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Abstract

Background: In the honey bee, the age-related and socially regulated transition of workers from in-hive task performance
(e.g., caring for young) to foraging (provisioning the hive) is associated with changes in many behaviors including the 24-
hour pattern of rhythmic activity. We have previously shown that the hive-bee to forager transition is associated with
extensive changes in brain gene expression. In this study, we test the possible function of a subset of these genes in daily
rhythmic activity pattern using neural-targeted RNA interference (RNAi) of an orthologous gene set in Drosophila
melanogaster.

Princip l Findings: Of 10 genes tested, knockdown of six affected some aspect of locomotor activity under a 12 h:12 h
light:dark regime (LD). Inos affected anticipatory activity preceding lights-off, suggesting a possible clock-dependent
function. BM-40-SPARC, U2af50 and fax affected peak activity at dawn without affecting anticipation or overall inactivity
(proportion of 15-min intervals without activity), suggesting that these effects may depend on the day-night light cycle.
CAH1 affected overall inactivity. The remaining gene, abl, affected peak activity levels but was not clearly time-of-day-
specific. No gene tested affected length of period or strength of rhythmicity in constant dark (DD), suggesting that these
genes do not act in the core clock.

Significance: Taking advantage of Drosophila molecular genetic tools, our study provides an important step in
understanding the large set of gene expression changes that occur in the honey bee transition from hive bee to forager. We
show that orthologs of many of these genes influence locomotor activity in Drosophila, possibly through both clock-
dependent and -independent pathways. Our results support the importance of both circadian clock and direct
environmental stimuli (apart from entrainment) in shaping the bee’s 24-hour pattern of activity. Our study also outlines
a new approach to dissecting complex behavior in a social animal.
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Introduction

Understanding the mechanisms that underlie behavioral

maturation in social animals is an important but difficult task. In

the honey bee worker, behavioral maturation involves a transition

from in-hive task performance to foraging outside the hive [1].

This transition is associated with many behavioral changes,

including phototaxis, foraging strategy and daily rhythmic

locomotor behavior. Mechanisms that underlie the onset of

foraging have been studied intensively. Two circulating factors,

juvenile hormone (JH) and the protein vitellogenin [2,3] act in the

onset of foraging and are thought to act as mutual repressors [2,4].

Foragers have higher titers of JH and lower vitellogenin than hive

bees; treatment with juvenile hormone analog or knockdown of

vitellogenin by RNA interference accelerate the onset of foraging

[5–7]. These physiological changes presumably act via the brain to

cause changes in an extensive repertoire of behaviors, including

transition from an arrhythmic pattern of activity in hive bees to

a pattern of activity that is strongly linked to the day-night cycle in

foragers [8]. Microarray studies [9–11] have identified large sets of

gene expression changes in the brain associated with behavioral

maturation in the honey bee. However, it is not known which of

these genes affect specific behaviors that are part of the foraging

repertoire. Here we examine a subset of these genes for possible

function in an animal’s 24-hour pattern of locomotor activity.

Rhythmic locomotor activity in a natural day-night setting is

likely to result from a complex interplay between clock

entrainment, the core endogenous clock (the ‘‘pacemaker’’), clock

output pathways, and so-called ‘‘masking’’ effects (direct environ-

mental effects apart from entrainment of the clock [12]). Studies in

Drosophila have been instrumental in identifying the core clock

genes and genes involved with clock entrainment and output

pathways [13]. However, there have been remarkably few genetic
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studies in Drosophila on the role of genes in masking (two examples

are [14,15]).

Many genes involved in these processes are conserved between

the honey bee and Drosophila, including many of the endogenous

clock genes [16]. Studies in the honey bee have focused primarily

on changes in the core clock machinery during the switch from

arrhythmic to circadian activity pattern [17–19]. These studies

have shown a link between expression of clock genes and

development of circadian rhythmicity in foragers. Further, they

have demonstrated that social environment interacts with the clock

to affect circadian phenotype [20,21]. Understanding how daily

locomotor patterns develop and change in social species like the

honey bee will likely require identification and functional

understanding of genes affecting locomotor activity at many

different levels, including both clock-dependent and -independent

pathways.

A productive approach in studies of honey bee behavioral

maturation has been to use gene-behavior information derived in

Drosophila melanogaster to identify potential genes of importance in

honey bee behavior. This approach has been used to identify two

honey bee genes (orthologs of foraging and malvolio) that change

expression in the onset of foraging and influence its timing [22,23].

In the present study, we reverse this strategy by analyzing a set of

genes associated with the onset of foraging in the honey bee for

possible function using Drosophila as a test system. We have

previously identified genes from microarray studies of honey bee

brains that are good candidates for influencing the onset of

foraging or specific foraging related behaviors (see gene selection

criteria in Methods). To explore possible function of these genes in

daily activity pattern, we tested orthologs of 10 of these genes in

Drosophila using neural targeted RNA interference (RNAi). These

included genes that function in neural development (abl, fax, BM-

40-SPARC), neural modulator metabolism (ple), other metabolic

processes (CAH1) or mRNA processing (U2af50), and genes with

protein similarity or containing protein domains that suggest

possible function in second messenger or other signal transduction

processes (Inos, Sh3b, CG32703, CG6910) [24]. Of the genes

tested, only ple was previously shown to affect locomotor behavior

[25]. Our results indicated that a surprisingly large fraction of

these genes affect daily rhythmic locomotor activity, likely affecting

both endogenous clock-dependent and -independent pathways.

These results suggest that a large proportion of gene expression

changes in the honey bee brain during behavioral maturation may

be associated with modulation of a bee’s 24-hour pattern of

locomotor behavior.

Methods

Selection of Genes to Test
We used a set of criteria previously described [10] to obtain a list

of candidate genes most likely to play a functional role in the onset

of foraging in honey bees, based on analyses of brains across

several microarray studies. This list includes six genes up-regulated

in the transition from hive bee to forager, GB12876, GB11572,

GB15888, GB11031, GB14956 and GB15303 corresponding to

fly orthologs U2af50 (U2 small nuclear riboprotein auxiliary factor 50),

Inos, CAH1 (Carbonic anhydrase 1), CG32703, CG6910 and ple (pale),

respectively, and four genes down-regulated in this transition,

GB11301, GB17380, GB19996 and GB11432 corresponding to

fly orthologs abl (Abl tyrosine kinase), fax (failed axon connections), Sh3b
and BM-40-SPARC. We used three criteria in selecting these genes.

First, they were among the most predictive genes for assigning

individual bees to behavioral group (hive bee versus forager) [9]

and showed consistent expression in an independent microarray

study [10]. Second, they were not regulated by flight, light or other

foraging-related experience [10]. Third, they were regulated by

a juvenile hormone analog in a direction consistent with

expression changes (up-regulated for genes higher in forager

brains or down-regulated for genes higher in hive bee brains; all

genes listed except GB15303) [10]. Orthologs were determined by

best match in reciprocal BLASTP searches between Drosophila

melanogaster and Apis mellifera predicted protein sets.

Drosophila Strains and RNA Interference
UAS RNAi responder strains for the genes tested (abl, BM-40-

SPARC, CAH1, fax, Inos, U2af 50, Sh3b, ple, CG32703 and CG

6910) were ordered from the Vienna Drosophila Research Center

(VDRC; Transformant IDs indicated in Table 1; all constructions

on w background) [26]. The nervous system-specific driver strain

w; elav-Gal4 (stock #8760) was backcrossed for five generations

with w; TM3, Sb/Dr (kindly provided by Dr. S. A. Kreher). To

generate the RNAi genotype for testing, backcrossed w; elav-Gal4

flies (female) were crossed with the respective responder strain to

generate heterozygous RNAi flies. For all genes except abl and

CAH1, male flies were tested. For abl and CAH1, the UAS RNAi

responder construct was on the X chromosome and only females

could be tested (with the transgene passed from the paternal X).

For activity recording, RNAi group and control lines (driver and

responder) were tested in parallel for each gene, using flies of the

same age and gender. Driver flies were a mixture of homozygous

w; elav-Gal4 and heterozygous w; elav-Gal4/TM3, Sb from the

backcross. Responder flies were the original VDRC strains.

Efficiency of RNAi was measured by real-time quantitative

reverse transcription PCR of single whole Drosophila heads using

rp49 as the control gene. cDNA was generated and quantified

using ABI-SDS 7900 system as in [27]. PCR reactions contained

3 ml targeted cDNA (10–100 ng), 5 ml Syber-green mix and 2 ml
primer pair (2.5 mM). 3 ml of each reaction was added to 2 or 3

wells in the 384-well reaction plate. mRNA reduction was

calculated by 1–22DDCt, where DDCt=DCt,RNAi–DCt,control and

DCt was the difference in mean threshold cycles between target

gene and rp49.

Efficiency was tested for a total of seven genes: U2af50, Inos,

CAH1, fax, BM-40-SPARC, abl and CG32703 (using primers

indicated in Table S1). RNAi and control flies were collected in

parallel for mRNA quantification either as siblings of the

behaviorally tested flies (collected at 1 or 2 days of age) or were

the behaviorally tested flies collected immediately after the DD

regime. Control group for mRNA quantification was driver or

responder strain (see Table S1) of the same age and gender as the

RNAi group. Reduction of mRNA in single whole heads varied

from 35% to 90% and was significant for all seven genes tested

(p,0.05; Table S1).

Drosophila Activity Recording
One- or 2-day-old flies from the RNAi group and control groups

(driver and responder lines) were put into the Drosophila Activity

Monitor (Trikenetics, Inc). Locomotor activity was recorded by

computer as in [28]. The flies experienced 2 days light:dark (LD)

entrainment (12 h:12 h) and activity was recorded over the

subsequent 5 days of LD. Flies were then shifted to a constant

dark regime (DD) and activity recorded for 5 more days.

Measurement of Behavioral Parameters
A total of five behavioral parameters were derived from

individual fly activity in LD condition and five additional

parameters in DD. In all cases, parameters were estimated for

single flies (after exclusion of dead flies) using activity data over 5
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days of LD or 5 days of DD; individual values were then used in

statistical analyses below. Several parameters were calculated

from unsmoothed activity data including inactivity (proportion of

15-min intervals with no activity) for both LD and DD and

anticipation indices for lights-on and lights-off (LD only).

Anticipation index was calculated as in [29] by dividing the

sum of activity during 3 hours preceding light change by the sum

of activity during 6 hours preceding light change.

Table 1. Activity patterns under light-dark (LD) regime.

Dawn Dusk Inactivity (%)

Gene TID sex trials n Peak Anticipation Peak Anticipation

BM-40- 16678 m 5 RNAi 35 52.962.5 0.7860.02 65.663.7 0.9660.01 56.361.8

SPARC UAS 30 42.862.1 0.7360.03 58.062.7 0.9660.17 58.562.0

GAL4 29 39.362.5 0.7360.04 37.963.0 0.8860.02 50.362.4

** n.s. n.s. n.s. n.s

CG32703 13444 m 2 RNAi 11 40.863.3 0.8260.04 49.462.0 0.9460.02 62.562.2

UAS 16 48.062.6 0.8560.03 49.562.1 0.9560.02 60.663.1

GAL4 11 36.264.1 0.8060.04 38.363.2 0.8860.02 49.164.9

n.s. n.s. n.s. n.s. n.s.

CG6910 22465 m 3 RNAi 14 39.762.2 0.7260.08 45.663.1 0.8560.06 60.363.8

UAS 34 36.161.6 0.7260.03 46.862.1 0.9060.02 57.162.7

GAL4 34 44.862.6 0.6060.03 37.163.7 0.8160.02 36.763.4

n.s. n.s. n.s. n.s n.s

fax 21895 m 2 RNAi 14 46.662.1 0.8660.03 57.663.0 0.9660.01 62.262.8

UAS 24 33.561.0 0.7560.04 59.363.0 0.9060.02 61.961.5

GAL4 22 38.761.9 0.8360.03 44.263.0 0.8860.02 49.461.8

* n.s. n.s. n.s. n.s.

Inos 5617 m 2 RNAi 11 46.463.7 0.7360.05 56.065.1 0.8960.03 56.264.5

UAS 24 38.663.1 0.5860.02 43.263.3 0.7360.02 41.862.7

GAL4 22 32.162.5 0.6860.03 34.163.1 0.7760.03 41.262.8

n.s. n.s. n.s. ** n.s

ple 3308 m 2 RNAi 16 38.062.7 0.9360.02 41.563.1 0.9060.03 68.961.5

UAS 30 45.661.9 0.8960.01 51.662.1 0.9660.01 61.661.9

GAL4 25 36.463.3 0.7660.04 29.663.4 0.9260.02 44.063.5

n.s. n.s. n.s. n.s. n.s.

Sh3b 35970 m 2 RNAi 22 50.563.3 0.6960.04 39.263.5 0.9160.03 56.563.4

UAS 17 32.762.7 0.6760.03 35.763.6 0.7560.07 48.763.7

GAL4 18 42.663.9 0.6360.05 37.465.3 0.8160.03 42.864.5

n.s. n.s. n.s. n.s. n.s.

U2af50 24176 m 3 RNAi 14 51.364.3 0.7960.04 51.264.8 0.9560.02 55.564.1

UAS 39 39.361.5 0.7960.02 45.762.7 0.9360.02 60.662.0

GAL4 39 36.362.0 0.6760.04 34.862.9 0.8760.02 45.363.1

** n.s. n.s. n.s. n.s.

abl 2897 f 2 RNAi 36 43.461.6 0.7760.02 40.462.0 0.7460.03 33.862.3

UAS 33 32.162.1 0.6760.05 23.961.9 0.5960.02 53.162.1

GAL4 33 31.661.5 0.7060.03 28.962.1 0.6860.02 37.462.6

** n.s. ** n.s. n.s.

CAH1 26015 f 2 RNAi 28 36.562.5 0.8160.03 32.161.9 0.6860.02 28.862.4

UAS 31 36.361.6 0.7960.02 29.162.2 0.5760.02 39.461.8

GAL4 30 30.661.7 0.7360.05 30.161.7 0.7860.02 39.362.0

n.s. n.s. n.s. n.s. *

Significance is indicated at the gene-level threshold, p,0.005 (*), or the experiment wide threshold, p,0.0005 (**). For all effects reported as significant, RNAi group
differed from both control groups in the same direction (p,0.05; post hoc). Significant effects are highlighted by bold text. Peak activity, anticipation and inactivity are
defined in Methods. Number of individual flies (n) is indicated for the experimental F1 RNAi flies and the two control lines (elav-Gal4 driver and the gene-specific UAS
responder line). TID, Transformant ID; n.s., not significant.
doi:10.1371/journal.pone.0029157.t001
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Peak activity at dawn and dusk (LD) and subjective dawn and

dusk (DD) were calculated from smoothed activity data for each

fly. Activity was smoothed using a non-recursive linear digital low-

pass filter that has been used in Drosophila activity studies and is not

expected to cause phase shift [30]. Smoothed activity at each 15-

min time interval (Yi) was calculated using the formula Yi =Xi+fc1
(Xi+1+Xi21)+fc2 (Xi+2+Xi22)+fc3 (Xi+3+Xi23), (i = 4 to 477 in this

study) where fcj = sin(2pj/rtc)/(2pj/rtc), j=1 to 3, r = 4 h21(sam-

pling rate per hour) and tc = 2 h (cut-off period). This formula was

applied using R.2.90. Peak activity at each dawn or dusk period

was determined as the highest activity in the smoothed plot in the

5.5 h period centered on Zeitgeber time 0 (dawn) or 12 (dusk).

Peak dawn and dusk activities were then calculated for each fly as

the average over the 5 day recording period.

Strength of rhythmicity (amplitude) and length of period (tau) for

each fly were estimated from DD activity using the LSP program

[31]. Only flies with x2 periodogram (Qp) significant at p,0.01

were used in statistical analyses of tau and amplitude.

Statistical Analysis
Proportion of intervals with no activity and anticipation indices

were arc-sine transformed. ANOVA was performed using R.2.90

package to test for differences between the three groups tested

(RNAi, driver and responder) treating trial and group as factors.

To address multiple testing, we used Bonferroni adjustments to

calculate two critical significance thresholds. The first threshold,

referred to as gene-level significance, accounted for the 10

behavioral parameters tested for each gene (a=0.05; p,0.005).

We consider this a marginal significance level. The second

threshold, referred to as experiment-wide significance, accounted

for the 10 parameters and the 10 genes examined (a=0.05;

p,0.0005). Results that were significant at either threshold were

examined post hoc to ensure that RNAi group differed

significantly (p,0.05) from both control groups in the same

direction; only results meeting this standard are reported as

significant.

Results

We tested neural-targeted RNAi lines for the selected 10 genes

(see Methods) for effects on different aspects of locomotion in LD

(Table 1) and DD following LD entrainment (Table 2 and 3). A

total of six genes affected some aspect of locomotion in LD,

significant at the gene-level or experiment-wide thresholds,

p,0.005 or 0.0005, respectively (ANOVA; post hoc showed RNAi

group differed from both control groups, p,0.05). Two of these

genes also affected locomotion in DD. RNAi and control lines for

these six genes are shown in Fig. 1, with activity averaged across

replicate flies and over the 5 day LD period (left panels) or 5 day

DD period (right panels).

Knockdown of BM-40-SPARC, fax and U2af50 increased peak

locomotor behavior at dawn in LD (p,0.0005), but did not

decrease overall inactivity (proportion of 15-min intervals with no

activity, p.0.005) (Table 1 and Fig. 1). The latter result suggests

that increased activity in these lines was not a general increase at

all times of the day. Although they did not show significant effects

on dusk, two of these genes showed trends in dusk activity (non-

significant elevation) that make it difficult to interpret a specific

effect on dawn versus dusk activity. Knockdown of abl caused

increased peak activity at both dawn and dusk (p,0.0005);

however, control line differences in inactivity make it difficult to

rule out a general increase in activity at all times.

Two other genes showed effects under LD conditions.

Knockdown of Inos caused a significant increase in lights-off

anticipatory locomotion (p,0.0005; Table 1 and Fig. 1). Knock-

down of CAH1 caused a decrease in inactivity at the marginal

gene level threshold (p,0.005).

Locomotor activity under constant dark (DD) following LD

entrainment was affected for two genes (Table 2). RNAi

knockdown of BM-40-SPARC caused increased activity at sub-

jective dawn (p,0.0005) but also a decrease in total inactive time,

suggesting that constant dark may have a general activating effect

on BM-40-SPARC knockdown flies. Knockdown of abl increased in

peak activities in DD (p,0.0005) similar to its effect in LD;

however, control line differences in inactivity make it difficult to

rule out a general increase in activity.

No gene tested showed differences in strength of rhythmicity or

length of period (tau) in DD (p.0.005; Table 3).

Discussion

In this study, we tested orthologs of 10 genes associated with

honey bee behavioral maturation, finding six that affected some

aspect of Drosophila locomotor activity. One gene, Inos, affected

anticipation of lights-off. Three genes, BM-40-SPARC, fax and

U2af50, affected dawn activity without affecting total time spent

inactive. Knockdown of abl caused increased peak activities, but

our data did not strongly support a time-specific effect.

Knockdown of CAH1 caused a marginally significant (gene-level

threshold) decrease in time inactive. No genes affected strength of

rythmicity or length of period in DD.

These six genes could influence activity via either clock-

dependent or direct stimulus-dependent (apart from entrainment;

i.e., masking) pathways. Our data suggest that at least one, Inos,

acts downstream of the endogenous clock. Knockdown of Inos

affected activity in the 3-hours prior to lights-off (anticipation of

dusk), but did not affect strength of rhythmicity or length of

period in DD, suggesting a clock-dependent rather than a core

clock function [32]. Consistent with a possible role downstream

of the clock, Inos was identified as significant clock controlled

genes in a meta-analysis of Drosophila circadian microarray studies

[33] (of the 10 genes examined in the present study, CAH1 and

ple were also identified as clock controlled genes). Both BM-40-

SPARC and abl showed effects in DD resembling their effects in

LD. However, we cannot make a strong interpretation of clock-

dependent effect for either of these genes: BM-40-SPARC

exhibited a general increase in activity in DD, while control

line effects in abl make it difficult to interpret inactivity. No other

gene in this study affected strength of rhythmicity or length of

period in DD, suggesting no role in the core clock machinery for

genes examined in this study.

Results for the two remaining genes that affected dawn peak

activity, fax and U2af50, were consistent with possible modulation

by direct light stimulus rather than the endogenous clock. RNAi of

both genes increased activity at dawn without decreasing total time

spent inactive, indicating time-specific effects under LD. However,

neither gene showed effects on dawn or dusk anticipation, nor

activity under DD. These results suggest that observed increases in

dawn activity may result from light transition. Results were similar

for BM-40-SPARC, although unlike fax and U2af50, BM-40-SPARC

may have shown a generalized response (elevated locomotor

activity) to DD. Taken together, our results suggest that fax,

U2af50 and BM-40-SPARC may mediate direct stimulus effects on

activity, though further behavioral tests are needed to establish

light masking effects [12].

Considered together, a surprisingly large fraction of genes

tested showed effects on the 24-hour pattern of locomotor

activity in Drosophila (six out of ten), although only one exhibited

Behavioral Maturation and Daily Rhythmic Activity
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Figure 1. Activity patterns in light-dark (LD) and constant dark following entrainment (DD). Plots show unsmoothed activity averaged
across individual flies and the 5-day recording period under LD (left panels) and DD (right panels). Shading indicates dark period. RNAi, Responder
and Driver genotypes are described in Methods. All genes were tested in males except for Abl and CAH1, which were tested in females. Significant
effects on peak activity are indicated by black bar (asterisks as in Table 1 and 2). Significant effect on anticipatory activity is indicated by a red bar.
Additional effects on inactivity for CAH1 (in LD) and BM-40-SPARC (in DD) are not indicated in figure (see Table 1 and 2).
doi:10.1371/journal.pone.0029157.g001

Table 2. Activity patterns under constant dark (DD) regime.

Peak activity

Gene TID sex trials n Subj. dawn Subj. dusk Inactivity (%)

BM-40- 16678 m 4 RNAi 16* 45.963.1 34.062.2 23.562.2

SPARC UAS 20 32.762.2 28.362.3 42.362.5

GAL4 16 19.662.2 19.361.9 36.064.8

** n.s. **

CG32703 13444 m 2 RNAi 10 32.162.6 38.662.7 31.562.3

UAS 15 37.964.3 38.563.0 37.063.4

GAL4 7 19.363.4 21.761.8 25.865.5

n.s. n.s. n.s.

CG6910 22465 m 1 RNAi 8 24.263.1 35.063.6 50.062.3

UAS 16 15.861.8 32.761.9 58.863.1

GAL4 15 25.664.0 30.464.4 23.564.4

n.s. n.s. n.s.

fax 21895 m 2 RNAi 8 33.463.0 37.563.4 38.762.2

UAS 16 22.463.2 42.962.4 46.063.4

GAL4 17 27.362.1 34.764.1 28.163.1

n.s. n.s. n.s.

Inos 5617 m 2 RNAi 5 35.065.8 38.863.9 35.265.7

UAS 12 23.163.1 24.863.2 31.063.9

GAL4 6 20.663.2 19.862.3 37.469.4

n.s. n.s. n.s.

ple 3308 m 1 RNAi 8 29.065.2 36.363.2 41.862.9

UAS 16 35.962.0 46.862.2 35.562.3

GAL4 13 28.263.0 25.563.3 23.963.6

n.s. n.s. n.s.

Sh3b 35970 m 1 RNAi 16 31.263.9 31.262.9 37.564.1

UAS 6 23.864.8 31.965.3 35.666.1

GAL4 8 30.263.9 31.365.3 12.563.2

n.s. n.s. n.s.

U2af50 24176 m 2 RNAi 9 34.363.6 36.863.6 28.264.4

UAS 20 31.162.6 40.062.4 37.063.5

GAL4 20 29.063.1 28.363.3 22.264.6

n.s. n.s. n.s.

abl 2897 f 2 RNAi 28 33.661.8 32.562.0 18.563.5

UAS 19 21.862.9 20.962.5 50.064.6

GAL4 25 23.162.0 23.961.8 25.264.0

** ** n.s.

CAH1 26015 f 2 RNAi 11 39.163.1 30.863.6 20.265.2

UAS 16 28.263.2 24.263.3 22.464.8

GAL4 15 31.163.3 29.262.8 26.264.6

n.s. n.s. n.s.

See notes for Table 1. Subjective dawn and dusk are described in Methods.
doi:10.1371/journal.pone.0029157.t002
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a clear clock-dependent function. This result may point to the

importance (and complexity) of changes in locomotor behavior in

the honey bee transition to foraging. The onset of foraging

involves both increased overall activity (foraging flight) but also

long inactive periods linked to the circadian clock [8]. Perhaps

resulting from this complexity, we did not observe a simple

correspondence between direction of effect in Drosophila (more or

less activity) and direction of regulation in the hive bee to forager

transition (up or down regulation). An important caveat is that

our results do not address how many genes in the Drosophila

genome would show similar effects. Because genes can act

pleiotropically, it is possible that our results reflect a general

trend in which a large fraction of genes in the genome have

small but measurable effect on some aspect of locomotion in

addition to affecting other phenotypes. More detailed under-

standing of the function of each of these genes in Drosophila

Table 3. Rhythmicity and length of period under DD.

Gene TID sex trials flies tested % rhythmic flies tau (hrs) amplitude (Qp)

BM-40- 16678 m 4 RNAi 17 100% 24.460.5 92.268.6

SPARC UAS 23 91.3% 24.660.1 111.467.7

GAL4 19 89.5% 24.860.3 77.868.2

n.s. n.s.

CG32703 13444 m 2 RNAi 11 90.9% 25.460.6 74.465.8

UAS 16 100% 24.560.4 90.265.8

GAL4 7 85.7% 24.660.2 67.2610.6

n.s. n.s.

CG6910 22465 m 1 RNAi 8 100% 24.860.1 92.265.3

UAS 23 100% 24.760.1 130.666.7

GAL4 23 87.0% 24.960.4 69.666.2

n.s. n.s.

fax 21895 m 2 RNAi 8 100% 25.260.9 74.4613.0

UAS 16 93.8% 24.960.3 98.968.6

GAL4 11 90.9% 25.160.3 73.467.7

n.s. n.s.

Inos 5617 m 1 RNAi 6 100% 25.060.2 122.9621.1

UAS 9 100% 24.260.3 97.9612.5

GAL4 4 100% 25.360.3 97.9616.3

n.s. n.s.

ple 3308 m 1 RNAi 8 100% 25.560.1 100.868.2

UAS 16 100% 25.260.1 106.666.2

GAL4 13 92.3% 24.860.5 98.9610.1

n.s. n.s.

Sh3b 35970 m 1 RNAi 16 93.8% 24.460.2 101.8612.5

UAS 6 100% 24.460.2 113.3610.1

GAL4 8 75% 24.060.8 38.464.3

n.s. n.s.

U2af50 24176 m 2 RNAi 16 93.8% 24.660.1 137.3611.5

UAS 20 95.0% 24.560.1 155.5610.6

GAL4 19 73.6% 24.560.5 47.064.8

n.s. n.s.

abl 2897 f 2 RNAi 36 97.2% 24.260.2 156.569.1

UAS 20 85.0% 24.760.1 148.8613.9

GAL4 28 85.7% 23.860.1 124.8611.5

n.s. n.s.

CAH1 26015 f 2 RNAi 19 95.7% 24.560.2 157.4612.5

UAS 27 100% 24.760.1 156.567.7

GAL4 17 100% 24.660.2 156.5610.1

n.s. n.s.

Percent rhythmic flies indicates the proportion of flies with significant rhythmicity (p,0.01). Only rhythmic flies were used in statistical analyses of tau and amplitude.
doi:10.1371/journal.pone.0029157.t003
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locomotion may provide insight into their possible specific roles

in the complex honey bee foraging phenotype. A full un-

derstanding of the 24-hour pattern of locomotor behavior in the

honey bee will require an understanding of the genes that act in

the endogenous clock, genes that translate the endogenous clock

information to locomotor activity, and genes that translate

environmental and social cues to locomotor activity (both via

clock entrainment and clock-independent pathways).

Although the current study focuses on daily locomotor activity,

the general approach could be used to study other behaviors

associated with the transition from hive bee to forager, for example

in foraging strategy, phototaxis and aggression. Such studies could

identify pleiotropic effects of genes implicated in the present study

(in locomotor activity) and lead to a deeper understanding of both

the mechanism of social behavior and the hierarchy of complex

behaviors.
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