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A B S T R A C T   

Nowadays, automatic disease detection has become a crucial issue in medical science due to rapid population 
growth. An automatic disease detection framework assists doctors in the diagnosis of disease and provides exact, 
consistent, and fast results and reduces the death rate. Coronavirus (COVID-19) has become one of the most 
severe and acute diseases in recent times and has spread globally. Therefore, an automated detection system, as 
the fastest diagnostic option, should be implemented to impede COVID-19 from spreading. This paper aims to 
introduce a deep learning technique based on the combination of a convolutional neural network (CNN) and long 
short-term memory (LSTM) to diagnose COVID-19 automatically from X-ray images. In this system, CNN is used 
for deep feature extraction and LSTM is used for detection using the extracted feature. A collection of 4575 X-ray 
images, including 1525 images of COVID-19, were used as a dataset in this system. The experimental results 
show that our proposed system achieved an accuracy of 99.4%, AUC of 99.9%, specificity of 99.2%, sensitivity of 
99.3%, and F1-score of 98.9%. The system achieved desired results on the currently available dataset, which can 
be further improved when more COVID-19 images become available. The proposed system can help doctors to 
diagnose and treat COVID-19 patients easily.   

1. Introduction 

The coronavirus epidemic that has spread across the world has 
placed all sectors on lockdown. According to the World Health Orga-
nization’s latest estimates, as of July 9th, 2020, more than twelve 
million people have been infected with close to 552,050 deaths [1]. 
Health systems have reached the point of failure, even in developed 
countries, due to the shortage of intensive care units (ICUs; COVID-19 
patients with worse conditions are admitted into ICUs). The strain that 
began to spread in Wuhan, China was identified from two different 
coronaviruses, severe acute respiratory syndrome (SARS) and Middle 
East respiratory syndrome (MERS) [2]. The symptoms of COVID-19 can 
range from cold to fever, shortness of breath, and acute respiratory 
syndrome [3]. In comparison to SARS, the kidneys and liver are affected 
by coronavirus as well as the respiratory system [4]. 

Coronavirus detection at an early stage plays a vital role in con-
trolling COVID-19 due to its high transmissibility. The diagnosis of 
coronavirus by gene sequencing for respiratory or blood samples should 
be confirmed as the main pointer for reverse transcription-polymerase 
chain reaction (RT-PCR), according to the guidelines of the Chinese 

government [5]. The process of RT-PCR takes 4–6 hours to get results, 
which takes a long time compared to COVID-19’s rapid spread rate. 
RT-PCR test kits are in huge shortage, in addition to being inefficient [6]. 
As a result, many infected patients cannot be detected in time and tend 
to unknowingly infect others. With the detection of this disease at an 
early stage, the prevalence of COVID-19 disease will decrease [7]. To 
alleviate the inefficiency and scarcity of current COVID-19 tests, a lot of 
effort has been made to look for alternative test methods. Another 
visualization method is to diagnose COVID-19 infections using radio-
logical images such as X-rays or computed tomography (CT). Earlier 
works have shown that anomalies can be found in COVID-19 patients in 
chest CT scans in the shape of ground-glass opacities [8]. The re-
searchers have claimed that a system based on chest CT scans can be an 
important method for diagnosis and quantifying of COVID-19 cases [9]. 

Many researchers have demonstrated various approaches to detect 
COVID-19 utilizing X-ray images. Recently, computer vision [10], ma-
chine learning [11–13], and deep learning [14,15] have been used to 
automatically diagnose several diverse ailments in the human body, 
which ensures smart healthcare [16,17]. The deep learning method is 
used as a feature extractor that enhances classification accuracies [18]. 
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The detection of tumor regions in the lungs, X-ray bone suppression, 
diabetic retinopathy, prostate segmentation, skin lesions, and the pres-
ence of the myocardium in coronary CT scans are examples of the 
contributions [19,20] of deep learning. 

Therefore, this paper aims to propose a deep learning based system 
that combines the CNN and LSTM networks to automatically detect 
COVID-19 from X-ray images. In the proposed system, CNN is used for 
feature extraction and LSTM is used to classify COVID-19 based on those 
features. The LSTM network has an internal memory that is capable of 
learning from imperative experiences with long-term states. In fully 
connected networks, the layers are fully connected and the nodes be-
tween layers are connectionless and process only one input. In the case 
of LSTM, the nodes are connected from a directed graph along a tem-
poral sequence that is considered an input with a specific order [21]. 
Hence, the 2-D CNN and LSTM layout feature combination improves 
classification greatly. The dataset used for this paper was collected from 
multiple sources and a preprocessing was performed to reduce the noise. 

In the following, the contributions of this research are summarized.  

a) Developing a combined deep CNN-LSTM network to automatically 
assist the early diagnosis of patients with COVID-19 efficiently.  

b) To detect COVID-19 using chest X-rays using a dataset formed 
comprising 4575 images.  

c) A detailed experimental analysis is provided in terms of accuracy, 
sensitivity, specificity, F1-score, a confusion matrix, and AUC using 
receiver operating characteristic (ROC) to measure the performance 
of the proposed system. 

The paper is organized as follows: A review of recent scholarly works 
related to this study is described in Section 2. A description of the pro-
posed system, including dataset collection and preparation, is presented 
in Section 3. The experimental results and comparative performance of 
the proposed deep learning system are provided in Section 4. The dis-
cussion is given in Section 5. Section 6 concludes the paper. 

2. Related works 

To address the COVID-19 epidemic, researchers have developed deep 
learning techniques to diagnose COVID-19 based on clinical images, CT 
scans, and X-rays of the chest. This review describes the recently 
developed systems that have applied deep learning techniques in the 
field of COVID-19 detection. 

Rahimzadeh et al. [22] developed a concatenated CNN based on 
Xception and ResNet50V2 models that classified COVID-19 cases using 
chest X-rays. The developed system used a data set that contained 180 
images of COVID-19 patients, 6054 images of pneumonia patients, and 
8851 images of normal people. 633 images were selected for each of the 
eight training phases. The experimental outcome obtained 99.56% ac-
curacy and 80.53% recall for COVID-19 cases. Alqudah et al. [23] used 
artificial intelligence techniques to develop a system that detected 

COVID-19 from chest X-rays. The images used were classified with 
different machine learning techniques, such as support vector machine 
(SVM), CNN, and random forest (RF). The system obtained 95.2% ac-
curacy, 100% specificity, and 93.3% sensitivity. Loey et al. [24] intro-
duced a generative adversarial network (GAN) with deep learning to 
diagnose COVID-19 from chest X-rays. The scheme used the three 
pre-trained models AlexNet, GoogleNet, and RestNet18. The collected 
data included 69 images of COVID-19 cases, 79 images of pneumonia 
bacterial cases, 79 images of pneumonia virus cases, and 79 images of 
normal cases. GoogleNet was selected as a main deep learning technique 
with 80.6% test accuracy in the four classes scenario, AlexNet with 
85.2% test accuracy in the three classes scenario, and GoogleNet with 
99.9% test accuracy in the two classes scenario. 

Ucar et al. [25] proposed a COVID-19 detection system based on 
deep architecture that utilized X-ray images. The data set included 76 
images of COVID-19 cases, 4290 images of pneumonia cases, and 1583 
images of normal cases. The scheme achieved 98.3% accuracy for 
COVID-19 cases. Apostolopoulos et al. [26] introduced a transfer 
learning strategy with CNN that could automatically diagnose 
COVID-19 cases by extracting essential features from chest X-rays. The 
system used the five CNN variants VGG19, Inception, MobileNet, 
Xception, and Inception-ResNetV2 to classify COVID-19 images. The 
data set included 224 images of COVID-19 patients, 700 images of 
pneumonia patients, and 504 images of normal patients. The data set 
was split using the concept of 10-fold cross-validation for training and 
evaluation purposes. VGG19 was selected as a main deep learning model 
with 93.48% accuracy, 92.85% specificity, and 98.75% sensitivity in the 
developed system. Bandyopadhyay et al. [27] proposed a novel model 
that used the LSTM-GRU to automatically classify confirmed, released, 
negative, and death cases of COVID-19. The developed scheme achieved 
87% accuracy for the confirmed cases, 67.8% accuracy for negative 
cases, 62% accuracy for deceased cases, and 40.5% accuracy for released 
cases. Khan et al. [28] presented a deep learning network to automati-
cally predict COVID-19 cases from chest X-rays. The data set included 
284 images of COVID-19 cases, 330 images of pneumonia bacterial 
cases, 327 images of pneumonia viral cases, and 310 images of normal 
cases. Overall, the proposed system obtained 89.5% accuracy, 97% 
precision, and 100% recall for COVID-19 cases. 

Kumar et al. [29] introduced a deep learning methodology to classify 
COVID-19 infected patients using chest X-rays. The scheme used nine 
pre-trained models for feature extraction and SVM for classification. The 
two data sets contained 158 X-ray images of both COVID-19 and 
non-COVID-19 patients. The combined ResNet50 and SVM model was 
statistically superior to other models, with 95.38% accuracy and 95.52% 
F1-score. Horry et al. [30] developed a system based on pre-trained 
models to detect COVID-19 from chest X-rays. The proposed system 
used Xception, VGG, ResNet, and Inception for classification. The 
dataset used in the system includes 115 images of COVID-19 cases, 322 
images of pneumonia cases, and 60361 images of normal cases. Both the 
VGG16 and VGG19 classifiers had roughly 80% recall and precision. 

Fig. 1. The overall system architecture of the proposed COVID-19 detection system.  
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Hemdan et al. [31] introduced a deep learning technique to detect 
COVID-19 from X-ray images. The framework included the seven 
pre-trained models VGG19, MobileNetV2, InceptionV3, ResNetV2, 
DenseNet201, Xception, and InceptionResNetV2. In the developed sys-
tem, 50 X-ray images were used, with 25 images from COVID-19 pa-
tients and 25 images from non-COVID-19 patients. Among the tested 
classifiers, VGG19 and DenseNet201 achieved the highest values of 90% 
accuracy and 83% precision. 

Singh et al. [32] used VGG16, a deep transfer learning architecture, 
to detect COVID-19 from CT scans. The extracted features were selected 
using principal component analysis (PCA) and classified by four 
different classifiers. The best result achieved 95.7% accuracy, 95.8% 
precision, and 95.3% F1-score with a bagging ensemble method and 
SVM classifier. Ahuja et al. [33] introduced a transfer learning technique 
to diagnose COVID-19 symptoms using a three phase approach. The 
augmented images were applied to several pre-trained models to 
localize the abnormality of the CT scans, and the ResNet18 architecture 
obtained 99.4% accuracy in test cases. Fong et al. [34] presented a deep 
learning-based case study that utilized composite Monte-Carlo (CMC) 
and fuzzy rule induction to address the limited data for forecasting 
methods. 

3. Methods and materials 

Fig. 1 illustrated the overall system for the detection of COVID-19 
consisting of several phases. Raw X-ray images were first passed 
through the preprocessing pipeline. Data resizing, shuffling, and 

normalization were done in the preprocessing pipeline. The pre-
processed data set was then partitioned into a training set and testing 
set, and we trained the CNN and CNN-LSTM architecture using the 
training data. After each epoch, the training accuracy and loss were 
determined. At the same time, using 5-fold cross-validation, validation 
accuracy and loss were also obtained. The performance of the proposed 
system was measured with the following evaluation metrics: confusion 
matrix, accuracy, AUC using ROC, specificity, sensitivity, and F1-score. 

3.1. Dataset collection and description 

As the emergence of COVID-19 is very recent, none of the large re-
positories contain any COVID-19 labeled data, thereby requiring us to 
rely on different sources of images of normal, pneumonia, and COVID-19 
cases. First, 613 X-ray images of COVID-19 cases were collected from the 
following websites: GitHub [35,36], Radiopaedia [37], The Cancer Im-
aging Archive (TCIA) [38], and the Italian Society of Radiology (SIRM) 
[39]. Then, instead of data being independently augmented, a dataset 
containing 912 already augmented images was collected from Mendeley 
[40]. Finally, 1525 images of pneumonia cases and 1525 X-ray images of 
normal cases were collected from the Kaggle repository [41] and NIH 
dataset [42]. The main objective of the dataset selection was to make it 
available to the public so that it is accessible and extensible to re-
searchers. The use of this dataset in further studies may also enable more 
efficient diagnoses of COVID-19 patients. We resized the images to ones 
with a resolution of 224 × 224 pixels. The number of X-ray images of 
each set was partitioned in Table 1. The visualization of X-ray images of 
each class is shown in Fig. 2. 

3.2. Development of combined network 

The proposed architecture was developed with a combination of a 
convolutional neural network (CNN) and a long short-term memory 
(LSTM) network, which are briefly described as follows. 

Table 1 
The partitioning description of used dataset.  

Data/Cases COVID-19 Normal Pneumonia Overall 

Training 1220 1220 1220 3660 
Testing 305 305 305 915 
Overall 1525 1525 1525 4575  

Fig. 2. The images in the first, second, and third rows show 4 sample images of COVID-19 cases, pneumonia cases, and normal cases respectively.  
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3.2.1. Convolutional neural network 
A particular type of multilayer perceptron is a CNN, but a simple 

neural network cannot learn complex features, unlike a deep learning 
architecture. CNNs have shown excellent performance in many appli-
cations [43,44], such as image classification, object detection, and 
medical image analysis. The main idea behind a CNN is that it can obtain 
local features from high layer inputs and transfer them to lower layers 
for more complex features. A CNN comprises convolutional, pooling, 
and fully connected (FC) layers. A typical CNN architecture along with 
these layers is depicted in Fig. 3. 

The convolutional layer encompasses a set of kernels [45] for 
determining a tensor of feature maps. These kernels convolve an entire 
input using “stride(s)” so that the dimensions of an output volume 
become integers [46]. The dimensions of an input volume decrease after 
the convolutional layer is used to execute the striding process. There-
fore, zero padding [47] is required to pad an input volume with zeros 
and maintain the dimensions of an input volume with low-level features. 
The operation of the convolutional layer is given as: 

F(i, j)= (I * K)(i, j) =
∑∑

I(i+m, j+ n)K(m, n) (1)  

where I refers to the input matrix, K denotes a 2D filter of size m × n, and 
F represents the output of a 2D feature map. The operation of the con-
volutional layer is denoted by I*K. To increase nonlinearity in feature 
maps, the rectified linear unit (ReLU) layer is used [48]. ReLU computes 
activation by keeping the threshold input at zero. It is mathematically 
expressed as follows:  

f(x) = max(0, x)                                                                               (2) 

The pooling layer [49] performs a downsampling of a given input 
dimension to reduce the number of parameters. Max pooling is the most 
common method, which produces the maximum value in an input re-
gion. The FC layer [50] is used as a classifier that makes a decision on the 
basis of features obtained from the convolutional and pooling layers. 

Fig. 3. A typical architecture of the convolutional neural network.  

Fig. 4. The internal structure of Long short-term memory.  
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3.2.2. Long short-term memory 
Long short-term memory is an improvement of recurrent neural 

networks (RNNs). LSTM proposes memory blocks instead of conven-
tional RNN units in solving the vanishing and exploding gradient 
problem [51]. It then adds a cell state to save long-term states, which is 
its main difference from RNNs. An LSTM network can remember and 
connect previous information to data obtained in the present [52]. LSTM 
is combined with three gates, such as an input gate, a “forget” gate, and 
an output gate, where xt refers to the current input; Ct and Ct− 1 denote 
the new and previous cell states, respectively; and ht and ht− 1 are the 
current and previous outputs, respectively. The internal structure of 
LSTM is shown in Fig. 4. 

The principle of the input gate of LSTM is shown in the following 
forms. 

it = σ(Wi⋅[ht− 1, xt] + bi) (3)  

C̃t = tanh(Wi ⋅ [ht− 1, xt] + bi) (4)  

Ct = ftCt− 1 + itC̃t (5)  

where (3) is used to pass ht− 1 and xt through a sigmoid layer to decide on 
which portion of information should be added. Subsequently, (4) is 

employed to obtain new information after ht− 1 and xt are passed through 
the tanh layer. The current moment information, C̃t , and long-term 
memory information Ct− 1 into Ct are combined in (5), where Wi refers 
to a sigmoid output, and C̃t refers to a tanh output. Here, Wi denotes 
weight matrices, and bi represents the input gate bias of LSTM. The 
LSTM’s forget gate then allows the selective passage of information 
using a sigmoid layer and a dot product. The decision about whether to 
forget related information from a previous cell with a certain probability 
is executed using (6), in which Wf refers to the weight matrix, bf is the 
offset, and σ is the sigmoid function. 

ft = σ
(
Wf ⋅[ht− 1, xt] + bf

)
(6) 

The LSTM’s output gate determines the states that are required for 
continuation by the ht− 1 and xt inputs following (7) and (8). The final 
output is obtained and multiplied by the state decision vectors that pass 
new information, Ct, through the tanh layer. 

Ot = σ(Wo⋅[ht− 1, xt] + bo) (7)  

ht =Ot tanh(Ct) (8)  

where Wo and bo are the output gate’s weighted matrices and LSTM 
bias, respectively. 

Fig. 5. An illustration of the proposed hybrid network for COVID-19 detection.  

Md.Z. Islam et al.                                                                                                                                                                                                                               



Informatics in Medicine Unlocked 20 (2020) 100412

6

3.2.3. Combined CNN-LSTM network 
In this study, a combined method was developed to automatically 

detect COVID-19 cases using three types of X-ray images. The structure 
of this architecture was designed by combining CNN and LSTM net-
works, where the CNN is used to extract complex features from images, 
and LSTM is used as a classifier. 

Fig. 5 illustrates the proposed hybrid network for COVID-19 detec-
tion. The network has 20 layers: 12 convolutional layers, five pooling 
layers, one FC layer, one LSTM layer, and one output layer with the 
softmax function. Each convolution block is combined with two or three 
2D CNNs and one pooling layer, followed by a dropout layer charac-
terized by a 25% dropout rate. The convolutional layer with a size of 3 ×
3 kernels is used for feature extraction that is activated by the ReLU 
function. The max-pooling layer with a size of 2 × 2 kernels is used to 
reduce the dimensions of an input image. In the last part of the archi-
tecture, the function map is transferred to the LSTM layer to extract time 
information. After the convolutional block, the output shape is found to 
be (none, 7, 7, 512). 

Using the reshape method, the input size of the LSTM layer has 
become (49, 512). The summary of the proposed architecture is shown 
in Table 2. After analyzing the time characteristics, the architecture sorts 
the X-ray images through a fully connected layer to predict whether they 
belong under any of the three categories (COVID-19, pneumonia, and 
normal). 

3.3. Performance evaluation metrics 

The following metrics are used to measure the performance of the 
proposed system: TP denotes the correctly predicted COVID-19 cases, FP 
denotes the normal or pneumonia cases that are misclassified as COVID- 
19 by the proposed system, TN denotes the normal or pneumonia cases 
that are correctly classified, and FN denotes the COVID-19 cases that are 
misclassified as normal or pneumonia cases. 

Accuracy=(TP+TN)/(TN+ FP+TP+FN) (9)  

Sensitivity=TP/(TP+FN) (10)  

Specificity=TN/(TN+FP) (11)  

F1 − score = (  2∗TP)/(2∗TP+ FP+FN) (12)  

4. Experimental results analysis 

4.1. Experimental setup 

In the experiment, the dataset was split into 80% and 20% for 
training and testing, respectively. The results were obtained using 5-fold 
cross-validation technique. The proposed network consists of 12 con-
volutional layers, as described in Table 2, the learning rate is 0.0001, 
and the maximum epoch number is 125, as determined experimentally. 
The CNN and CNN-LSTM networks were implemented using Python and 
the Keras package with TensorFlow2 on an Intel(R) Core(TM) i7-2.2 
GHz processor. In addition, the experiments were executed using the 
graphical processing unit (GPU) NVIDIA GTX 1050 Ti with 4 GB and 16 
GB RAM, respectively. 

Table 2 
The full summary of CNN-LSTM network.  

Layer Type Kernel Size Stride Kernel Input Size 

1 Convolution2D 3 × 3 1 64 224 × 224 × 3 
2 Convolution2D 3 × 3 1 64 224 × 224 × 64 
3 Pool 2 × 2 2 – 224 × 224 × 64 
4 Convolution2D 3 × 3 1 128 112 × 112 × 64 
5 Convolution2D 3 × 3 1 128 112 × 112 × 128 
6 Pool 2 × 2 2 – 112 × 112 × 128 
7 Convolution2D 3 × 3 1 256 56 × 56 × 128 
8 Convolution2D 3 × 3 1 256 56 × 56 × 256 
9 Pool 2 × 2 2 – 56 × 56 × 256 
10 Convolution2D 3 × 3 1 512 28 × 28 × 256 
11 Convolution2D 3 × 3 1 512 28 × 28 × 512 
12 Convolution2D 3 × 3 1 512 28 × 28 × 512 
13 Pool 2 × 2 2 – 28 × 28 × 512 
14 Convolution2D 3 × 3 1 512 14 × 14 × 512 
15 Convolution2D 3 × 3 1 512 14 × 14 × 512 
16 Convolution2D 3 × 3 1 512 14 × 14 × 512 
17 Pool 2 × 2 2 – 14 × 14 × 512 
18 LSTM – – – 49 × 512 
19 FC – – 64 25,088 
20 Output – – 3 64  

Fig. 6. Confusion matrix of the proposed COVID-19 detection system. (a) CNN 
(b) CNN- LSTM. 
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4.2. Results analysis 

Fig. 6 depicts the confusion matrix of the test phase of the compet-
itive CNN and proposed CNN-LSTM architecture for COVID-19 disease 
classification. Among the 915 images, 14 were misclassified by the CNN 
architecture, with three images for COVID-19. Meanwhile, only eight 
images were misclassified by the proposed CNN-LSTM architecture, 
including two images for COVID-19. It was found that the proposed 
CNN-LSTM network outperforms the competitive CNN network as it has 
better and consistent true positive and true negative values and lesser 
false negative and false positive values. Therefore, the proposed system 
can efficiently classify COVID-19 cases. 

Moreover, Fig. 7 graphically the performance evaluation of the CNN 
classifier with accuracy and cross-entropy (loss) in the training and 
validation phase. The training and validation accuracy is 96.7% and 
94.4%, respectively, at epoch 125. Similarly, the training and validation 
loss is 0.09 and 0.26, respectively, for the CNN architecture. Further, 
Fig. 8 depicts the performance evaluation of the CNN-LSTM classifier 
graphically with accuracy and cross-entropy (loss) in the training and 
validation phase. The obtained training and validation accuracy is 
98.3% and 97.0%, respectively, at epoch 125. Similarly, the training and 
validation loss is 0.05 and 0.07, respectively, for the CNN-LSTM archi-
tecture. Better scores of training and validation accuracy were achieved 
using the CNN-LSTM architecture as compared with the CNN 
architecture. 

The overall accuracy, specificity, sensitivity, and F1-score for each 
case of CNN architecture are summarized in Table 3 and visually shown 
in Fig. 9. The CNN network achieved 98.2% specificity, 99.0% sensi-
tivity, and 97.7% F1-score for the COVID-19 cases. For the pneumonia 
classification, it recorded 99.7% specificity, 96.4% sensitivity, and 

97.8% F1-score. In the normal cases, it obtained 99.8% specificity, 100% 
sensitivity, and 99.8% F1-score. While the highest specificity, sensi-
tivity, and F1-score were obtained in the normal cases, the lower values 
of sensitivity were found in the pneumonia cases. 

Fig. 7. Evaluation metrics of COVID-19 detection system based on CNN ar-
chitecture. (a) Accuracy (b) Loss. 

Fig. 8. Evaluation metrics of COVID-19 detection system based on CNN-LSTM 
architecture (a) Accuracy (b) Loss. 

Table 3 
Performance of the CNN network.  

Class Accuracy (%) Specificity (%) Sensitivity (%) F1-Score (%) 

COVID-19 98.5 98.2 99.0 97.7 
Pneumonia 98.6 99.7 96.4 97.8 
Normal 99.9 99.8 100.0 99.8  

Fig. 9. The graphical representation of the results of the CNN network.  
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Furthermore, Table 4 and Fig. 10 shows the performance metrics of 
each class of the developed CNN-LSTM network. The COVID-19 cate-
gory was classified with good sensitivity, specificity, and F1-score 
(99.3%, 99.2%, and 98.9%). The value of sensitivity (99.3%) means 
that the sum of the false negatives is low while the specificity value 
(99.2%) means that the sum of the true negatives is high. For the 
pneumonia classification, it obtained 99.8% specificity, 98.0% sensi-
tivity, and 98.8% F1-score. For the normal cases, it obtained 99.7% 
specificity, 100% sensitivity, and 99.7% F1-score. While the maximum 
sensitivity and F1-score were achieved in the normal cases, the lower 
values of sensitivity were obtained in the pneumonia cases. 

Furthermore, the ROC curves are added between the true positive 
rate (TPR) and the false positive rate (FPR) to compare the overall 
performance in Fig. 11. The area under the ROC curve (AUC) was 
calculated to be 99.8% and 99.9% for the CNN and the CNN-LSTM ar-
chitectures, respectively, clearly showing that the proposed network 
obtained a higher value as compared to the CNN architecture. 

From the experimental findings, it is evident that the CNN archi-
tecture achieved 95.3% AUC, 98.2% specificity, 99.0% sensitivity, and 
97.7% F1-score after experimental verification for the COVID-19- 
infected cases. Comparing the outcomes, the proposed CNN-LSTM 
network obtained an overall 99.9% AUC, 99.2% specificity, 99.3% 
sensitivity, and 98.9% F1-score, respectively, for the COVID-19 cases. 
The main purpose of this research is to achieve good results in detecting 
COVID-19 cases and not detecting false COVID-19 cases. The experi-
mental results revealed that the proposed CNN-LSTM architecture out-
performs the competitive CNN network. 

Finally, Gradient-weighted Class Activation Mapping (Grad-CAM) 
refers to the heat map used for the visual explanation of our experiment 
using the gradients of a target concept. A coarse localization map 
highlights the important regions in the image for prediction after passing 
into the final layer. In Fig. 12, the heat map of the classified test ex-
amples is shown for COVID-19, pneumonia, and normal cases both for 
CNN and CNN-LSTM architecture. 

5. Discussions 

By analyzing the results, it is demonstrated that a combination of 
CNN and LSTM has significant effects on the detection of COVID-19 

based on the automatic extraction of features from X-ray images. The 
proposed system could distinguish COVID-19 from pneumonia and 
normal cases with high accuracy. A comparison between existing sys-
tems and our proposed system, in terms of accuracy and computational 
time, is shown in Table 5. From Table 5, it is found that some of the 
proposed systems [22,28,31,31,53–55], and [56] obtained a slightly 
lower accuracy in range of 80.6%–92.3%. The moderately highest ac-
curacy of 93.5%, 95.2%, 95.4%, 98.3% and 98.3% are found in [23,26, 
29,57], and [25] respectively. The system developed in [58] obtained an 
overall accuracy of 98.08% considering the multi-classes. Moreover, a 
comparison between existing systems in terms of computational time 
depicted that the system developed in [23] required 6.3s to classify 21 
test images [25], needed 2277.6s for 8997 training images [31], took 
2641.0s and 4.0s for training and testing of 40 and 10 images respec-
tively, and [56] consumed 79184.3s and 262.0s for training and testing 

Table 4 
Performance of the CNN-LSTM network.  

Class Accuracy (%) Specificity (%) Sensitivity (%) F1-score (%) 

COVID-19 99.2 99.2 99.3 98.9 
Pneumonia 99.2 99.8 98.0 98.8 
Normal 99.8 99.7 100.0 99.7  

Fig. 10. The graphical representation of the results of the CNN-LSTM network.  

Fig. 11. ROC analysis of the developed system (a) CNN (b) CNN-LSTM.  
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of 4449 and 1638 images respectively. In our experiment, the CNN ar-
chitecture required 18950.0s and 114.0s for training and testing 3660 
and 915 images respectively. Our proposed CNN-LSTM architecture 
provides good performance and it is also faster than the CNN approach, 
taking 18372.0s and 113.0s for training and testing which is propor-
tionally faster than other studies. Overall, the result of our proposed 
system is superior compared to other existing systems. 

6. Conclusion 

As COVID-19 cases are increasing daily, many countries are facing 
resource shortages. Hence, it is necessary to identify every single posi-
tive case during this health emergency. We introduced a deep CNN- 
LSTM network for the detection of novel COVID-19 from X-ray im-
ages. Here, CNN is used as a feature extractor and the LSTM network as a 
classifier for the detection of coronavirus. The performance of the pro-
posed system is improved by combining extracted features with LSTM 
that differentiate COVID-19 cases from others. The developed system 
obtained an accuracy of 99.4%, AUC of 99.9%, specificity of 99.2%, 

sensitivity of 99.3%, and F1-score of 98.9%. The proposed CNN-LSTM 
and competitive CNN architecture are applied both on the same data-
set. Our extensive experimental results revealed that our proposed ar-
chitecture outperforms a competitive CNN network. In this global 
COVID-19 pandemic, we hope that the proposed system would be able 
to develop a tool for COVID-19 patients and reduce the workload of the 
medical diagnosis for COVID-19. 

The proposed system has some limitations. Firstly, the sample size is 
relatively small that needs to be increased to test the generalizability of 
the developed system. This would be overcomed if more images are 
found in the coming days. Secondly, it only focuses on the posterior- 
anterior (PA) view of X-rays, hence it cannot differentiate other views 
of X-rays such as anterior-posterior (AP), lateral, etc. Thirdly, COVID-19 
images comprising multiple disease symptoms cannot be efficiently 
classified. Finally, the performance of our proposed system was not 
compared with radiologists. Hence, a comparison of the proposed sys-
tem with radiologists would be part of a future study. 

Fig. 12. The first, second, and third rows show COVID-19 samples, pneumonia samples and normal samples respectively. Besides, the first column refers to the 
original image; the second and third column refers to heat map and superimposed image for CNN; fourth and fifth column for CNN-LSTM. 

Table 5 
Comparison of the proposed system with existing systems in terms of accuracy and computational time.  

Author Architecture Accuracy (%) Accuracy (COVID-19) (%) Training (s) Testing (s) 

Rahimzadeh et al. [22] Xception + ResNet50V2 91.4 99.6 – – 
Alqudah et al. [23] AOCT-NET 95.2 – – 6.3 
Loey et al. [53] GoogleNet 80.6 100.0 – – 
Ucar et al. [25] COVIDiagnosis-Net 98.3 100.0 2277.6 – 
Apostolopoulos et al. [26] VGG19 93.5 – – – 
Khan et al. [28] CoroNet (Xception) 89.5 96.6 – – 
Kumar et al. [29] ResNet50 + SVM 95.4 – – – 
Hemdan et al. [31] VGG19 90.0 – 2641.0 4.0 
Li et al. [54] DenseNet 88.9 79.2 – – 
Wang et al. [55] Tailored CNN 92.3 80.0 – – 
Asnaoui et al. [56] Incpetion_ResNet_V2 92.2 – 79184.3 262.0 
Chowdhury et al. [57] Sgdm-SqueezeNet 98.3 96.7 – – 
Ozturk et al. [58] DarkCovidNet 98.08 – – – 
Farooq et al. [59] ResNet50 96.2 100.0 – – 
Proposed System CNN-LSTM 99.4 99.2 18372.0 113.0  
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