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ABSTRACT Predominant community-associated methicillin-resistant Staphylococcus
aureus strain USA300 is believed to have originated from an ancestral methicillin-
susceptible strain, although the details of that evolution remain unknown. To help
understand the emergence of this highly successful strain, we sequenced the ge-
nomes of two methicillin-susceptible Staphylococcus aureus clinical strains that are
very closely related to USA300.

The evolutionary origins of the major methicillin-resistant Staphylococcus aureus
(MRSA) clones are still poorly understood, although it is hypothesized that they

repeatedly arose from epidemic methicillin-susceptible S. aureus (MSSA) strains through
acquisition of the mecA gene via horizontal transfer (1–5). The highly successful
community-associated MRSA (CA-MRSA) strain USA300 has become predominant in North
America, causing significant morbidity and mortality (6–12). It is believed to have de-
scended from an ancestral USA500-like MSSA strain through acquisition of multiple mobile
genetic elements (MGEs) and clonal expansion (13, 14). As with the other major MRSA
clones, more work is needed to fully understand its emergence and success. To that end,
we selected two MSSA isolates that are closely related to USA300 for whole-genome
sequencing, with the goal of elucidating the genetic and evolutionary relationships be-
tween these MSSA isolates and the highly successful USA300 MRSA group. Strain H489 was
isolated by our clinical microbiological laboratory from the sputum of a patient from our
local health care region in Calgary, Canada, in 1993, well before our USA300 outbreak
began in 2004. Likewise, strain C3948 was isolated from a patient in 2002, just before the
USA300 outbreak. Multilocus sequence analysis of the isolates indicated that, similarly to
the USA300 outbreak strain, they belonged to sequence type 8 (ST8).

Genomic DNA was isolated by phenol-chloroform extraction of overnight cultures
started from a single colony. Library preparation, DNA sequencing, contig assembly,
and genome circularization were performed at the Génome Québec Innovation Centre
in Montreal, Canada. Sheared large-insert libraries were prepared with Covaris g-TUBES
and the SMRTbell template prep kit 1.0. Sequencing was done using the Pacific
Biosciences (PacBio) RSII sequencing technology, with one single-molecule real-time
(SMRT) cell. Contig assembly was done using the RS Hierarchical Genome Assembly
Process (HGAP) protocol version 2.3.0.140936.p5 (15–17), with read quality controlled
by aligning short reads on longer reads using BLASR (15). The genomes were circular-
ized using Circlator version 1.4.1 and adjusted to the origin of replication (18). Gene
annotation was done using the NCBI’s Prokaryotic Genome Annotation Pipeline version
4.1, using the best-placed reference protein set (GeneMarkS�) (19).
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Two contigs were assembled for MSSA strain C3948 from 85,037 raw reads, covering
1,142,835,600 sequenced bases, with an N50 value of 2,823,074 bp. The estimated genome
coverage was 368�, and the GC content was 32.82%. On the assembled chromosome of
2,795,888 bp, 2,924 genes were identified, of which 2,842 were coding sequences (CDS), 82
were RNA genes, and 76 were pseudogenes. Four contigs were assembled for MSSA strain
H489 from 94,559 raw reads covering 1,215,818,661 sequenced bases, with an N50 value of
2,761,569 bp. The estimated genome coverage was 392�, and the GC content was 32.79%.
On the chromosome of 2,757,748 bp, 2,874 genes were identified, of which 2,789 were CDS,
85 were RNA genes, and 94 were pseudogenes.

A complete analysis is under way to look at the major genetic components in these
MSSA isolates and compare them with those found in MRSA USA300 to help shed light
on the evolutionary path of the highly successful USA300 strain.

Data availability. The chromosomal genome sequences have been deposited at
GenBank under the accession numbers CP020957 (C3948) and CP020959 (H489), with
SRA accession numbers SRX5551895 (C3948) and SRX5552203 (H489).
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