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Although the hypothesis that nestedness determines mutualistic ecosystem dynamics is accepted in general,
results of some recent data analyses and theoretical studies have begun to cast doubt on the impact of
nestedness on ecosystem stability. However, definite conclusions have not yet been reached because previous
studies are mainly based on numerical simulations. Therefore, we reveal a mathematical architecture in the
relationship between ecological mutualistic networks and local stability based on spectral graph analysis. In
particular, we propose a theoretical method for estimating the dominant eigenvalue (i.e., spectral radius) of
quantitative (or weighted) bipartite networks by extending spectral graph theory, and provide a theoretical
prediction that the heterogeneity of node degrees and link weights primarily determines the local stability;
on the other hand, nestedness additionally affects it. Numerical simulations demonstrate the validity of our
theory and prediction. This study emphasizes the importance of ecological network heterogeneity in
ecosystem dynamics, and it enhances our understanding of structure–stability relationships.

E
cological communities consist of a number of species that are connected via interspecific interactions, such
as trophic and mutualistic relationships. Their structure and dynamics are significant in ecology, because
they are not only important in the context of basic scientific research but also in the context of applied

ecology1,2. In particular, the nature of the structure–stability relationship is a long-standing question1–5. In this
context, eigenvalue analysis, which reflects how a dynamical system resting at equilibrium responds to perturba-
tions, has been widely used when discussing the local stability of ecosystems1,6.

Ecological communities are often represented as networks7,8. Previous network analytical studies have revealed
that plant–animal mutualistic systems exhibit a non-random structural pattern: nested architecture7, which
occurs when the interaction pairs of a certain (specialist) species form a subset of those of another (generalist)
species in a hierarchical fashion. Importantly, nestedness is believed to influence ecological dynamics. Nestedness
may minimize competition and increase biodiversity in mutualistic networks9, and it emerges as a result of an
optimization principle aimed at maximizing species abundance10. Moreover, nestedness promotes the resilience
and persistence of mutualistic networks, although it inhibits them in predator–prey networks11. The extinction of
species, which contributes to the emergence of nestedness in mutualistic networks, decreases the persistence of
ecosystems12.

However, several recent studies have begun to cast doubt on the importance of nestedness. For example, nested
architecture can be more easily acquired than previously thought13. Staniczenko et al.6 demonstrated that nest-
edness can be concluded in binary networks (i.e., presence 1, or absence 0, of a given link), but not in quantitative
or weighted networks. Moreover, they used a spectral graph approach to show that the largest eigenvalue of a
community matrix determines nestedness. James et al.14 reported that biodiversity in mutualistic communities is
described by the number of mutualistic partners a species has (i.e., node degree) rather than nestedness. Jonhson
et al.15 mathematically showed that nestedness can result from the heterogeneity of degree distributions.

Heterogeneities of degree distributions for binary networks and strength (i.e., the sum of neighbors’ link
weights) distributions for quantitative networks are significant properties in wide-ranging real-world networks,
including mutualistic networks16, and they influence the dynamics on the networks such as synchronization17,18,
controllability19, epidemics of infectious diseases20, and so on (see21 for a review).

However, it is poorly understood whether nestedness or the heterogeneity of degree (or strength) distributions
is most important for explaining the dynamics of mutualistic ecosystems, because the previous studies reviewed
above were mainly based on numerical simulations. Therefore, in this study, we investigate the impact of
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structural properties (e.g., heterogeneity and nestedness) on local
stability (i.e., the dominant eigenvalue) of mutualistic ecological
communities in greater detail. In particular, we propose a theoretical
method — the Semicircle Plus Twins Method — for estimating the
dominant or largest eigenvalue of both binary and quantitative
bipartite networks. We do this by extending the superelliptical law
for large-scale unipartite binary networks22, because it is not directly
applicable to either binary or quantitative bipartite networks. We
also confirm the validity of this theoretical method using numerical
simulations. In addition, we apply this estimation method to 40
empirical mutualistic networks, and evaluate the effect of structural
properties on the local stability of mutualistic communities using
null model analysis. The proposed method and numerical simula-
tions show that the local stability of mutualistic ecosystems is deter-
mined by heterogeneous properties rather than topological
nestedness such as NODF and WNODF (see Methods for details).

Results
Theoretical estimation of the dominant eigenvalue of bipartite
networks. We here introduce analytical methods for estimating
the dominant eigenvalue of both binary and quantitative bipartite
networks and reveal a relationship between the dominant eigenvalue
and structural properties.

Thus far, several important laws for estimating eigenvalues have
been reported. In particular, Wigner’s semicircle law23,24 is well
known.

Wigner’s semicircle law states that the density of real eigenvalues,
obtained from a large symmetrical random matrixA, follows a semi-
circular (half-moon) distribution whenA satisfies the following con-
straints: 1) the elements are sampled from a zero mean distribution
(i.e., E Aij

� �
~0Þ and 2) A is dense (i.e., as s R ‘, sc R ‘, where s

corresponds to the number of nodes and c corresponds to the con-
nectance, defined as c 5 L/[s(s 2 1)], where L is the number of
directed links).

Furthermore, Allesina et al.22 generalized the semicircle law under
the condition that A is sparse (i.e., as s R ‘, sc R k, where k is a
constant), and they proposed the semi-superellipse distribution:

Pr l~xð Þ~P xð Þ~ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rð Þn{xnn

p
4 2rð Þ2C 1z1=nð Þ2C 1z2=nð Þ{1 , ð1Þ

where the parameters r and n need to be estimated using different
equations (see22 for details).

Wigner’s semicircle law can be considered as a particular case of
the semi-superellipse law when n 5 2. In this case in particular, the
semi-superellipse distribution is equivalent to the semicircle distri-
bution:

Pr l~xð Þ~P xð Þ~
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rð Þ2{x2

q
2rð Þ2p

: ð2Þ

However, when E Aij

� �
=0, we cannot directly consider the semi-

superellipse distribution (i.e., Equation (1)) for estimating the real
eigenvalue density of A for bipartite networks. In particular, a pre-
vious study22 emphasized the importance of a modification of the
semi-superellipse law in order to consider non-negative matrices
(i.e., those with entries greater than or equal to 0).

For example, the semi-superellipse law cannot explain the tend-
ency in non-negative matrices for the dominant eigenvalue l1 to
increase faster than the second eigenvalue l2 in Erdős-Rényi (ER),
scale-free, clustering random graphs25,26. In particular, the spectral
gap, defined as l1/l2, grows with increasing network complexity (i.e.,
increasing c), indicating the detachment of l1 from the rest of the
eigenvalues. In this context, a previous study22 considered l1 sepa-
rately from a semi-superellipse distribution (see Equation (S23) in

Ref. 22) when estimating the dominant eigenvalue of a unipartite
network (i.e., non-negative matrix).

We here demonstrate that the detachment of l1 is also observed in
bipartite networks. A bipartite network or graph contains s nodes
(species) that are classified into two disjoint sets, A (animals in pol-
lination or seed dispersal networks) and P (plants), and has L/2
undirected links that are drawn between nodes in set A and nodes
in set P only (i.e., there are no links between nodes belonging to the
same set)6. Binary networks can be represented as an adjacency
matrix A, in which Aij~1 if i and j are connected and 0 otherwise.
For quantitative or weighted networks,Aij has a positive value g (0,
‘) if species i has a mutualistic interaction with species j. The largest
(real) eigenvalue of A (i.e., spectral radius) is also known as the
dominant eigenvalue l1. As an example, we consider a bipartite ER
random network that consists of P 5 A 5 s/2 nodes and L/2 edges, in
which L/2 edges are drawn between randomly selected plant and
animal nodes, avoiding duplicate edges. As shown in Figure 1, the
spectral gap l1/l2 increases when the average species degree Ækæ 5 L/
(2s) increases.

In contrast to the case of unipartite networks, bipartite networks
are well-known to have symmetrical eigenvalue distributions. In
particular, bipartite networks have no triangles (i.e., 3-node cliques)
because of its definition. Thus, the traces of odd powers of A equal
zero: tr Azð Þ~0, where z 5 3, 5, 7, …. Further, the odd raw moment
mz of the eigenvalue distribution of A equals zero because
mz~tr Azð Þ. Therefore, the eigenvalues obtained from both binary
and quantitative bipartite networks follow a symmetrical distri-
bution with zero mean.

We highlight two features of eigenvalue distributions obtained
from bipartite networks: 1) the detachment of l1 from the bulk of
the eigenvalues and 2) its symmetrical distribution with zero mean.
These properties suggest that the smallest eigenvalue 2l1 is also
detached from the bulk of the eigenvalues.

Thus, we assume that the eigenvalue distribution of A are
described by a semi-superellipse plus two detached eigenvalues: the
largest eigenvalue l1 and the smallest eigenvalue 2l1. A numerical
simulation using bipartite ER random graphs has demonstrated that
these assumptions (i.e., features 1) and 2) explained above) in eigen-
value distributions are suitable. As shown in Figure 2, the density of
eigenvalues follows a semi-superellipse plus twins distribution when
networks are sparse. When the connectance increases, the density of
eigenvalues converges to a semicircle plus twins distribution, a par-
ticular case of the semi-superellipse plus twins law when n 5 2.

We confirm that these assumptions are also satisfied in empirical
mutualistic networks: all eigenvalues fall in a symmetric distribution,
while the largest and smallest ones are found far from the mean
eigenvalue. (Figure 3; see also Supplementary Figs. S1 and S2).

With consideration for the two features of bipartite networks,
evaluated from numerical simulations, the previous methods22 can
be easily extended to bipartite networks. In particular, we propose
two methods for estimating the dominant eigenvalue of bipartite
networks: the Semi-superellipse Plus Twins and Semicircle Plus
Twins methods, respectively.

We here only briefly introduce our estimation methods. Detailed
derivations of the following equations and a description of the sym-
bols are given in the Supplementary Information.

As do previous methods22, the semi-superellipse plus twins
method also assumes that the bulk of the eigenvalues follow a
semi-superellipse distribution. Since bipartite networks have a sym-
metrical relationship between the largest and smallest eigenvalues
(i.e., l1 and 2l1), the even z-th trace is described as

tr Azð Þ~ s{2ð Þ|mzz2lz
1, ð3Þ

where mz denotes the z-th raw moment of a semi-superellipse distri-
bution (Equation (1)). This equation is an extension of the previous
method (i.e., Equation (S23) in22) considering the existence of twin
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eigenvalues (i.e., l1 and 2l1). In addition, the odd z-th traces equals
zero because of the nature of bipartite networks.

According to the previous method22, we thus need to solve the
following simultaneous equation to estimate the dominant eigen-
value l1.

tr A2� �
~ s{2ð Þ|m2 r,nð Þz2l2

1

tr A4� �
~ s{2ð Þ|m4 r,nð Þz2l4

1,

tr A6� �
~ s{2ð Þ|m6 r,nð Þz2l6

1

8><
>: ð4Þ

where

m2 r,nð Þ~
Ð 2r
{2r x2P xð Þdx~

2
nð Þ!C 3

nð Þ
1
nð Þ!C 4

nð Þ
r2

m4 r,nð Þ~
Ð 2r
{2r x4P xð Þdx~

16C 2
nð ÞC 5

nð Þ
3C 1

nð ÞC 6
nð Þ

r4,

m6 r,nð Þ~
Ð 2r
{2r x6P xð Þdx~

16C 2
nð ÞC 7

nð Þ
C 1

nð ÞC 8
nð Þ

r6

8>>>>>><
>>>>>>:

ð5Þ

In this study, we estimate l1 in addition to r and n using the Nelder–
Mead method because Equation (4) may not be explicitly solvable.

When n 5 2, the semi-superellipse plus twins method is equivalent
to the semicircle plus twins method. In this method, we thus assume
that the bulk of the eigenvalues fall in a semicircle distribution. In
particular, we need to solve the following simultaneous equation to
estimate the dominant eigenvalue l1.

tr A2� �
~ s{2ð Þm2z2l2

1

tr A4� �
~ s{2ð Þm4z2l4

1,

(
ð6Þ

where m2 and m4 denote the 2nd and 4th raw moments of a semicircle
distribution (Equation 2), respectively.

In semicircle distributions, m2 5 r2 and m4 5 2r4; thus, the solution
of Equation (6) is as follows:

l2
1<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr A4� �

2
{

tr A2� �2

s

s
z

2tr A2� �
s

when s?0ð Þ: ð7Þ

Using the this equation, we can discuss the relationship between the
network parameters and dominant eigenvalue because the traces of a
matrix correspond to the network parameters as follows.

In the binary case, tr A2� �
~L, and tr A4� �

~2Hk{LzC4, where

L~
Xs

i~1
ki. Here, ki corresponds to the number of neighbors of

node i (i.e., node degree), Hk~
Xs

i~1
k2

i denotes the sum of squared

node degrees, reflecting the heterogeneity of the node degrees, and C4

is the number of four-link cycles (i.e., squares) and indicates the
extent of clustering in a bipartite network.

Taken together, Equation (7) can be rewritten as follows:

l2
1<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hk{

L
2

z
C4

2
{

L2

s

r
z

2L
s
: ð8Þ

On the other hand, in the quantitative case, tr A2� �
~W2 and

tr A4� �
~2Hq{W4z~w4C4, where Hq~

Xs

i~1
q2

i . Here, qi~X
j[n ið Þw

2
ij corresponds to the strength of i, where n(i) is the set of

neighbors of node i. Furthermore, W2~
Xs

i~1

Xs

j~1
w2

ij, and

W4~
Xs

i~1

Xs

j~1
w4

ij, where wij denotes link weight of between

nodes i and j. The average of the product of link weights in four-link
cycles is indicated by ~w4.

In this case, Equation (7) can be rewritten as follows:

l2
1<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hq{

W4

2
z

~w4C4

2
{

W2ð Þ2

s

s
z

2W2

2
ð9Þ

Comparison with empirical mutualistic networks. To evaluate the
validity of our estimation methods, we compared the predicted and
observed dominant eigenvalues for 40 mutualistic ecological
networks (see Methods). We considered both binary and
quantitative networks. In this study, quantitative networks are
defined as preference matrices generated using the method of6 (see
Methods).

Figure 1 | Increase of the spectral gap with network complexity. The spectral gap is defined as l1/l2. Network complexity indicates the network size s and

average degree Ækæ in bipartite random networks. l1/l2 is averaged over 100 realizations.
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Similarly to a previous study22, we also considered a simple estima-
tion method by Chung et al.27, in which the dominant eigenvalue in a
binary network is described as l1 5 Æk2æ/Ækæ (i.e., the average of the
squared degrees divided by the average degree). Chung’s approxi-
mation is satisfied when the minimum degree is not too small com-

pared to the mean degree; in addition, this approximation method
has been independently obtained by Nadakuditi and Newman28

using free probability theory. Chung’s approximation method can
be extended to quantitative cases: l1 5 Æq2æ/Æqæ (i.e., the average of the
squared strengths divided by the average strength).

Figures 3 and 4 (see also Supplementary Figs. S1 and S2) show that
our methods are better than Chung’s method in terms of the relative
error between estimated and observed values. In addition, the pre-
diction accuracy of the semi-superellipse plus twins method is higher
than that of the semicircle plus twins method.

The semicircle plus twins and Chung et al. methods are simpler
than the semi-superellipse plus twins method. In particular, the
semi-superellipse plus twins method requires a numerical method
in order to obtain the dominant eigenvalue because Equation (4) may
not be explicitly solvable, although the other methods can explicitly
estimate the dominant eigenvalue. Because of the simplicity and high
validity of the semicircle plus twins method, we use this method
when discussing the relationship between structural properties such
as Hq and the dominant eigenvalue in the following sections.

Theoretical predictions for local stability of mutualistic networks.
We here discuss the local stability of mutualistic ecosystems using
our estimation method.

As briefly explained in the introduction, local stability analysis is
often useful for evaluating the resilience of a dynamical system at
equilibrium to perturbations. According to a previous study6, in
particular, the local stability can be interpreted as follows. When
an equilibrium point is stable, then the system returns to that point
despite small perturbations. For unstable equilibrium points, small
perturbations will move the system away from the original fixed
point. The stability at an equilibrium point is completely determined
using the real parts of the community matrix eigenvalues. In particu-
lar, the equilibrium point is stable when all eigenvalues are negative.

Equation (8) shows that the dominant eigenvalue of binary bipart-
ite networks strongly depends on the heterogeneity of node degrees
(i.e., Hk). Equation (9) demonstrates that the dominant eigenvalue of
quantitative bipartite networks is strongly affected by the heteroge-
neities of node strengths and link weights (i.e., Hq and W2, respect-
ively). In addition to this, the number of four-link cycles C4 is also a
determination factor.

We investigate the effect of these structural features on local
stability (i.e., the dominant eigenvalue). In particular, null model
analyses are useful for evaluating the effect of structural features on
the local stability (see Methods for details). We consider four null
models (see Methods and Supplementary source code for details), all
randomized networks generated from an empirical quantitative net-
work (i.e.,M). In particular, Null model 1 (NM1) is used to invest-
igate the impact of the allocation to link weights on the networks.
Null model 2 (NM2) and Null model 4 (NM4) evaluate the effect of
the heterogeneity of link weights W2 and the impact of the hetero-
geneity of node degrees Hk, respectively. Null model 3 (NM3) is
useful for discussing the influence of structural properties, excluding
W2 and Hk.

We can evaluate the statistical significance of structural features
using the null models. In particular, the probability (i.e., p-value) of
observing a network feature from a null model ensemble that is
greater in value than that of the empirical network property is useful
for characterizing the statistical significance of network structural
properties6. A p-value of ,0.05 indicates the network measure of
an empirical network is larger than that of null models, suggesting
that structural properties, collapsed because of randomization, con-
tribute to increase that measure. On the other hand, a p-value of
.0.95 implies that such properties contribute to decrease that mea-
sure. All p-values of network measures are calculated from 1000 null
model networks.
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Heterogeneity of link weights and node degrees determines local
stability. The semicircle plus twin method (i.e., Equation (9))
predicts that Hq, W2, and C4 determine the local stability when s
and L are constant. In particular, a linear relationship betweenffiffiffiffiffiffi

Hq
4
p

and l1 is expected if W2 and C4 are constant.
This hypothesis can be tested using NM1, in which network topo-

logy and link weight distribution are preserved. As expected, we found
approximately linear relationships between

ffiffiffiffiffiffi
Hq

4
p

and l1 in the null
model networks (Figure 5 and Supplementary Fig. S3; the average
coefficient of determination �R2 of 40 empirical networks is 0.84).

However, the randomization of link weights hardly affects the
local stability. In 36 (90%) samples, a statistical difference between
the dominant eigenvalues of the empirical networks and NM1 could
not be concluded (i.e., 0.05 , p , 0.95). This may be because this
randomization hardly influences Hq. In fact, we found no statistical
difference for Hq between empirical and null model networks in 36
(90%) samples (i.e., 0.05 , p , 0.95). (Supplementary Table S2).

We expect that the limited effect of randomized link weights is
because the link weight distributions of the empirical networks are
identical to the null model networks. Thus, under the condition that
network topology is preserved, we evaluated the effect of link weight
distributions on local stability using NM2, in which heterogeneity of
weight distributions is controlled by the parameter s of log-normal
weight distributions (see Methods for details). In particular, it is
expected that l1 of the empirical networks will be significantly larger
than that of the null model networks (i.e., p , 0.05) as a result of the

decrease of Hq and W2 caused by the decrease of s. As expected, a
lower p-value for the empirical l1 in addition to Hq and W2 was
observed when s is smaller (Figure 6 and Supplementary Fig. S4).

Numerical simulations using NM3 and NM4 suggest the limited
effect of C4 on l1 in the empirical networks. In particular, linear
relationships between

ffiffiffiffiffiffi
Hq

4
p

and l1 were observed (see
Supplementary Figs. S5 and S6, respectively) although C4 was not
conserved because of the randomization of network topology.

Furthermore, a comparison between the dominant eigenvalues of
empirical networks and NM3 (see Supplementary Fig. S7) indicates
the limited effect of other topological features, excluding degree dis-
tributions. We found no statistical difference of the dominant eigen-
value in 36 (90%) empirical networks (i.e., 0.05 , p , 0.95). The
limited effect of the randomization of network topology (under the
condition that degree distributions are preserved) on the local
stability is also because this randomization hardly influences Hq.
No statistical difference of Hq between empirical and null model
networks was observed in 37 (92%) samples (i.e., 0.05 , p , 0.95)
(see Supplementary Table S3).

On the other hand, an evaluation using NM4 demonstrated a
statistical significance of degree distributions on local stability. In
26 (65%) samples, we found the l1 of the empirical networks was
significantly larger than that of the null model networks (i.e., p ,

0.05). This is because Hq of null model networks decreases (p , 0.05)
because there is no conservation of degree distributions in empirical
networks (see Supplementary Table S4).
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Taken together, these results imply that the heterogeneity of link
weights and node degrees (i.e., link weight and degree distributions)
mainly determine the local stability of mutualistic ecosystems.

Local stability is determined by network heterogeneity rather than
nestedness. Nestedness (in terms of a topological or structural fea-
ture) is explained in binary and quantitative networks as follows. In a
nested binary network, interactions are organized such that
specialists (for example, pollinators that visit a few (specific)
plants) interact with subsets of the species with whom generalists
(for example, pollinators that visit a number of plants) interact. In a
nested quantitative network, interactions are organized such that
specialists interact with species more weakly than generalists
interact with that species.

Although the importance of nestedness in ecosystem stability has
been reported9–12, our methods and the above numerical simulations
suggest a limited effect of topological nestedness on the local stability.
Rather, the local stability is determined by Hk in the binary case and
Hq in the quantitative case. We test this theoretical prediction here.

The effect of nestedness on the local stability can be evaluated
using NM3 and NM4. To measure topological nestedness, we used
NODF29 and CMNB9 for binary networks, and WNODF30 and
WINE31 for quantitative networks (see Methods for details).

Although Staniczenko et al.6 has demonstrated this using a differ-
ent approach, we also found that nestedness is not a significant
structural pattern in quantitative networks (see Supplementary
Table S3). In particular, the quantitative nestedness of 35 (88%)
empirical networks is equivalent to that of the null model networks
(i.e., 0.05 , p , 0.95).

To investigate the relationship between the dominant eigenvalue
and network measures, we performed a correlation analysis. All of the

nestedness measures showed a weak correlation with the dominant
eigenvalues obtained from null model networks, generated using
NM3 and NM4, while the strength heterogeneity Hq showed a strong
correlation (Figure 7; see also Supplementary Tables S3 and S4).

However, this result does not indicate that there is no correlation
between nestedness and local stability (i.e., l1). In particular, Jonhson
et al.15 showed that the degree distribution (i.e., Hk) mainly deter-
mines nestedness (see also Supplementary Table S5). In addition to
this, a perfectly nested graph shows the largest eigenvalue when
considering a network consisting of a given numbers of nodes and
links6. These results suggest a positive correlation between nested-
ness and l1. We evaluated this prediction using NM4 in binary case.
As expected, statistically significant positive correlations between
nestedness and l1 were observed (see also Supplementary Table
S5). However, it is expected that l1 is determined by Hk rather than
nestedness because degree–degree correlation (assortativity) in addi-
tion to Hk also affects nestedness15. In particular, correlations of l1

with nestedness are expected to be weaker than those with Hk because
of variability in assortativity. In fact, such a tendency was confirmed
in binary networks (Supplementary Table S5). Note that we only
considered NM4 in this case because we wanted to evaluate which
factors (Hk or binary nestedness) mainly determine l1. In this con-
text, NM3 is not useful because Hk is trivially constant because of the
preservation of degree distributions.

This theoretical framework mainly explains the case of binary
networks; however, it may also be applicable to weighted networks.
Using NM4, similarly, in 28 (70%) empirical networks, statistically
significant positive correlations between l1 and nestedness
(WNODF) were also observed while the correlation coefficients
between l1 and WNODF were smaller than those between l1 and
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Hq (Supplementary Table S6). A similar tendency was also observed
using NM3 (i.e., when Hq is changed while the degree distribution is
preserved); in particular, the positive correlations were concluded in
35 (88%) networks (Supplementary Table S7). In a few empirical
networks, any correlation between l1 and WNODF was not con-
cluded. This may be because of link weights. When directly applying
the theoretical frameworks6,15 to weighted networks, several assump-
tions are required (e.g., link weights are drawn from a homogenous
distribution such as a normal distribution). However, in empirical
networks, such assumptions may be not satisfied. In this case, a
weaker correlation between l1 and nestedness (WNODF) is expected
to be observed when heterogeneity in a link weight distribution is
higher. In fact, the link weight heterogeneity (i.e., standard deviation
of wij) shows a negative correlation with the correlation coefficient
between l1 and WNODF in both NM4 (Spearman’s rank correlation
coefficient r 5 20.67 and p 5 3.7 3 1026; see also Supplementary
Table S6) and NM3 (r 5 20.71 and p 5 31026; see also
Supplementary Table S7).

These results imply that the heterogeneity is the primary factor for
predicting the local stability of the empirical networks and that the
topological nestedness is a secondary factor. This result may be
related to the conclusion obtained from a previous study14 that
showed that the number of mutualistic partners of a species is a much
better predictor of individual species survival and nestedness is a
secondary covariate.

Discussion
We proposed theoretical methods for estimating the dominant
eigenvalue of both binary and quantitative bipartite networks.

Although the methods are obtained as natural extensions of the
previous methods22, we obtained an interesting result. In particular,
we revealed a mathematical architecture in the relationship between
ecological mutualistic networks and local stability. Our methods and
numerical simulations clearly showed the local stability is deter-
mined by the heterogeneities of node degrees and link weights rather
than topological nestedness such as NODF and WNODF. This study
is consistent with the conclusion obtained from the previous stud-
ies6,14,15; in particular, it provides more conceptual (theoretical) evid-
ence for the limited impact of nestedness in mutualistic ecosystems.

However, this conclusion is limited to the context of topological
nestedness such as NODF and WNODF. A previous study6 has cast
doubt on the importance of NODF and WNODF for measuring
nestedness; in particular, it has argued that nestedness is strongly
related to the dominant eigenvalue (i.e., local stability) according to
the mathematical fact that the perfectly nested graph shows the
dominant eigenvalue. That is, it remains possible that topological
nestedness such as NODF and WNODF cannot well capture this
mathematical feature. These facts highlight the need for a more
suitable definition of nestedness although Staniczenko et al.6 have
proposed to directly use the dominant eigenvalue when evaluating
nestedness.

In addition, more careful examinations may be required because a
number of factors influence ecosystem stability. One remarkable
example of this is modularity. Modularity is observed in mutualistic
networks32, and it is believed to decrease their persistence11.
However, we believe there is a limited effect of modularity on local
stability in empirical networks because the previous study11 reported
a weak significance of modularity in mutualistic networks, and our

Figure 5 | Linear relationship between
ffiffiffiffiffiffi
Hq

4
p

and l1 in NM1. The red symbols indicate empirical networks. The dashed blues line corresponds linear

regressions between
ffiffiffiffiffiffi
Hq

4
p

and l1. R2 denotes the coefficient of determination for a linear regression model.
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numerical simulations using null models demonstrated that the local
stability does not change, even if the modularity-related parameter
(i.e., C4) is not preserved. In this manner, we carefully evaluated the
effect of structural properties and dominant eigenvalue as much as
possible, using several types of null models; however, it remains
possible that other hidden structural properties primarily affect the
dominant eigenvalue. Our analysis has such limitations, as do many
other works on network analyses.

The definition of ecosystem stability is controvertible. Our finding
seems to be contradict a conclusion11 that higher diversity (i.e., s) and
connectance (i.e., L/[s(s 2 1)]) promote the persistence and resili-
ence of mutualistic communities. In particular, Equations (8) and (9)
suggest that higher network complexity (i.e., diversity 3 connectance
< L/s) leads to lower local stability, similarly to May’s stability cri-
terion1. However, this inconsistency between our conclusion and the
previous conclusion is because the ecosystem stability definitions of
persistence and resilience are different to the definition of local
stability. In particular, the persistence indicates the proportion of
persisting species once equilibrium has been reached, and the resi-
lience represents the speed at which the community returns to the
equilibrium after a perturbation11. For example, locally stable eco-
systems can be persistent; however, locally unstable ecosystems may
still display persistence because of the existence of alternative stable
states33. In this case, trivial local stability may be observed because the
intra-species interactions of the community matrix are large enough
to compensate for the potential destabilizing effect of heterogeneity.
A future challenge is to combine local stability with persistence and
resilience in order to analyze the overall robustness of mutualistic
ecological communities.

Equations (8) and (9) also imply that the heterogeneity of network
structure and interaction strength decreases the local stability. This

finding may answer why a weak significance of heterogeneous degree
distributions is observed in empirical mutualistic networks34. That is,
mutualistic ecosystems may avoid such a heterogeneous community
structure in order to maintain or increase local stability. In addition
to this, the avoidance of interaction strength heterogeneity may be
related to a biologically feasible assumption that interaction strength
decreases with increasing number of interacting species (i.e. node
degree)2. In such a case, interaction strength homogeneity may
remain despite the increase of interspecific interactions. This may
be also a strategy for increasing the local stability of ecosystems.

These findings emphasize the importance of heterogeneity of
mutualistic networks in ecosystem stability, and they enhance our
understanding of structure–stability relationships.

The spectral radius is linked to local stability and other dynamical
functions in wide-ranging networked systems35. The proposed frame-
work may be useful for the theoretical analysis of a wide variety of
systems.

Methods
Empirical mutualistic networks. We collected 40 empirical mutualistic networks
from the literature and databases (see Supplementary Table S1). In particular, 22
networks were collected from the Interaction Web DataBase (IWDB) (www.nceas.
ucsb.edu/interactionweb), 16 networks and two networks were obtained from Refs.
36 and 37, respectively.

Quantitative networks. Several types of community matrixM (i.e., quantitative
networks) have been proposed. For example, there is a definition in which link
weights (i.e., number of visits) of the mutualistic network act on behalf of the value of
the community matrix elements, based on the arguments of the strong positive
relationship between the interaction frequency and strength38–41. However, this
definition does not consider species abundances. A weak per capita interaction
strength of species j upon species i can still result in a sizable interaction strength at
the population level if species i is abundant. Thus, in this study, we considered another

Figure 8 | Schematic diagram of the null models. Null model networks, generated using Null Models 1–4, from an empirical ecological network are

shown.
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definition: preference matrixM, attained from the original mutualistic visiting
network after adjusting for uneven species abundances under the mass action
hypothesis (see6 for details).

Null models. Randomized graph ensembles, in which a part of structural properties
in an empirical network are preserved, are often used as null models.

Mutualistic networks are strongly influenced by species abundance, trait matching,
spatio-temporal variation of individuals and species, phylogenetic relatedness, and
sampling efforts44–46. Such effects determine not only the existence of interactions but
also the frequency of these interactions among species. Thus, we proposed four null
models by considering two aspects in randomization: (1) randomization of interac-
tions among species (i.e., switching or rewiring links) and (2) randomization of
interaction strengths (i.e., reshuffling or randomly reassigning link weights). Figure 8
illustrates a schematic diagram of the null models.

In Null model 1 (NM1), the binary structure (i.e., topology) of the empirical net-
works is preserved; however, the link weights are switched between two randomly
selected links until the switching of all link weights is completed.

In Null model 2 (NM2), as in NM1, the topology of the empirical networks is
preserved; however, the link weights are drawn from a probability distribution under
the constraint that the total of link weights is equivalent between the empirical and
null model networks. In this study, inspired by previous studies47,48, we assume that
the link weights in a community matrix are drawn from a log-normal distribution
(i.e., ln W*N m,s2

� �
). To consider the above constraint condition, we used an

algorithm proposed in Ref. 49. Since E W½ �~emz1
2s

2
and Var W½ �~ es2

{1
� �

e2mzs2
~

es2
{1

� �
E W½ �ð Þ2, s indicates the variance of log-normal distributions if E[W] is

constant. Thus, we can control the variance of log-normal distribution Var[W],
which is related to the heterogeneity of link weights W2, using s only.

In Null model 3 (NM3), links among species are rewired randomly while con-
serving the degree distribution of empirical networks. In particular, we used an edge
switching algorithm42,43 that generates a random network by switching two randomly
selected links until the switching of all links is completed. Note that the link weights
are also implicitly switched according to its link switching.

Similarly to NM3, Null model 4 (NM4) also considers the randomization of net-
work topology; however, the degree distributions of empirical networks are not
conserved. This null model corresponds to the bipartite ER random graph model. In
particular, the null model networks were generated to maintain the numbers of
plants, animals, and the weighted links in empirical networks.

Nestedness. We computed four nestedness measures for binary networks and
quantitative networks: 1) Nestedness based on Overlap and Decreasing Fill
(NODF)29, a popular nestedness measure for binary mutualistic networks; 2)
Nestedness based on Common Neighbors (CMNB), defined by Bastolla et al.9; 3)
Weighted NODF (WNODF)30, a straightforward extension of NODF to quantitative
networks; and 4) Weighted-Interaction Nestedness Estimator (WINE)31 that uses the
weighted Manhattan distance in order to calculate quantitative nestedness.

All these nestedness measures except CMNB were calculated in R version 3.0.2 (R-
project.org) using the nested function in package bipartite version 2.02.
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