanation Satisfaction Results of CX-ToM and baselines on PACNet

XAI framework

Justified

trust (Gstd)

Explanation satisfaction (Gstd)

Confidence Usefulness

Appropriate

detail Understandability Sufficiency

Non-expert pool

Grad-CAM (Selvaraju et al., 2017a) 15.2 G 1.5% 2.4 G 1.8 2.6 G 1.2 2.5 G 1.5 2.9 G 1.7 3.0 G 1.2

LIME (Ribeiro et al., 2016) 22.2 G 2.4% 3.1 G 2.2 2.7 G 2.0 3.5 G 1.9 2.7 G 1.2 3.8 G 1.6

TCAV (Kim et al., 2018) 40.1 G 2.2% 3.9 G 1.7 3.6 G 1.1 4.1 G 2.5 4.0 G 1.2 3.6 G 1.8

CVE (Goyal et al., 2019) 41.5 G 3.2% 3.1 G 1.5 3.3 G 1.0 3.8 G 2.1 3.8 G 2.0 3.9 G 1.2

Fault-lines without ToM 53.8 G 1.9% 6.3 G 2.0 5.6 G 1.1 6.1 G 1.9 5.9 G 0.6 6.6 G 1.6

CX-ToM (fault-lines with ToM) 54.8 G 2.0% 6.2 G 2.0 6.5 G 1.8 6.2 G 1.0 7.0 G 1.9 6.8 G 1.9

Expert pool

Grad-CAM (Selvaraju et al., 2017a) 16.8 G 1.9% 2.3 G 1.2 2.9 G 1.4 2.0 G 1.9 3.1 G 1.5 3.2 G 2.2

LIME (Ribeiro et al., 2016) 23.7 G 2.0% 2.9 G 1.3 3.2 G 2.5 3.0 G 2.1 2.5 G 1.6 2.9 G 2.0

TCAV (Kim et al., 2018) 38.6 G 3.1% 3.9 G 1.3 3.2 G 1.5 3.9 G 2.0 4.0 G 1.0 3.7 G 1.1

CVE (Goyal et al., 2019) 39.1 G 2.0% 3.5 G 2.2 3.7 G 1.6 3.2 G 1.2 3.9 G 1.1 3.0 G 1.5

Fault-lines without ToM 57.0 G 1.8% 6.0 G 1.5 6.2 G 1.7 5.8 G 1.9 5.5 G 1.1 6.1 G 1.9

CX-ToM (fault-lines with ToM) 59.8 G 1.6% 6.3 G 1.1 6.5 G 1.7 7.0 G 1.5 6.7 G 1.7 6.5 G 1.0

Figure 14. Average Subjective Justified Trust (on a Likert scale of 0–9) on ResNet-50
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact (Full Name: Arjun Reddy Akula; Email Address: aakula@ucla.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The code is available publicly at this github page: https://github.com/arjunakula/faultline_explainer.

METHOD DETAILS

In our human study experiments, we recruited 120 human subjects from our institution’s Psychology subject

pool. These experiments were reviewed and approved by our institution’s IRB. We applied between-sub-

ject design and randomly assigned each subject into one of the experiment and control groups. We did not

leverage any dataset from other publications. We leveraged the TCAV Kim et al. (2018) code to generate

explainable concepts.

ADDITIONAL RESOURCES

Our study has not generated or contributed to a new website.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

TCAV algorithm https://github.com/rakhimovv/tcav https://github.com/rakhimovv/tcav

FISTA Optimization algorithm https://arxiv.org/pdf/1802.07623.pdf https://arxiv.org/pdf/1802.07623.pdf
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