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Abstract: Background: A nanomaterial-based electronic-skin (E-Skin) wearable sensor has been
successfully used for detecting and measuring body movements such as finger movement and
foot pressure. The ultrathin and highly sensitive characteristics of E-Skin sensor make it a
suitable alternative for continuously out-of-hospital lumbar–pelvic movement (LPM) monitoring.
Monitoring these movements can help medical experts better understand individuals’ low back pain
experience. However, there is a lack of prior studies in this research area. Therefore, this paper
explores the potential of E-Skin sensors to detect and measure the anatomical angles of lumbar–pelvic
movements by building a linear relationship model to compare its performance to clinically validated
inertial measurement unit (IMU)-based sensing system (ViMove). Methods: The paper first presents a
review and classification of existing wireless sensing technologies for monitoring of body movements,
and then it describes a series of experiments performed with E-Skin sensors for detecting five standard
LPMs including flexion, extension, pelvic tilt, lateral flexion, and rotation, and measure their anatomical
angles. The outputs of both E-Skin and ViMove sensors were recorded during each experiment
and further analysed to build the comparative models to evaluate the performance of detecting and
measuring LPMs. Results: E-Skin sensor outputs showed a persistently repeating pattern for each
movement. Due to the ability to sense minor skin deformation by E-skin sensor, its reaction time in
detecting lumbar–pelvic movement is quicker than ViMove by ~1 s. Conclusions: E-Skin sensors
offer new capabilities for detecting and measuring lumbar–pelvic movements. They have lower cost
compared to commercially available IMU-based systems and their non-invasive highly stretchable
characteristic makes them more comfortable for long-term use. These features make them a suitable
sensing technology for developing continuous, out-of-hospital real-time monitoring and management
systems for individuals with low back pain.

Keywords: E-Skin sensors; movement detection; wireless sensing technology; monitoring

1. Introduction

Low back pain (LBP) is the leading cause of disability among individuals [1,2]. Lumbar–pelvic
movements have been identified as major risk factors for developing LBP as well as indicators of
LBP rehabilitation progress [3–5]. Assessment of how individuals perform lumbar–pelvic movements
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during the rehabilitation progress could assist with identifying functional limitations and physical
predictors of low back pain, and monitoring treatment outcomes [4]. The ability to assess these
movements in a non-invasive and sensitive way in real-time and out-of-hospital could improve LBP
prevention and treatment [3,4]. According to recent studies [6,7], there are significant differences
between individuals with and without LBP for how the same lumbar–pelvic movement is performed,
based on speed, angle range (range of movement), acceleration, and intensity. These features can be
used to characterise each lumbar–pelvic movement for individuals with and without LBP.

Assessment of the anatomical angle such as the angle of back extension or flexion is essential for the
detection and measurement of lumbar–pelvic movements. Recent growth and advances in mobile and
wireless sensing technologies present an unprecedented opportunity for collecting physiological signals
and body movement data in mobile healthcare and diagnostic medicine. Due to this advancement,
a number of sensing, systems including vision-based systems [8] and IMUs-based systems that can
monitor the angle of body movements, have emerged in the market [9]. One common characteristic of
these systems is to compute the angle by sensing coordinates of different points on a human body in a
three-dimensional space. This data can also be used to calculate the speed, acceleration, and direction
of the angle. Vision-based systems can provide precise and accurate measurements, but their use is
limited to the laboratory setting. Additionally, their costs are relatively high. The IMU-based systems
can be used for out-of-hospital monitoring. Yet, they require the application of multiple IMUs to
provide a relatively accurate and precise measurement. They also need wired or wireless modules
for the communication of each IMU. This can lead to a bulky and rigid packaging, which can be very
uncomfortable for individuals to wear over a long period of time. Moreover, the accuracy and precision
of measurement of the gyroscope in these systems cannot be guaranteed if the speed of movement is
very slow.

Electronic-skin (E-Skin) wearable sensors [10] have recently gained popularity due to their ultrathin,
flexible, stretchable, self-healing, skin mimicking characteristics which enables them to perform
mechanical, chemical, and biophysiological sensing while also being able to attach comfortably to human
skin [10–12]. A plethora of materials, such as conductive polymers, metallic nanomaterials, ionic liquids,
liquid metals, and conductive textile, have been exploited by researchers in fabrication of novel electronic
skins [13,14]. Among the materials mentioned above, high aspect ratio one-dimension (1D) synthetic
nanomaterials (such as metallic nanowire, metal oxide nanowire, and carbon nanotubes [14,15])
could be used to develop highly sensitive and highly stretchable soft electronic skin wearable strain
gauge sensor [16–19]. A number of demonstrations on the capability of these high sensitivity
nanomaterial-based E-Skin wearable sensors have been reportedly used for monitoring pulse signal,
detecting throat, finger, and ankle movement [13,16–18]. Since these sensors can detect minor strains
and skin deformations [16–19], they are not only capable of measuring the angle of anatomical joints,
but also of measuring minor movements of human body that cannot be detected by MEMS-based
sensors such as inertial measurement unit (IMU). With the ability to attach conformally to human skin,
E-Skin sensors can be used to detect subtle human motions such as lumbar–pelvic movements [19–22].
Lumbar–pelvic movements consist of flexion, extension, anterior posterior pelvic tilt, lateral flexion,
and rotation. Detecting and measuring these movements can significantly help medical experts to
collect detailed information to understand the relationship between physical movements and low back
pain from a personalised perspective.

This paper investigates the feasibility of using the state-of-the-art E-Skin sensors to detect five
standard lumbar–pelvic movements including flexion, extension, pelvic tilt, lateral flexion, and rotation,
and measure the change of angles during each movement. Compared to vision-based and IMU-based
systems, E-Skin sensors are more comfortable to wear and offer a higher sensitivity to precisely detect
subtle movements [22]. However, there is limited research reported on the use and validation of
E-skin sensors for detecting and measuring lumbar–pelvic movements. In this paper, we introduce a
method to measure and analyse the patterns of E-Skin sensor outputs (i.e., skin deformation data) for
detecting the lumbar–pelvic movements. To the best of our knowledge, we are the first to carry out
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a detailed experimental study on using E-Skin sensors for lumbar–pelvic movement detection and
measuring. The E-Skin sensor we used has been developed by the Monash University NanoBionics
Group (Melbourne, VIC, Australia) [20]. To validate the performance of E-Skin sensor on detecting
and measuring lumbar–pelvic movements, ViMove (DorsaVi, Melbourne, VIC, Australia) was used as
a golden standard. In previous report [6], 34 participants, including 18 with LBP and 16 without LBP,
were recruited to perform different lumbar–pelvic movements with both ViMove and Vicon systems.
The results showed that there was a clinically acceptable level of agreement between these two systems
in terms of measuring lumbar–pelvic movements.

The contributions of this paper can be summarised as the following: (1) a comprehensive review
and comparative analysis of existing sensing technologies and systems for measuring and detecting
lumbar–pelvic movements, (2) introducing a method to measure and detect lumbar–pelvic movements
including flexion, extension, anterior posterior pelvic tilt, lateral flexion, and rotation, and their
anatomical angles by using E-Skin sensors, and (3) providing recommendations for future research
based on our experimental study.

This paper is organised as follows. In Section 2, existing wireless sensing technologies-based
systems, which can be used for monitoring lumbar–pelvic movements, are reviewed based on our
classification of existing sensing technologies. In Section 3, the design of experiments is described.
In Section 4, results of the exploratory experiment are discussed. In Section 5, the conclusion
is presented.

2. Classification of Sensing Technologies for Body Motion Detection

Existing sensing technologies for detecting and measuring body movements can be classified into
three main categories: vision-based systems, IMUs, and flexible sensors.

2.1. Vision-Based Sensing Systems

Vision-based systems normally consist of high-speed cameras and reflection markers or 3D
cameras [6]. Their operation highly depends on adjusting camera settings, selecting proper lighting
conditions, and the use of video/image processing algorithms. Vision-based systems can be further
divided into two categories of marker-based systems and marker-less systems.

2.1.1. Marker-Based System

Marker-based systems require reflection or transmitting markers for the measurement of physical
movement. It uses infrared optical or high-speed cameras to detect the light reflection of the markers
and measures activity using the computation of the markers’ trajectories in a three-dimensional
space [23]. Based on different settings (e.g., the camera numbers and marker protocols), the accuracy
of the marker-based system can be close to 0.1 mm and the sampling frequency can be as high
as 1000 Hz [24]. This type of systems have been used for many studies such as measuring hand
movements [25] and robotic motion monitoring [26].

Vicon is one of the world-renowned vision-based motion tracking systems which has been used
in a variety of body motion related research and clinical studies, such as [8,27]. The advantage of the
Vicon system is its ability to precisely reconstruct physical movements using markers. In [28], the Vicon
system is proved to have a high accuracy in terms of measuring spinal and hip mobility. It is also the
gold standard used to validate the performance of other motion tracking systems, including inertial
measurement unit (IMU)-based measurement systems and mark-less vison systems [6].

Similar products have also been utilised for studies related to different physical movements,
such as Optotrak Certus motion tracking system [29], MotionAnalysis system [30], and CODA motion
analysis system [31].

Generally, the functions of these commercialised marker-based vision systems are similar.
These systems provide a clinical-level solution for real-time measurement of physical activity. The high
precision of the measurement outperforms other systems, but they have a number of limitations. Firstly,
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the hardware and software are expensive. Secondly, installation of the system is time-consuming
and complicated, particularly for the calibration of the camera position and light condition. Thirdly,
it requires laboratory settings, which limit its use in measuring daily activities. Fourthly, the soft
tissue artefacts, including incorrect marker positioning and skin sliding over the bones, may affect the
measurement accuracy of marker-based systems [23].

2.1.2. Marker-Less System

Marker-less vision-based systems use multi-cameras, IR sensors, or RGB-D cameras in the analysis
of body movements or postures. The analyses could be done with a single image or video clips and do
not require the attachment of markers to individuals.

Microsoft Kinect is a well-known commercialised marker-less motion-capturing system [32].
It consists of a wide-angle motion sensing camera with an IR sensor to construct the depth information
of the image/video. It is primarily designed for tracking joint movements of the human body [33].
Nevertheless, the performance of Kinect is limited by its latency and tracking range [34].

The organic motion system is a similar mark-less vision system with a wide tracking range
compared to Kinect [33]. KinaTrax is another powerful marker-less vision-based posture analysis
system with multiple camera set-ups that can adequately cover an area size of a baseball court [35].

In general, the marker-less based systems are relatively cheaper and easier to setup than the
marker-based systems [35]. However, they provide lower accuracy for real-time movement tracking.
Additionally, the real-time processing performance of the marker-less system is also not as good as the
other sensing systems such as IMU-based systems [36]. With the development of the RGB-D cameras
and image/video processing technology, the marker-less based vision systems may capture more
complex movements and postures analysis in the future. Currently, these systems need sophisticated
lighting conditions to achieve a better performance, so they are not suitable for continuous monitoring
in different environments [36].

2.2. Inertial Measurement Unit (IMU)

IMU consists of accelerometers, gyroscopes, and occasionally magnetometers [9]. With the
development of microelectronic technology, these sensors have become smaller and easier to wear
with high accuracy of measuring body movements [37]. Based on the number and type of the
sensors, they can be further classified into IMU sensor systems and garment integrated sensor systems.
IMU sensor systems include single and dual IMU-based systems. The systems which contain more
than two IMU sensors are categorised under the multiple sensory systems.

2.2.1. IMU Sensor Systems

Single IMU sensor-based systems are mostly designed to monitor the posture and movement
of an individual by placing the sensor on the waist or lower back area [38]. Most of these systems
are bio-feedback systems, such as Spineangel [39], Lumo Lift [40], and Upright posture trainer [41],
designed to help improve the awareness of individuals of their sitting posture or inappropriate
movements. One of their limitations is the difficulty in measuring complex physical movements and
generating detailed information. Thus, combining IMU sensor with Vision-based sensors has become
necessary for real-time sports training tasks [36].

Unlike the single IMU sensor system, the dual IMU sensor-based systems enhance the possibility
of measuring complex movements. Considering that the single IMU device is a single point that
indicates the lumbar–pelvic area, it can only reflect a single point movement in three-dimensional
spaces. However, the lumbar–pelvic area is a soft surface which moves simultaneously with the spine.
Thus, the movement of the two attached points in the dual IMU sensor-based device can be used to
simulate the movement of the spine and indicate the movement of the lumbar–pelvic area.
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Several dual IMU sensor-based systems, designed to measure the lumbar–pelvic movements, exist.
Most of these systems developed for rehabilitation purposes include ViMove [42], Valedo Motion [43],
and RIABLO [44].

ViMove is a commercialised movement monitoring device developed by DorsaVi [42]. It consists
of two IMU sensors, two surface EMG sensors, and one remote recording and feedback device (RFD).
It can measure multiple movements including the lumbar–pelvic area. Additionally, studies have
been conducted on the concurrent validity of ViMove for measuring lumbar region inclination motion
compared with Vicon [6]. ViMove is also used in several other lower back pain related clinical
trials [45,46]. In contrast to Valedo and RIABLO, ViMove offers a means of monitoring daily activities,
which highly enhances its mobility. The raw data of the sensors can be accessed through its application.
Yet, it does not provide direct access to the data captured through APIs in real-time.

In general, the single IMU sensor-based systems are useful for monitoring spinal postures and
lumbar–pelvic movements. By using different advanced algorithms, the IMU can process human
motion data in real-time with good accuracy [47]. Although, numbers of studies have proposed solution
for solving the drift issues in IMU system, the drift error still exists due to the nature of IMU [48–50].
The dual IMU sensor-based systems are highly effective in monitoring lumbar–pelvic movements.
Although these systems do not require complex laboratory settings like the vision-based systems,
they still provide accurate measurement. Presently, the dual IMU sensor-based system is preferable
because of its ability to monitor and measure complex lumbar–pelvic movements. Nonetheless,
they are uncomfortable for long-time use because of their weight and rigidity.

2.2.2. Multiple Sensory System (Garment Integrated Sensor System)

Multiple Sensory systems (Garment integrated sensor systems) use different types of sensors
such as temperature, IMU, ECG, or EMG sensors, which are integrated into garments (e.g., tops, vests,
or sportswear). The integration of these sensors usually creates a small wireless network, known
as body sensor network (BSN), body area network (BAN), or wireless body area network (WBAN).
The IMUs are the sensors, which are used to detect and measure physical movements.

The multi-IMU sensor-based garment systems are designed for the measurement of
three-dimensional human movement. They commonly have 8 to 12 IMU sensor nodes attached
to garments and located on different parts of the human body including the head, shoulder, elbow,
wrist, waist, knee, and foot [51–53]. Since these systems contain multiple nodes, they can measure
different physical activities based on the movements of different body parts. For example, Zishi is
a garment-based sensing system for trunk posture monitoring [54]. The garment is integrated
with accelerometers and gyroscopes which make it capable of detect static and dynamic trunk
movements with high accuracy (<1.5 degree). However, these garment integrated sensors are
expensive, non-washable, and difficult to structure because of the quantity of the IMU sensors [53].
Furthermore, their design has to be personalised for different individuals such as different height and
body measures.

The purpose of garment sensing systems is to use multiple sensors together without compromising
mobility. The advantage is their capacity for data fusion from distinct types of sensors which gather
different data. However, the sweat and body movements from the daily use of garments may trigger
repositioning of the garment and cause errors in the measurement. The calibration of this type of
system is also very complicated [55].

2.3. Flexible Sensors

Flexible sensors refer to sensors which can be flexed or stretched while the body moves. The flexible
sensors are small and easy to integrate with a garment or other skin-contact substrates. There are
two types of flexible sensors. One is plastic optical fibre sensor, which has been used in spine posture
measurements [56,57]. The mechanism of these sensors is to monitor the bend of the structural beams.
However, the plastic optical fibre is not soft enough to be attached to the human body and move as the
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body moves. Therefore, it is better for measuring anatomical joint movements rather than detecting
complex movements such as lumbar–pelvic movements.

The other type flexible sensors are the resistive flex sensors [58]. The principle of resistive flex
sensors is variable resistive characteristics of a conductive material [59]. This type of sensor consists
of three components: the contact, sensor film, and substrate [60,61]. The contact is connected to the
circuit board which detects the changing current. The sensor film is made of a conductive material.
The resistance changes with the deformation of the conductive material. The substrate is the middle
layer between sensor film and human skin. The intrinsic properties of the substrate determine the
flexibility of the sensor. The E-Skin sensor is part of the resistive flex sensors. With the advance
in nanotechnology, the sensitivity and stretchability of conductive material has been significantly
improved. E-Skin sensors are now capable of measuring the slightest movement of the human body.
With flexible integrated circuit boards (such as central processing unit and Bluetooth component),
the sensory data can be wirelessly transmitted to a smartphone for further analysis [62]. Compared to
the IMUs and Vision-based systems, the E-Skin sensor is cheaper, softer, and smaller, which makes it a
suitable alternative for detecting and measuring physical movements. Because of its high sensitivity,
most of studies have used E-Skin sensors to measure subtle body movements such as the movement of
fingers [63,64]. Additionally, human skin is not a plane surface, but the E-Skin sensor can be easily
attached to human skin unlike other existing sensors. Therefore, the soft tissue artefacts can be avoided
by using E-Skin sensor.

The commercially available stretch sensor, StretchSense, is a flexible strain gauge sensor like the
E-Skin sensor we used in this study [65]. However, the StretchSense sensor utilizes capacitive strain
sensing to measure the degree of strain [66]. Capacitive-based strain gauge sensor has a 5-layered
sandwich structure, a dielectric layer sandwiched between two electrode layers and protected by
two protective layers [66]. Compared to StretchSense, the E-Skin sensor utilizes piezoresistive strain
sensing that consists of a 3-layered structure, in which a stretchable conductive layer is protected by
two protective layers (see Figure 1). Therefore, the E-Skin sensor is much thinner than the Stretch sense
sensor and more comfortable to wear, with better accuracy and higher sensitivity. Additionally, the
E-Skin sensor measures the change in electrical resistance so the circuit could be designed simpler
compared to stretch sensors. It only needs a micro-control unit (MCU) with a 12-bit Analog-digital
convertor (ADC) to read the changes in resistance. In [67], a multichannel conductive liquid-based
strain sensor has been introduced. The results show the good performance (mean absolute errors
<8 degree) in tracking joint angles during the gait cycles. However, the conductive liquid-based
sensors may suffer from leakage problems, which makes them not suitable for wearable applications.
The thickness of conductive liquid-based sensors is also much higher than E-Skin sensor. Moreover,
it needs to be mounted on a sensing suit for motion measurement, which makes it less accurate
comparing to the sensors which are directly attached on human body. Then, [68] introduced a similar
strain sensor for human motion detection. Unlike E-Skin sensor, it uses a stretchable carbon nanotube
to measure the 1D strain. The results show it is capable of detecting different human motions, but the
performance of measurement was not reported. Additionally, this type of sensors also needs to be
mounted on stockings or a sensing suit.

2.4. Summary

Based on the review presented, it appears that vision-based systems provide the most accurate
and precise monitoring tool for measuring human body motion. However, they are very expensive,
and require proper camera settings and lighting conditions [27]. They can be only used in a lab
environment, which limits their use for continuous out-of-hospital monitoring. IMU sensor-based
systems are the most common used sensors for out-of-lab physical motion monitoring [69]. IMU sensors
need to be attached to human body using stickers. However, the packaging material of the sensors
are usually made of a rigid plastic that makes them inflexible and bulky [46]. The deformation of the
skin may affect the repositioning of stickers when an individual performs physical activities, and this
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could lead to an inaccurate measurement [70]. Additionally, for monitoring lumbar–pelvic movements,
the placement of the sensor is around the waist of individual. The belt or edge of the clothes (such as
jean trousers) has the potential to affect the measurement if it touches the sensors during the movements.
To achieve accurate results, normally it is necessary to use at least two sensors to detect complex body
movements such as lumbar–pelvic movements [42]. Therefore, the IMU sensor-based system can be
problematic for long-term monitoring.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 28 

 

 
Figure 1. (a) Schematic Illustration of E-Skin Sensor Fabrication; (b) E-Skin Sensor Dimension; (c) E-
Skin Electronic Module Description. 

The mechanical property of the fabricated E-skin sensor was studied by straining the sensor 
from 10% to 100% with increment of 10% using Thorlabs’ motorised linear translation stage and the 
change in electrical resistance was measured and recorded using VersaSTAT 4 Potentiostat 
Galvanostat. As shown in Figure 2a, the signal recorded upon straining the E-skin sensor is relatively 
consistent. The strain-resistance response curve for E-skin sensor under different range of physical 
strain was also investigated and plotted in Figure 2b. The gauge factor (𝐺𝐹) of the E-skin sensor was 
calculated using Equation (1), where R is the electrical resistance of the E-skin recorded upon 
stretching, Ro is the initial electrical resistance of E-skin sensor at rest, and ɛ is the degree of strain 
applied to E-skin sensor. The gauge factor was calculated based on the data plotted in Figure 2a. The 
gauge factor of the strain sensor divided into two sections. At the lower strain of 10% to 30%, the 
gauge factor of the sensor was found to be 0.309 whereas at a higher strain of 30% to 100%, the gauge 
factor was 0.122, which is less sensitive than the E-skin sensor at lower strain. Based on the gauge 
factor calculated, the E-skin sensor was found to have the ability of measuring the strain at a wide 
range of 10% to 100%, which is particularly useful for application such as monitoring bending angle 
of human body posture [45,46]. The durability of the E-Skin sensors was tested by conducting 1000 
cycles of strain test at 30% strain, which is shown in Figure 2c. The outputs of the sensor fluctuate 
slightly in the initial stage and stabilised after 1000 cycles of strain. After 1000 cycles, the E-Skin sensor 
performance remained stable and was able to fully return to its original value when being released 
after strain (shown in Figure 2d), which proves its durability and reliability. Hence, prior to the trial, 
the freshly fabricated E-Skin sensors will always be pre-strained for 1000 cycles as a “learning” 
process for the E-Skin sensors. Since the E-Skin sensor uses graphite microflakes hybrid conductive 
network, its performance will not be affected by any chemical reactions such as oxidation during the 
lumbar–pelvic movement detection [73]. However, to ensure the sensing accuracy, each E-Skin sensor 
was only used once on each participant for one experiment session. 

𝐺𝐹 = 1𝜀 ∙ 𝑅 − 𝑅଴𝑅଴  (1) 
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Garment-integrated sensing systems are another option to attach multiple sensors on human
body. However, they are heavy and uncomfortable to wear for a long period of time and are usually
non-washable [71]. They can also suffer from the same repositioning problem that stickers have when
an individual performs movements [53].

E-Skin sensors (resistive flex sensors) provide a suitable solution for detecting and measuring
lumbar–pelvic movements. Compared to vision-based systems, they are much cheaper, and do not
require a great deal of effort in setting up the equipment. Unlike other flexible sensors [57], they are soft
and stretchable enough to attach to any human skin surface conformally. This reduces the repositioning
problem of IMU sensors. They can also detect the slightest movement of the skin which can be used to
determine the movement and subcomponents of the movements. Based on this comparative analysis,
we concluded that E-Skin sensors have a great potential for out-of-lab lumbar–pelvic movement
detection and measuring which is a focus of this paper. A detailed comparison of existing sensing
systems for human motion detection and measurement is given in Table 1.

Table 1. Comparison of Existing Human Motion Sensing Systems.

Vison-Based System Inertial Measurement Unit Flex Sensor

Technology Marker-based
Systems

Marker-less
Systems Single IMU Dual IMUs Multiple

Sensory Optical Fiber Conductive
Material

Products Vicon; CODA;
Optotrak Kinect; KinaTrax Lumo Lift;

Upright ViMove; Valedo ZiShi [34,35] Strechsense;
E-Skin

Measurements 3D Coordinates Structural
beams

Skin
Deformation

Mobility In-lab Limited Range Out-of-lab

Pros
High Precision
and Accuracy;
Gold Standard

Easy to Setup;
Less Expensive

Low Cost;
Continuous
out-of-lab

monitoring;
Easy to Setup

Continuous
out-of-lab

monitoring;
Measure

complex human
motions

Continuous
out-of-lab

monitoring;
Multi-sensory

data fusion

Garment-integrable;
Long-term
monitoring

Long-term
Monitoring;
Lower Cost;

Measure
complex activity

Cons

In-Lab Setting;
Expensive;
Sensitive to

lighting
conditions; Soft
tissue artefacts

Limited Range;
Sensitive to

lighting
conditions

Measure simple
human motions;
Lower Accuracy

Expensive;
Bulky

Soft tissue
artefacts;

Non-washable;
Complex

calibration
process

Measure simple
activity;

Complex setting

Durability;
Complex

modelling
process
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3. Materials and Methods

We have designed and fabricated E-Skin sensors for detecting and measuring all the five types
of lumbar–pelvic movements, including flexion, extension, pelvic tilt, lateral flexion, and rotation.
The following subsections discuss the details of these experiments.

This research has been approved by Monash University Human Research Ethics Committee.

3.1. Instrumentation and Data Collection

E-Skin sensors are fabricated based on a graphite microflake hybrid conductive network-based
strain sensor and the illustration of the fabrication process is shown in Figure 1a. In short,
copper nanowires ink and graphite microflake ink were formulated and painted in U-shape on
latex substrate. A silver paste is applied on both ends of the U-shaped strain sensor and attached
to the electronic module. Lastly, the strain sensor is encapsulated with liquid latex and the whole
device is packaged between two layers of Elastoplast stretchable sports kinesiology tape. The sports
kinesiology tape is hypoallergenic and can be directly attached to human skin. The length and width
of the fabricated device is 10 cm and 2.5 cm, respectively, with the maximum thickness of the device
being 0.5 cm as shown in Figure 1b.

As shown in Figure 1c, the core of the electronic module is an nRF51822 Bluetooth Low Energy
(BLE) system-on-chip from Nordic semiconductor [72]. A voltage regulator is used to regulate input
voltage to 3.3 V to power the BLE SoC (System on a Chip) and the strain sensor. The other terminal of
the strain sensor is connected to the analog pin of the BLE SoC.

The mechanical property of the fabricated E-skin sensor was studied by straining the sensor
from 10% to 100% with increment of 10% using Thorlabs’ motorised linear translation stage and the
change in electrical resistance was measured and recorded using VersaSTAT 4 Potentiostat Galvanostat.
As shown in Figure 2a, the signal recorded upon straining the E-skin sensor is relatively consistent.
The strain-resistance response curve for E-skin sensor under different range of physical strain was
also investigated and plotted in Figure 2b. The gauge factor (GF) of the E-skin sensor was calculated
using Equation (1), where R is the electrical resistance of the E-skin recorded upon stretching, Ro is
the initial electrical resistance of E-skin sensor at rest, and ε is the degree of strain applied to E-skin
sensor. The gauge factor was calculated based on the data plotted in Figure 2a. The gauge factor of
the strain sensor divided into two sections. At the lower strain of 10% to 30%, the gauge factor of the
sensor was found to be 0.309 whereas at a higher strain of 30% to 100%, the gauge factor was 0.122,
which is less sensitive than the E-skin sensor at lower strain. Based on the gauge factor calculated,
the E-skin sensor was found to have the ability of measuring the strain at a wide range of 10% to
100%, which is particularly useful for application such as monitoring bending angle of human body
posture [45,46]. The durability of the E-Skin sensors was tested by conducting 1000 cycles of strain
test at 30% strain, which is shown in Figure 2c. The outputs of the sensor fluctuate slightly in the
initial stage and stabilised after 1000 cycles of strain. After 1000 cycles, the E-Skin sensor performance
remained stable and was able to fully return to its original value when being released after strain
(shown in Figure 2d), which proves its durability and reliability. Hence, prior to the trial, the freshly
fabricated E-Skin sensors will always be pre-strained for 1000 cycles as a “learning” process for the
E-Skin sensors. Since the E-Skin sensor uses graphite microflakes hybrid conductive network, its
performance will not be affected by any chemical reactions such as oxidation during the lumbar–pelvic
movement detection [73]. However, to ensure the sensing accuracy, each E-Skin sensor was only used
once on each participant for one experiment session.

GF =
1
ε
·
R−R0

R0
(1)
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The E-Skin sensor data is collected wirelessly via smartphone, and the sample rate of 15 Hz for
each E-Skin sensor to fit the throughput of smartphone BLE transmission. The user-interface of the
data collection mobile application is shown in Figure 3. This application can connect to 3 E-Skin
sensors at the same time. The main functions of this application include data transmission control
module, data processing module, local storage control module, and real-time data visualisation module.
The data transmission control module contains two commands: start/end data transmission and E-Skin
sensor labelling. The user can use these two commands to directly control all connected E-Skin sensors
to start and end the data transmission simultaneously and label different connected E-Skin sensor
with user-designated name such as left, right, and centre. Once the application receives the data
streams (including timestamp and data value), data processing module allocates each data stream from
different E-Skin sensor into separated buffers (The length of the data buffer is set to be 15 bytes based
on the sample rate) based on the Bluetooth identifiers (UUID). For this android application a simple
Kalman filter Java class was implemented for data smoothing [74]. Based on the empirical experiences,
suitable values for the initiation of the filter were: measurement uncertainty (r) = 4, estimate uncertainty
(p) = 4, process variance (q) = 0.05. The current estimation and estimate uncertainty update were
calculated based on the following formulas, where k stands for Kalman gain.

k =
p

(p + r)
(2)

current estimation
= last estimation + k ∗ (measurement− last estimation)

(3)

p = (1− k) ∗ p + |last estimation− current estimation| ∗ q (4)
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Then the processed data buffers are sent to the local storage control module and real-time data
visualisation module, respectively. The local storage control module creates text files for each data
stream and stores the timestamps as well as the corresponding data values. The real-time data
visualisation module displays the processed data in a dynamic line chart with user-designated labels.

ViMove (DorsaVi, Melbourne, Australia) was used as a golden standard for the evaluation of
E-Skin sensors’ performance on lumbar–pelvic movement detection. ViMove is a clinically validated
instrument for monitoring lower back movements [6]. As shown in Figure 4, ViMove system consists
of 4 parts: the upper and lower motion sensors (located at L1 and PSIS), the left and right surface EMG
sensors (located at each side of the spine around L3), recording and feedback device and monitoring
software programs. The ViMove suite also includes a low back fitting template to help the user to easily
position the sensors on the body according to their height. The template is also shown in Figure 4.
The EMG sensors are used to assess the muscle activities, and therefore, in our experiments we did not
use these sensors. The sample rate of ViMove is 20 Hz. The outputs of ViMove can be collected using
ViMove data collection software on a PC. Table 2 compares E-Skin to ViMove based on seven criteria.
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Table 2. Comparison of E-Skin sensor and ViMove.

E-Skin ViMove

Physical Property Soft Rigid
Measurement Skin Deformation 3D Coordinates
Connectivity Bluetooth 4.0 (BLE) 2.3 Ghz Frequency

Data Collection Device Smartphone/Tablet PC
Clinical Validation NO YES

Battery Life 1 week 24 h
Price AUD $10~15 each module * (* not yet available for public sale) AUD $10,000 (Hardware and Software)
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3.2. Study Design and Experimental Procedure

Lumbar–pelvic movements refer to the lower back area movements that include flexion, extension,
lateral flexion, anterior posterior pelvic tilt, and rotation. These movements can be performed by
individuals during different physical activities. 6 participants (including 2 males and 4 females aged
22–30 years with height 159–183 cm, weight 47–120 kg, and 2 of them have LBP history in the past
6 months) were recruited in this experiment as our aim initially was to analyse skin deformation
data and compare to ViMove data in order to develop a method for detecting the five lumbar–pelvic
movements. The participants were instructed to perform the five standard lumbar–pelvic movements
based on the low back pain patients’ rehabilitation assessment process [5]. These five lumbar–pelvic
movements follow the biomechanical standards and widely used by medical experts to assess the lumbar
movements performed by different individuals [75]). Each participant performed each movement for
5 times and repeated the entire experiment for 3 times. After performing each lumbar–pelvic movement
(LPM), participants had to return to their static position (i.e., standing in a relaxed manner) for a few
seconds before continuing to do the next movement. Participants could choose to withdraw or stop to
rest at any time during the experiments. Altogether, we have collected 15 times of each lumbar–pelvic
movements. In order to make the experiment comparable to real life scenario, participants were
instructed to perform the LPMs at any speed with any bending or turning angles. We had utilised the
regions of spine as human back landmarks to indicate the locations of sensor placement. As shown
in Figure 5, adults have 24 separate vertebrae including 7 cervical vertebrae from the neck (C1–C7),
12 thoracic vertebrae from the upper back (T1–T12) and 5 lumbar vertebrae from the lower back
(L1–L5). The top E-Skin sensor was attached vertically around T3–T7 and the bottom one was attached
vertically around L1–L5 as shown in Figure 6d. The ViMove lower motion sensor was attached along
the line of posterior superior iliac spine (PSIS). PSIS of the participant was measured by palpation.
The placement of the ViMove motion sensors were based on the ViMove templates. The placement of
E-Skin sensor was informed by the consultation with the medical experts involved in this research.
This sensor placement has been identified to produce the maximum E-Skin sensor output during the
performance of flexion, extension and pelvic tilts. In this paper, we present our analysis with one
participant because there is no significant difference between participants with and without LBP in
terms of the lumbar–pelvic movement data pattern [76]. The participant was instructed to repeat
each movement 5 times at the same speed as possible. Figure 6 (a–c) show the flexion, extension,
and anterior posterior pelvic tilt, respectively.
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ViMove and E-Skin sensors use two different sampling frequency. The frequency of ViMove data
is generally slightly lower than 20 Hz (19.0–19.8 Hz), and the E-Skin sampling rate is around 15 Hz.
In order to compare the outputs of these two sensors, we calculated the average of data points per
second for each sensor. For example, the ViMove collected 19 data points in 1 s and E-Skin sensor A, B,
C received 14, 15, and 16 data points in the same second, respectively. We summed all data points in
this second for each sensor and divided the sums by the numbers of the data points of each sensor.
This allowed us to compare their average values using the same timestamp. Since the participants
were instructed to perform movements slowly, this downsampling procedure would not affect the
subsequent analysis.

3.3. Results Analysis

During our experiments, five sets of output sensor data was collected from both ViMove and
E-Skin simultaneously while the participant was performing flexion, extension, pelvic tilt, rotation,
and lateral flexion (See Figure 6d).

The E-Skin sensor raw signal output range from 0 to 4096 Analog-to-Digital Units (ADU) [77].
The value decreases when the E-Skin stretches. In order to clearly depict the changes in E-Skin outputs,
we converted the absolute E-Skin output into the change in electrical resistance for the E-Skin sensor
for comparison rather than the raw signal output. The absolute E-Skin output was calculated by
using E-Skin raw signal output to determine a baseline value. The baseline value was calculated as
an average of E-Skin raw signal outputs for a static standing position when E-Skin sensor was at its
original length and not stretched. In this experiment, we used 5 s of data to calculate the average
output (i.e., baseline value). The change in electrical resistance value was calculated by Equation (5),
where reference voltage for 4096 ADU is 3.3 V and the current supplied is 5 mA.

Y =
X

4096
× 3.3÷ 0.005 (5)

Linear regression was applied to model the mapping between E-Skin and ViMove outputs because
our results showed that the skin stretch increased as the lumbar–pelvic angle increased (during flexion
or extension), and there was a potential linear relationship between the outputs of E-Skin and ViMove.
The linear relationship between the two variables can be presented as formula in Equation (6). Let X be
the independent variable (E-Skin outputs in normalised resistance value), and Y be the dependent
variable (ViMove outputs). In this work, we used the quadratic loss function in Equation (7) to calculate
the loss of the model and least-squares method in Equations (8) and (9) to minimize the loss. pi refers
to the points on the regression line. x and y are the mean values of input X and the desired output Y.

Y = mX + c (6)

L(x) =
∑n

i=1
(yi − pi)

2 (7)
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m =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2 (8)

c = y−mx (9)

The model is trained based on 10 times of each lumbar–pelvic movements’ data and tested on the
other 5 times lumbar–pelvic movements’ data. Mean absolute error (MAE) of the two measurement
systems (E-Skin sensor and ViMove) is used to measure the angular displacements.

To further illustrate the statistical significance, a two-tailed test was added and the p-Value with
a significance level of 0.01 was considered to determine the statistical significance of our results.
This paper uses the 15 times of each lumbar–pelvic movement to calculate the p-Value. However,
the data quantities of each participant are different because they conducted the experiments at
different speed.

The data analysis of each experiment is described in the following subsections.

3.3.1. Flexion Result Analysis

The E-Skin measurement for the flexion movement is shown in Figure 7. The y-axis on the
left represents the E-Skin sensor output. The y-axis on the right represents the ViMove output.
The unit of ViMove output is the degree of anatomical angles and the unit of E-Skin sensor output is
Analog-to-Digital Units (ADU) [77]. The x-axis represents time and the unit is second. The orange line
represents the outputs of ViMove. The green line represents the outputs of the bottom E-Skin sensor
and the blue line represents the outputs of the top E-Skin sensor.
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Figure 7. Data Outputs of Flexion.

For each flexion, as the orange line shows, the bending range of the participant is from 0 degrees
(standing straight) to roughly 55 degrees (bending to the maximum position). The participant stayed
at the maximum forward flexion position for approximately 10 s. In this work, we instructed the
participants to self-report standing straight when they are at their tallest position. It can be seen that
outputs of both bottom (green line) and top (blue line) E-Skin sensors data fluctuated synchronously
with the changes in ViMove outputs. The E-Skin sensor outputs show a clear pattern associated with
each flexion. It can also be found that both bottom and top sensors were capable of detecting the
start of each flexion prior to the ViMove because the back skin stretched before the movement started.
This period of time can be considered as the transition between the standing and flexion positions.

In order to analyse the response time difference between ViMove and E-Skin outputs, we calculated
a threshold of ±3 degrees for ViMove outputs and a threshold of ±6.9 in resistance change for E-Skin
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output based on a relatively linear relationship between ViMove and the bottom E-Skin sensor outputs.
We calculated the changes between sensor outputs while the participant was standing straight and
performing flexion. If the changes in sensor outputs exceeded the thresholds, we considered the
point as the start of a flexion. The average difference between response times of two sensors was
approximately 1 s. We measured the unit of the response time difference in seconds because we
computed the average of the outputs of E-Skin and ViMove in seconds as discussed earlier. The results
show that E-Skin sensor can measure flexion movement faster than ViMove does. This might be due
to the slimline design (maximum thickness of 5 mm) and lightweight (2 g), which allows the soft
and highly stretchable E-skin sensor to adhere conformally to the curvilinear skin surface [78,79],
reducing the inertial effect during movements as compared to the bulkier (100.6 mm in width, 30.4 mm
in length, and 9 mm in height) and 20-fold heavier ViMove. Besides, the conformal attachment of
E-skin sensors to skin surface also avoid the drifting errors that IMU-based sensor has, which allows
more accurate measurement of strain [80].

We applied linear regression to model the mapping between E-Skin outputs and ViMove outputs.
Our results show that R square of linear regression for the data collected from the bottom E-Skin sensor
is higher than the R square for the data from the top E-Skin sensor. The R square of linear regression
using both sensors is 0.2% higher than the R square for the bottom E-Skin sensor. The results are the
same considering the adjusted R square. Additionally, the p-Value for both top and bottom E-Skin
sensor outputs is statistically highly significant (p < 0.001). This indicates that both top and bottom
E-Skin outputs have relatively linear correlations with the trunk flexion angles, but the bottom ones
are more appropriate for flexion angle measurement. The details of comparison results are shown in
Table 3. The data quantities of calculating these p-Values of flexion are 363.

Table 3. Linear regression comparison for flexion.

Independent R R2 Adjusted R2 Significance (2-Tailed)

Top E-Skin Outputs 0.843 0.711 0.708 p < 0.001
Bottom E-Skin Outputs 0.954 0.910 0.909 p < 0.001

Both 0.955 0.912 0.911

Table 2 results also show that the E-Skin sensor can be used for detecting the flexion with high
accuracy based on clear and repeating patterns in the output. It also shows that the bottom E-Skin
sensor’s position is the suitable position for measuring the flexion. This experiment was conducted on
one participant, the mapping model can be improved by collecting data from a larger populated group
and considering adding more features such as age, height, weight, BMI, and skin characteristics.

As the experiments progressed, the differences between the maximum outputs of top and bottom
E-Skin sensors and the participant’s maximum forward flexion angle for each flexion became relatively
small. However, the differences between minimum outputs of top and bottom E-Skin sensors and
the participant’s standing straight angle increased after each flexion. In Figure 2, we had conducted
1500 times cyclic strain test and the result showed that after 1000 times strain training, the sensor
performance appeared to be consistent. However, the drift appeared when the sensor was mounted
on individuals, and this had been consistently occurring. We believe that this is an issue with the
adhesives when sticking on individuals with different skin types, particularly dry skin, sweaty skin,
and individuals with a lot of dead skins and this causes the sensor to not mount properly and slide
against the skin when being stretched.

Based on the model, the E-Skin sensor anatomical angle outputs of flexion are generated as shown
in Figure 8. It can be seen that E-Skin sensor angle outputs are very close to the actual angles (ViMove
outputs). The MAE of the two measurement systems is 5.105 degrees.
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Figure 8. Anatomical Angle Outputs Comparison (Flexion).

3.3.2. Extension Result Analysis

The results of our experiment to detect and measure extension are presented in Figure 9. As the
figure shows, each extension started at 0 degrees (standing straight) and ended at around −12 degrees
(extend to maximum position). Unlike the results of flexion, the participant did not extend to the
maximum position for every extension.
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Figure 9. Data Outputs of Extension.

The lowest extension angle is from −10 degrees to −17 degrees. The reason is because the
extension requires an individual to put their head back and look at the ceiling. During this movement,
an individual might only put their head back rather than extending the lumbar spine (low back) to
the maximum position. Results show E-Skin sensor outputs do not closely fluctuate in line with the
changes of ViMove outputs but there is a clear pattern for each extension. There are two regular spikes
of top E-Skin sensor outputs (blue line) at the start and the end of each extension. There is also a notable
variation in the output of the bottom E-Skin sensor when moving from the extension position to a
standing straight position. The peak point of the bottom E-Skin sensor’s outputs at the second extension
is lower than the other extensions which could be related to the extension angle. Similar patterns can
also be found in other extensions. Additionally, the highest value of the bottom E-Skin sensor outputs
changes according to the participant’s maximum extension angle in each extension. These regularities
in data patterns can be used to detect an extension based on E-Skin outputs [81].
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Similar to other movements, linear regression was applied to analyse E-Skin and ViMove outputs.
As shown in Table 4, the R square of linear regression for extension is considerably lower than results for
flexion. This can be attributed to the following reasons. First, the relationship between the extension’s
angle and the lower back area skin deformation is not linear. Second, the two positions (top and
bottom) may not be the optimal positions for detecting the extension. The other possible positions
could be tested to increase the accuracy of measurement. Despite this, the results still show that
the p-value of top E-Skin outputs is statistically significant and E-Skin sensor can be used to detect
extension based on repeating patterns in the E-Skin outputs. The data quantities of calculating these
p-Values of extension are 327.

Table 4. Linear regression comparison for extension.

Independent R R2 Adjusted R2 Significance (2-Tailed)

Top E-Skin Outputs 0.318 0.101 0.090 0.004
Bottom E-Skin Outputs 0.183 0.033 0.021 0.107

Both 0.320 0.102 0.079

Based on the model, the E-Skin sensor anatomical angle outputs of extension are generated as
shown in Figure 10. The MAE of the two measurement systems is 4.509 degrees. Although the MAE is
lower than flexion, the angle outputs of E-Skin sensors for extension are not close to the actual angle
outputs (ViMove outputs), as expected based the linear regression analysis.
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3.3.3. Anterior and Posterior Pelvic Tilt Result Analysis

The pelvic tilt consists of anterior and posterior pelvic tilt. The data outputs of the anterior and
posterior pelvic tilt are shown in Figure 11. The figure shows that there is an obvious rise and fall
patterns in both sensor outputs when the participant performs pelvic tilt. Yet, the data patterns for
pelvic tilt are different compared to flexion and extension results. The top E-Skin sensor outputs
fluctuate according to the changes of pelvic tilt, while the bottom sensor outputs show two spikes at
the start and the end of each pelvic tilt.

The repeatability of E-Skin sensor output is not high enough for detecting pelvic tilt compared
to the previous two experimental results. The pelvic tilt requires the participant to tilt their pelvis
anteriorly and posteriorly. These movements involve excessive subtle motions that are very difficult to
repeat in the exact same way each time. Skin deformation data captured by E-Skin sensor reflect these
minor changes and make it hard to achieve consistent repeatability.
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Figure 11. Data Outputs of Pelvic Tilt.

The results of linear regression for modelling the mapping between E-Skin outputs and ViMove
outputs are similar to extension (see Table 5). However, the top E-Skin sensor outputs demonstrate a
statistically highly significant correlation with the ViMove sensors outputs with an R square value
at 62.9% (p < 0.001), while the bottom E-Skin sensor shows significantly lower results. This can be
addressed by investigating and determining optimal sensor placement on the body to achieve higher
sensing accuracy. The data quantities of calculating these p-Values of pelvic tilt are 476.

Table 5. Linear regression comparison for pelvic tilt.

Independent R R2 Adjusted R2 Significance (2-Tailed)

Top E-Skin Outputs 0.793 0.629 0.625 p < 0.001
Bottom E-Skin Outputs 0.128 0.016 0.007 0.196

Both 0.796 0.633 0.626

Based on the model, the E-Skin sensor anatomical angle outputs of pelvic tilt are generated as
shown in Figure 12. The MAE of the two measurement systems is 3.154 degrees. The MAE of the pelvic
tilt is also lower than flexion. However, it can be seen that E-Skin sensors have a better performance on
measuring posterior pelvic tilt than anterior pelvic tilt. The reason for this is because the current sensor
placement of bottom E-Skin sensor is not capable of fully capturing anterior pelvic tilt movement.Sensors 2020, 20, x FOR PEER REVIEW 18 of 28 
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3.3.4. Lateral Flexion and Rotation Analysis

Lateral Flexion and Rotation are the other two standard lumbar–pelvic movements. Lateral flexion
involves the torso bending movement in the lateral direction (i.e., in sideward). Rotation refers to
the up-torso rotation towards the right or left side while the pelvic area stays still. These movements
are more complex than flexion, extension, and pelvic tilt. Based on the E-Skin sensor settings (e.g.,
the number of sensors and their placement) that we used in the previous three experiments, these two
movements cannot be detected with acceptable precision. Therefore, as shown in Figure 13, we had to
use two additional E-Skin sensors which were positioned diagonally at both sides towards the inferior
angle of the participant’s right and left scapula (ISA) while standing straight. This sensor placement is
identified by the same procedures as the previous one.
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Lateral Flexion

The results of our experiments using E-Skin sensors and ViMove for left and right lateral flexion
are shown in Figures 14 and 15, respectively. The orange line still represents the outputs of ViMove.
The red and purple lines represent the outputs of left and right E-Skin sensors.
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Figure 14. Data Outputs of Left Lateral Flexion.

The rise and fall patterns in ViMove data shown in Figure 14 represent a single left lateral flexion
movement. Figure 15 shows an opposite pattern for the right lateral flexion movement. E-Skin sensors’
outputs and ViMove outputs clearly show repeating similar patterns. Both left and right E-Skin sensor
outputs fluctuate according to the changes in the lateral flexion movement. Yet, for the left lateral
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flexion, the range of the right E-Skin sensor outputs are higher than the left sensors’ outputs, and for
the right lateral flexion, the left E-Skin sensors show higher output values.
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Figure 15. Data Outputs of Right Lateral Flexion.

The linear regression results for modelling the mapping between E-Skin outputs and ViMove
outputs shows that both left and right E-Skin sensor outputs have a statistically highly significant
correlation (p < 0.001) with the actual anatomical angle (ViMove outputs). Tables 6 and 7 show the
results for left and right lateral flexion respectively. The results of the mapping models for left and right
E-Skin sensors are different for left and right lateral flexion in an opposite way. The data quantities of
calculating these p-Values of left and right lateral flexion are 198 and 229, respectively.

Table 6. Linear regression comparison for left lateral flexion.

Independent R R2 Adjusted R2 Significance (2-Tailed)

Left E-Skin Outputs 0.817 0.667 0.665 p < 0.001
Right E-Skin Outputs 0.832 0.692 0.690 p < 0.001

Both 0.893 0.798 0.796

Table 7. Linear regression comparison for right lateral flexion.

Independent R R2 Adjusted R2 Significance (2-Tailed)

Left E-Skin Outputs 0.798 0.637 0.635 p < 0.001
Right E-Skin Outputs 0.496 0.246 0.243 p < 0.001

Both 0.804 0.646 0.643

Based on the model, the E-Skin sensor anatomical angle outputs of left and right lateral flexion
are generated as shown in Figures 16 and 17, respectively. The MAEs of the two measurement systems
are 2.863 degrees and 5.039 degrees, respectively. The E-Skin sensor has a relatively good result on
both left and right lateral flexion.

Rotation

The results of the left and right rotations are shown in Figures 18 and 19. The ViMove outputs
are represented by the orange lines. The patterns of the left and right rotation are similar to the left
and right lateral flexion movements, but the difference is that there is a rise in the right E-Skin sensor
outputs before the left E-Skin sensor outputs when the participant performs left rotation. In contrast,
left E-Skin sensor outputs show a fall in the data values before the right sensor when the participant
performs right rotation. Based on this clear and repeating trend, the rotation can be clearly detected.
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Figure 18. Data Outputs of Left Rotation.
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Figure 19. Data Outputs of Right Rotation.

The results of linear regression of modelling the mapping between E-Skin outputs and ViMove
outputs are consistent with our findings based on Figures 18 and 19. As shown in Table 8, the right
E-Skin outputs have a stronger relationship with the actual anatomical angle (ViMove outputs) while
there is a relatively weak relationship between left E-Skin outputs and the anatomical angle when the
participant performs left rotation. Similar results were also found in right rotation analysis (see Table 9
summary of the comparison). The data quantities of calculating these p-Values of left and right rotation
are 193 and 209, respectively.

Table 8. Linear regression comparison for left rotation.

Independent R R2 Adjusted R2 Significance (2-Tailed)

Left E-Skin Outputs 0.110 0.012 0.005 p < 0.001
Right E-Skin Outputs 0.747 0.558 0.555 p < 0.001

Both 0.768 0.590 0.584

Table 9. Linear regression comparison for right rotation.

Independent R R2 Adjusted R2 Significance (2-Tailed)

Left E-Skin Outputs 0.843 0.710 0.709 p < 0.001
Right E-Skin Outputs 0.483 0.233 0.229 p < 0.001

Both 0.843 0.711 0.708

Based on the model, the E-Skin sensor anatomical angle outputs of left and right lateral flexion
are generated as shown in Figures 20 and 21 respectively. The MAEs of the two measurement systems
are 5.679 degrees and 7.001 degrees, respectively. The E-Skin sensors’ performances on measuring left
and right rotations are relatively better than extension. However, the E-Skin sensors’ angle outputs
have a larger MAE compare to left and right lateral flexion. The largest angular difference of the two
measurement systems for both left and right rotations can be more than 15 degrees.

3.3.5. Summary (Cross Lumbar–Pelvic Movement Analysis)

Based on the previous analytical results, the detection and measurement of flexion, extension,
and pelvic-tilt are mainly based on the top and bottom sensors. Among which, each E-Skin sensor
plays different roles: (1) the bottom E-Skin sensor is important in measuring flexion angle, (2) The
top E-Skin sensor is essential for the detection and measurement of pelvic-tilt. The existing sensor
placement is not suitable for measure extension. In lateral flexion and rotation analysis, it can be
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seen that the right and left sensors are more important. According to these findings, we can draw
a conclusion that vertical sensor placement on human back is suitable for detecting and measuring
sagittal plane related movements. However, different sagittal plane movement may require different
vertical positions for sensors. On the other hand, sloping or horizontal sensor placements are more
suitable to detect and measure the movements which are performed in coronal and transverse planes.
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4. Discussion

4.1. Principle Results

In this study, the potential of using E-Skin sensors (resistive flex sensor) to detect and measure
lumbar–pelvic movements was identified through a detailed classification and comparison of existing
human motion sensing technologies. Our experimental results confirmed that these stretchable and
highly sensitive sensors were capable of measuring five lumbar–pelvic movements and could be used
for detecting these movements based on their obvious repeating patterns. The performance of E-Skin
sensors was evaluated against the ViMove outputs as a clinically tested gold standard. We applied
linear regression to model the mapping of E-Skin outputs to the actual movement angles captured by
ViMove. We found that E-skin sensor was capable of measuring simple anatomical joint movements
such as trunk flexion. The results also showed the E-Skin had a quicker response to movement changes
than the IMU-based sensor systems. It was also able to measure flexion movement faster than ViMove.
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Overall, our results show that E-Skin sensors have the potential for continuous detection and
measurement of lumbar–pelvic movements in out-of-lab settings. They can be used as part of low back
pain management and monitoring systems to assist individuals during their rehabilitation.

4.2. Study Limitations

In this study, we were able to model the mapping of the E-Skin outputs to actual anatomical
joint angles in lumbar–pelvic movements, but this mapping can be further improved. The aim of
this study is to explore the potential of using E-Skin sensor as an alternative for the lumbar–pelvic
movement detection and measurement. Only limited numbers of participants were recruited in this
study. Considering the individual variability in skin deformations when establishing the mapping
model, different individuals may have different skin characteristics (e.g., loose and tight), age, height,
weight, and BMI. These personalised factors need to be taken into consideration during the modelling.
More experiments with different participants who have different skin characteristics and back shapes
are needed to collect a wide range of real data for establishing a generic robust mapping model to
accurately detect and measure different body movements.

5. Conclusions and Future Work

E-Skin sensors have become a new trend in the field of wearable sensors and body motion
detection [82]. However, current studies use the E-Skin sensors for measuring movements such as
the motion of the throat muscles [83] or fingers [64]. There is a lack of studies that consider using
E-Skin sensors for detecting and measuring lumbar–pelvic movements. In the meantime, the need
for continuous and out-of-hospital monitoring and management of low back pain propels the use of
low-cost and comfortable wearable sensors.

The human body is not a rigid and plain surface, and the lumbar spine shape varies from
individual to individual. Traditional IMU-based sensors (e.g., ViMove) are attached to the human skin
by using medical tapes [42]. Because IMU-based sensors are not stretchable, there may be deviations
from the original sensor placement after the individual performs body movements which may lead to
measurement errors [70]. Compared to the IMU-based sensors, E-Skin sensors are stretchable and can be
attached comfortably to different types and shapes of human skin. Comparing to vision-based sensing
system, E-Skin sensor also was identified to be much more comfortable for long-term monitoring
and does not have the soft tissue artefacts. These characteristics makes it a suitable alternative for
continuous out-of-hospital monitoring of such movements. The experimental results of this paper
prove that the vertical placement of the E-Skin sensors on human back is capable of measuring sagittal
plane related movements such as flexion. The horizontal/inclined placements of E-Skin sensors on
human back is suitable for measuring coronal and transverse plane related movements such as lateral
flexion and rotation. Therefore, the E-Skin sensor had great potential to detect the features of different
lumbar–pelvic movements and measure anatomical joint angles.

For future work, we intend to conduct the experiments on a larger population. We also plan
to consider different combinations of the multiple sensor placements. Because skin deformations
do not provide any information about the dimension (i.e., the directions of body movements in
three-dimensional space), multiple sensors with the optimal sensor placements may provide valuable
information for selecting more effective data fusion techniques to model the three-dimensional
movements. Different machine learning algorithms and data fusion methods such as SVM, Decision Tree,
and kNN [84] need to be explored and tested for establishing a robust and accurate mapping model.
We also plan to also extend our work to other types of body movements including knee bending, ankle
rotation, and neck flexion.
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