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The diagnostic evaluation and clinical characterization of rare 
hereditary anemia (RHA) is to date still challenging. In particular, 
there is little knowledge of the broad metabolic impact of many 

of the molecular defects underlying RHA. In this study we explored the 
potential of untargeted metabolomics to diagnose a relatively common 
type of RHA: pyruvate kinase deficiency (PKD). In total, 1,903 unique 
metabolite features were identified in dried blood spot samples from 16 
PKD patients and 32 healthy controls. A metabolic fingerprint was iden-
tified using a machine learning algorithm, and subsequently a binary 
classification model was designed. The model showed high perform-
ance characteristics (AUC 0.990, 95% CI: 0.981-0.999) and an accurate 
class assignment was achieved for all newly added control (n=13) and 
patient samples, (n=6) with the exception of one patient (accuracy 
94%). Important metabolites in the metabolic fingerprint included gly-
colytic intermediates, polyamines and several acyl carnitines. In general, 
the application of untargeted metabolomics in dried blood spots is a 
novel functional tool that holds promise for the diagnostic stratification 
and studies on the disease pathophysiology in RHA. 
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ABSTRACT

Introduction 

The group of rare hereditary anemias (RHA) includes a large variety of intrinsic 
defects of red blood cells and erythropoiesis. Our knowledge of the pathophysi-
ology of RHA has recently vastly improved, powered by genetic testing and sub-
sequent increased knowledge of underlying molecular defects.1-4 However, in a 
substantial number of patients, the clinical phenotype does not fit classical disease 
criteria, the response to therapy is unexpectedly poor, or a molecular defect can-
not be identified.5-7 In addition, in patients with well-described genetic defects, 
there is often no clear genotype-phenotype correlation.7-9 

Pyruvate kinase deficiency (PKD; OMIM 266 200), the most common red cell 
glycolytic enzyme defect, is no exception in this respect. The clinical phenotype 
of PKD varies widely, from well-compensated hemolytic anemia to severe hemol-
ysis and neonatal mortality. Currently the diagnosis of PKD relies on the meas-
urement of PK activity and/or the identification of homozygous or compound 
heterozygous mutations in the PKLR gene.10,11  

However, in a significant number of patients only one mutation is identified. In 
addition, the exact mechanisms leading to reduced lifespan of PK-deficient ery-
throcytes are still largely unknown. Thus, in order to improve the diagnostic eval-
uation as well as our understanding of PKD pathophysiology and the genotype-
to-phenotype correlation, novel functional tests are needed. 

In this study we demonstrate the potential of untargeted metabolomics in dried 



blood spots (DBS) in the diagnostic evaluation of PKD 
and report for the first time a metabolic fingerprint for 
PKD.  

 
 

Methods 

Samples 
Sixteen patients diagnosed with PKD based on clinical pheno-

type, enzyme activity assays and molecular defect were includ-
ed. Healthy controls (HC; institutional blood donor service) 
served as controls. All patients or their legal guardians approved 
the use of remnant samples for method development and valida-
tion, in agreement with institutional and national regulations. 
All procedures followed were in accordance with the ethical 
standards of the University Medical Center Utrecht and with the 
Helsinki Declaration of 1976, as revised in 2000. In order to 
obtain DBS, 50 microL aliquots of blood were spotted onto 
Guthrie card filter paper (Whatman no. 903 Protein Saver TM 
cards). Filter paper was left to dry for at least 4 hours at room 
temperature, and subsequently stored at -80⁰C in a foil bag with 
a desiccant package pending further analysis. 

Metabolic profiling 
Sample preparation, direct infusion high resolution mass 

spectrometry (DI-HRMS) and data processing was performed 
as previously reported.12,13 Mass peak intensities for metabolite 
annotation were averaged over technical triplicates. In addition, 
as DI-HRMS is unable to separate isomers, mass peak intensi-
ties consisted of summed intensities of these isomers. 
Metabolite annotation was performed using a peak calling 
bioinformatics pipeline developed in R programming software, 
based on the human metabolome database (version 3.6) 
(https://github.com/UMCUGenetics/DIMS). This resulted in 
3,835 metabolite annotations corresponding to 1,903 unique 
metabolite features.14  

In order to compare the metabolic profiles between HC and 
PKD, mass peak intensities for each identified feature were con-
verted to Z-scores. These scores, based on metabolic control 
samples that were added to each DI-HRMS run,  were calculated 
by the following formula: 

 
Z-score = (mass peak intensity of patient or HC sample - mean 

mass peak intensities of metabolic control samples)/standard deviation 
mass peak intensities of metabolic control samples* 

 
*Metabolic controls exist of a batch of banked DBS samples 

from individuals in whom an inborn error of metabolism (IEM) 
was excluded after an extensive diagnostic workup.  

Data analysis 
T-test and multivariate analysis were conducted in 

MetaboAnalyst.15 Classification of data was performed in R soft-
ware (Version 3.6.1) using the caret package, which contains a 
set of data processing functions that facilitate the generation of 
predictive models. Support vector machine (SVM) with linear 
kernel was used for the classification of HC and PKD samples. 
SVM algorithms use a set of mathematical functions that are 
defined as the kernel. The function of kernel is to take data as 
input and transform it into the required form, for example a lin-
ear or polynomial kernel. We applied SVM with a linear kernel, 
the simplest kernel function, to perform the classification of HC 
and PKD. SVM with linear kernel is a supervised machine learn-
ing model that uses a classification method, which is based on 
mapping the data into a high dimensional space.  

This allows the separation of two groups of samples into dis-
tinctive regions by the identification of a small fraction of sam-
ples that separates the groups, also referred to as ‘support vec-
tors’. Separation can be achieved by identifying a separating 
hyperplane, or decision boundary, between the support vec-
tors.16 Classification of the test set was determined by projecting 
each of the new samples into this space. Data and R code are 
available upon request. 

 
 

Results  

Explorative untargeted metabolomics analysis  
A total of 1,903 unique metabolite features (and their 

respective isomers) were analyzed for 16 PKD patients 
and 32 HC samples. Clinical and laboratory characteris-
tics, and baseline comparison are summarized in Table 1. 
The most significant differences between the groups, 
identified by a t-test, included glycolytic intermediates 
like phosphoenolpyruvic acid and 2-/3-phosphoglyceric 
acid, polyamines (spermidine and spermine) and several 
acyl carnitines (methylmalonylcarnitine and propionyl-
carnitine) (Figure 1A). Broad data exploration to assess 
the variation between samples and separation between 
groups was performed by unsupervised principal compo-
nent analysis (PCA) and supervised partial least square 
discriminant analysis (PLS-DA), the latter taking group 
label into account as a response variable. Both analyses 
revealed close clustering of control samples and a more 
heterogeneous delineation for PKD patients (Online 
Supplementary Figure S1).  

Machine learning algorithm identifies metabolic  
profile for PKD 

In order to explore the potential of this extensive meta-
bolic fingerprint in predicting PKD a binary classification 
model was constructed using an SVM with linear kernel. 
SVM has advantages over PLS-DA with regard to robust-
ness to outliers, resistance to overfitting and predictive 
power.16 An optimal hyperplane to separate classes based 
on all metabolomics data was determined by cross valida-
tion (4-fold, five repeats). The final model had high per-
formance characteristics with an average accuracy of 96%.   

In addition, receiver operator characteristic curves with 
area under the curve (AUC) were used as performance indi-
cator (Online Supplementary Figure S2A). Important features 
for classification in this model include the polyamines sper-
midine and spermine, as well as phosphoenolpyruvic acid, 
2-/3-phosphoglyceric acid and glutathione (Figure 1B). 
Most of these features were increased in PKD, with the 
exception of glutathione and asparaginyl-proline/prolyl-
asparagine (Figure 1C). 

Metabolic profile predicts new samples with high 
accuracy   

External model validation was performed by predicting 
new control (n=13) and PKD samples (n=6). This resulted in 
accurate prediction for all controls, and all but one patient 
(accuracy =94%) (Figure 1D). In order to assess uncertainty 
of the model and its predictive ability, bootstrap resampling 
was applied to the complete dataset. By randomly generat-
ing training and validation (test) data from the original data, 
a similarly high prediction performance was achieved, sup-
porting the validity of the presented model (Online 
Supplementary Figure S2B). 
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Metabolic profiles reflect PKD disease severity  
In order to explore the heterogeneity of PKD metabolic 

profiles in relation to clinical phenotype, PCA and PLS-
DA were performed for the entire group of patients and 
controls. Based on presence of spleen and transfusion fre-

quency phenotypes were distinguished as mild, moder-
ate and severe. Most resemblance to controls in metabol-
ic profile was clear for mild phenotypes, followed by 
severely affected patients (Online Supplementary Figure 
S4).  

B. van Dooijeweert et al.

2722 haematologica | 2021; 106(10)

 Table 1A.Clinical characteristics of pyruvate kinase deficiency patients and baseline comparison to healthy controls 
 Age             Sex           Hb            RBC         Retics        WBC          Plts 
 (yrs)                       (mmol/L)   (x1012/L)    (x109/L)    (x109/L)   (x109/L)      Treatment            Allele 1                                             Allele 2 

 65                female           6.4                2.84             1014              7.3              576            splenectomy;         c.1178A>G; p.(Asn393Ser)                    not identified  
                                                                                                                                                  no current 
                                                                                                                                                  treatment  
 2                  female           4.8                2.59              343              13.4             345            regular                    c.331G>A; p.(Gly111Arg)                       c.331G>A; p.(Gly111Arg) 
                                                                                                                                                  transfusions 
 6                  female           6.6                3.79              431              10.6             645            splenectomy;         c.331G>A; p.(Gly111Arg)                       c.331G>A; p.(Gly111Arg) 
                                                                                                                                                  sporadic 
                                                                                                                                                  transfusion 
 51                female           9.1                5.26              37.8              4.97             188            no current              c.1456C>T; p(Arg486Trp)                       c.1529G>A; p.(Arg510Gln) 
                                                                                                                                                  treatment 
 28                  male             5.0                2.27             1011             21.1              ND            splenectomy;         c.1073G>A; p.(Gly358Glu)                     c.1073G>A; p.(Gly358Glu) 
                                                                                                                                                  sporadic 
                                                                                                                                                  transfusion 
 29                female           6.3                2.99              180               7.1              239            no current              c.142_159del; p.(Thr48_Thr53 del)    c.1269G>A; p.(?) 
                                                                                                                                                  treatment 
 23                female           6.3                2.52              ND              10.0             696            splenectomy;         c.1269G>A;                                               c.1654G>A;  
                                                                                                                                                  no current              p.(Met373_Ala423del;0)                        p.(Val553Met) 
                                                                                                                                                  treatment  
 35                  male             6.2                3.45              198               5.5              179            no current              c.194T>C; p.(Met65Thr)                        c.721G>T; p.(Glu241*) 
                                                                                                                                                  treatment 
 48                female           4.1                1.79              694               9.8              657            splenectomy;         c.1462C>T; p(Arg488*)                          c.1529G>A; p(Arg510Gln) 
                                                                                                                                                  no current  
                                                                                                                                                  treatment  
 25                  male             8.4                3.76              627              12.4             732            splenectomy;         c.142_159del; p.(Thr48_Thr53 del)    c.494G>T(p.Gly165Val) 
                                                                                                                                                  no current  
                                                                                                                                                  treatment  
 48                  male             5.4                2.18              945              13.1             876            splenectomy;          c.376-2A>C; p. (?)                                  c.1529G>A;  
                                                                                                                                                  no current                                                                                   p. (Arg510Gln) 
                                                                                                                                                  treatment 
 21                  male             7.2                3.60              181               5.5              245            no current              c.390_392het_delCAT; p.(Ile131del)   c.1456C>T; p(Arg486Trp) 
                                                                                                                                                  treatment 
 51                female           5.6                2.86              950              12.3             719            splenectomy;         c.507+1G>A; p.[=;0]                              c.1436G>A; p.(Arg479His) 
                                                                                                                                                  regular  
                                                                                                                                                  transfusions 
 24                  male            ND                ND               ND               ND              ND            splenectomy;         c.694G>T; p.(Gly232Cys)                       c.1529G>A;  
                                                                                                                                                  no current                                                                                   p. (Arg510Gln) 
                                                                                                                                                  treatment 
 20                female           7.2                3.60              112               6.4              186            regular                    c.1529G>A; p.(Arg510Gln)                    c.1705C>T;  
                                                                                                                                                  transfusions                                                                                p.(Arg569Trp)** 
 46                  male             7.6                3.74              204               6.0              327            no current              c.1121T>C; p.(Leu374Pro)                    c.1706G>A; p.(Arg569Glu) 
                                                                                                                                                  treatment 
 Normal range*                                 7.4-10.7        3.6-5.5         25-120       4.0-13.5         150-450                      
 *Age and sex-dependent; **a third and rare mutation (c. 1639C>T; p(Arg547Cys)) with uncertain pathogenicity was identified in this patient. 
 
 Table 1B. Baseline comparison to controls. 
                                                       PKD                               HC 

 Age (years)                                       32.6 ± 17.4                         38.9 ± 12.8 
 Hb (mmol/L)                                    6.41 ± 1.35                          9.12 ± 0.7 
 Retics (x109/L)                               494.8 ± 367.5                       58.6 ± 22.4 
 Median time to DBS (hours)             2.33                                      2.21 

(A) Clinical characteristics of pyruvate kinase deficiency (PKD) patients regarding age, sex, 
hemoglobin (Hb), red blood cell count (RBC), reticulocyte count (Retics), white blood cell 
count (WBC), platelets (Plts), treatment and genetic diagnostics. Regular transfusions are defined 
as ≥6 per 12 months. ND: not determined. (B) Comparison of age, Hb, Retics and time between 
blood withdrawal and spotting (time to dried blood spots [DBS]) between healthy controls (HC) 
and PKD patients. Data are presented as mean ± standard deviation, except for time to DBS which 
is presented as the median.
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Discussion 

In this study we performed untargeted metabolomics 
on DBS and report for the first time a metabolic disease 
fingerprint for PKD. By establishing a predictive machine 

learning model, the diagnostic potential of this approach 
was demonstrated. This metabolic fingerprint has poten-
tial to mature into a powerful clinical tool, capable of con-
firming or ruling out the diagnosis of PKD. However, the 

Figure 1.  Continued on the following page.
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limitations of machine learning models were also demon-
strated by the incorrect classification of one PKD patient 
who was homozygous for the common p.(Arg510Gln) 
mutation.17 Clinically, this patient exhibited very mild 
phenotypic features. As confirmed by the clinical severity 
PLS-DA, patients with a mild phenotype and controls 
overlap most in their DBS metabolome (Online 
Supplementary Figure S4). Since approximately 30% of the 
initial cohort consists of such mildly affected patients, 
this could further explain why PCA and PLS-DA were 
unable to achieve separation between groups.  

Interestingly, severely affected patients who are heavily 
transfused (>6 erythrocyte transfusions in the past 12 
months) despite having undergone a splenectomy, still 
showed a clearly distinctive metabolic profile compared 
to HC and two of them were furthermore correctly 

assigned as patients (Figure 1D; Online Supplementary 
Table S1). Although numbers are modest and further stud-
ies are needed, this indicates that this approach is reliable 
even in the setting of transfusions. 

Our approach using untargeted metabolomics provides 
novel insights regarding the broad metabolic impact of 
PKD that could be relevant to better understand the etiol-
ogy of PKD-related symptoms. While glycolytic metabo-
lites and their disturbance have been characterized to 
some extent, little is known regarding the broad scale 
impact of PKD on metabolism. In this respect, the identi-
fication of novel distinctive metabolites, such as 
polyamines, which have been found to stabilize the red 
blood cell (RBC) plasma membrane,18 and acyl carnitines, 
which are involved in turnover and repair of the RBC 
membrane,19 are promising starting points for further 
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Figure 1. Univariate and multivariate analysis of untargeted metabolomics data 
from pyruvate kinase deficiency patients and healthy controls. (A) Heatmap of top 
35 significant features identified by t-test (P-value cutoff =0.05). The heatmap was 
created using Euclidean ward clustering with autoscaling of features. (B) Top 20 
important features represented as percentage identified by support vector machine 
classification. As isomers could not be distinguished using direct infusion high reso-
lution mass spectrometry (DI-HRMS), the annotated numbers near the important fea-
tures indicate the amount of isomers. In addition, letters in the footnote correspond 
to the following isomers:  a)  N8-acetylspermidine, b) 1,4-butanediammonium, c) 3-
phosphoglyceric acid; 2-phospho-D-glyceric acid; (2R)-2-hydroxy-3-(phosphona-
tooxy)propanoate, d) alanyl-glutamine; alanyl-γ-glutamate; glutaminyl-alanine; γ-glu-
tamyl-alanine, e) MG(16:1(9Z)/0:0/0:0), f) asparaginyl-alanine; glutaminyl-glycine; 
glycyl-glutamine; glycycl-γ-glutamate; γ-glutamyl-glycine, g) N-acetyl-D-glucosamine; b-
N-acetylglucosamine; N-acetyl-b-D-galactosamine; N-acetylmannosamine, h) N-
acetyl-a-neuraminic acid, i) prolyl-asparagine. (C) Boxplots of each feature showing Z-
scores for control and pyruvate kinase deficiency (PKD) groups, respectively. (D) 
Confusion matrix for the prediction of additional samples by the support vector 
machine (SVM) model.
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studies of the PKD pathophysiology.  
We here report for the first time a metabolic profile for 

PKD obtained from dried whole blood spots. This profile 
resembles the integrated disease specific metabolome to 
a greater extent compared to the exclusive investigation 
of the red blood cell metabolome.20,21  

In addition, this analysis requires only 50 mL of whole 
blood and can be obtained in a minimally invasive man-
ner by sampling a single blood drop, making it very 
attractive for (international) sample exchange. Further 
advantages of DI-HRMS include relatively uncomplicated 
sample extraction steps and a short run-time of 3 minutes 
per sample.  

The rise of ‘omic’ approaches in the recent past has pro-
vided new opportunities for understanding and classify-
ing a wide range of disorders. In contrast to conventional 
medical biology approaches, which focus on individual 
genes, proteins or metabolites, modern biology regards 
diseases as a complex, dynamic and especially integrated 
network.22 Our study, demonstrates the potential diag-
nostic application of untargeted metabolomics for PKD. 
However, the current model was constructed for the 
binary classification of healthy controls and PKD patients. 
Future applications, including more samples from various 
types of RHA could enable the development of an algo-
rithm which is suited for the broader differential diagno-
sis of RHA in patients.   

In conclusion, we demonstrate by proof of principle for 
PKD, that untargeted metabolomics in DBS is a novel 
functional tool to identify disease fingerprints and study 
the pathophysiology in RHA.   

This approach opens up a novel area of diagnosis and 
research in the field of RBC disorders and has the poten-
tial to improve diagnostic evaluation and clinical manage-
ment of patients.  
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