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Hypersplenism in liver disease and SLE
revisited: current evidence supports an
active rather than passive process
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Abstract

Background: Active and passive theories have been advanced to explain splenomegaly and cytopenias in liver
disease. Dameshek proposed active downregulation of hematopoiesis. Doan proposed passive trapping of blood
components in a spleen enlarged by portal hypertension. Recent findings do not support a passive process.

Discussion: Cytopenias and splenomegaly in both liver disease and systemic lupus erythematosus (SLE) poorly
correlate with portal hypertension, and likely reflect an active process allocating stem cell resources in response to
injury. Organ injury is repaired partly by bone-marrow-derived stem cells. Signaling would thus be needed to
allocate resources between repair and routine marrow activities, hematologic and bone production. Granulocyte-colony
stimulating factor (G-CSF) may play a central role: mobilizing stem cells, increasing spleen size and downregulating bone
production. Serum G-CSF rises with liver injury, and is elevated in chronic liver disease and SLE. Signaling, not
sequestration, likely accounts for splenomegaly and osteopenia in liver disease and SLE. The downregulation of a
non-repair use of stem cells, bone production, suggests that repair efforts are prioritized. Other non-repair uses
might be downregulated, namely hematologic production, as Dameshek proposed.

Summary: Recognition that an active process may exist to allocate stem-cell resources would provide new
approaches to diagnosis and treatment of cytopenias in liver disease, SLE and potentially other illnesses.
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Background
In the 1940s and 1950s there were two competing theor-
ies to account for the coexistence of cytopenias and
splenomegaly. Charles Doan proposed a passive process,
splenic sequestration, whereby increased portal pressure
causes an enlarged spleen that traps blood components,
creating cytopenias. William Dameshek postulated an
active process, in which a signal, possibly produced by
the spleen, downregulated hematopoiesis [1, 2]. Doan’s
theory became dominant as early as the 1960s, and even
Dameshek is alleged to have said, “Well, it looks as
though Charley Doan is right” [3].
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In light of current knowledge, Dameshek may have
conceded too soon. At least in liver disease and systemic
lupus erythematosus (SLE), splenomegaly and cytope-
nias are poorly correlated with portal hypertension, and
there is evidence for downregulation of hematopoiesis,
as Dameshek suggested. Splenomegaly and cytopenias,
at least to some degree, likely reflect an active process
that mobilizes bone marrow stem cells and allocates
their distribution among competing demands in re-
sponse to injury.

Discussion
Active and passive theories: signaling or sequestration?
The theory of hypersplenism is based on the idea of
splenic sequestration. Liver damage impedes portal ven-
ous inflow, causing elevated portal venous pressure and,
in theory, an enlarged spleen. The enlarged spleen is al-
leged to sequester blood components, causing cytopenias.
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The theory thus accounts for both the splenomegaly and
cytopenias found in association with liver disease [4].
Portal hypertension leading to splenic enlargement

and sequestration is not, however, a clean explanation of
the cytopenias associated with liver disease. Despite the
suggested causal relation, spleen size does not correlate
with portal pressure [5]. Furthermore, enlargement of
the spleen alone may not be sufficient to create cytope-
nias. For example, pharmacologically increasing the size
of the spleen does not result in a corresponding decline
in platelet count [6, 7].
A patent surgical splenorenal shunt or a transjugular

intrahepatic portosystemic shunt (TIPS) will reduce por-
tal venous pressure, yet will neither resolve pre-existing
cytopenias nor prevent the development of new cytope-
nias [8, 9]. This lack of response could still be explained
by hypersplenism if spleen size were to become fixed
once enlarged, but this does not appear to happen. Both
spleen size and thrombocytopenia correct after liver
transplantation, but thrombocytopenia may resolve
months prior to significant change in spleen size [10].
Hypersplenism has also been advanced to account for
splenomegaly and cytopenias in (SLE), yet liver disease
and thus portal hypertension are uncommon features of
SLE [11, 12]. In all, there is poor correlation between
spleen size, portal hypertension and cytopenias in both
liver disease and SLE.
Other factors that potentially contribute to cytopenias

in liver disease have been proposed, including insuffi-
cient thrombopoietin (TPO) production by the liver, and
marrow injury due to hepatitis viruses, alcohol abuse
and poor diet [4]. There are, however, confounding ob-
servations which cast doubt on these possibilities.
TPO levels in liver disease appear to be variable, and

lack of TPO does not suggest a reason for splenomegaly
nor for cytopenias other than thrombocytopenia [13–16].
Nutritional optimization does not prevent the develop-
ment of cytopenias [17]. Viral or alcohol marrow injury
does not explain the cytopenias of patients with liver
disease due to autoimmune hepatitis or cystic fibrosis
[18–21]. Additionally, patients who have cytopenias be-
fore liver transplant are usually able to correct those cy-
topenias after transplant using the same bone marrow
[22–24].

G-CSF: an alternative explanation
An alternative explanation is that splenomegaly in liver
disease and SLE is part of a response to increased de-
mand for stem cells needed for organ repair and trig-
gered by a rise in serum G-CSF. G-CSF administration
mobilizes stem cells from marrow with a side effect be-
ing enlargement of the spleen [6]. Serum G-CSF has
been found to rise with liver injury and to be elevated in
both liver disease and SLE [25–28].
In addition to splenomegaly and cytopenias, liver disease
and SLE are also characterized by the development of
osteopenia that is not explained by hypersplenism [29, 30].
G-CSF, in addition to its effect on stem cell mobilization,
also downregulates bone production—and thus potentially
provides a unified explanation for splenomegaly and osteo-
penia [31]. Since increasing spleen size alone does not re-
sult at least in thrombocytopenia [6], some additional
effect(s) must occur to account for cytopenias.
Downregulation of bone production by the G-CSF me-

diated process of stem cell mobilization suggests that re-
pair efforts take precedence over the routine marrow
activity of bone production. If so, then downregulating
hematopoiesis along with bone production would be lo-
gical and exactly what Dameshek proposed well before
the discovery that bone-marrow-derived stem cells re-
pair damaged organs. Clinical observations and experi-
mental work indicate that bone marrow stem cell
resources are finite; thus, allocation between competing
uses would be needed.
In the years since Doan’s theory superseded Dameshek’s,

there have been reports of inhibition of bone marrow cul-
ture by sera from cytopenic SLE patients and from cir-
rhotics, as Dameshek had postulated [32, 33]. At the time
of their publication, these reports did not, however, lead to
a re-evaluation of Dameshek’s theory. The finding that of-
fers a logical explanation for hematopoietic downregulation
had not yet been made; namely, that bone marrow stem
cells contribute to the repair of the liver and other organs.

Repair by stem cells
The discovery that liver injury is repaired in part by
bone-marrow-derived stem cells has shown that in liver
injury there is a demand for stem cell resources [34].
Eckersley-Maslin et al., reviewing human and animal
studies, noted that both the duration and severity of liver
injury were positively correlated with the degree of in-
corporation of bone-marrow-derived cells into the liver
[35]. More severe and chronic liver injury will place
more demands on bone marrow stem cell resources.
The mobilization of stem cells from bone marrow in-

volves cytokine signaling including G-CSF. Clinically, G-
CSF is used to mobilize stem cells to allow collection, via
apheresis, of sufficient numbers for bone marrow stem
cell transplantation. One of the side effects of G-CSF ad-
ministration is enlargement of the spleen. The G-CSF
dose is limited to minimize the risk of over-enlargement
of the spleen and splenic rupture, which is a reported
complication [6].
As administered G-CSF communicates demand for

stem cells in bone marrow transplant donors, so may
endogenous G-CSF in liver injury. Lemoli et al. noted a
significant increase in serum G-CSF following liver injury
(i.e., both liver resection and hepatic transplantation), with



Gemery et al. BMC Hematology  (2016) 16:3 Page 3 of 8
a corresponding increase in the number of stem cells in
circulation. Non-hepatic abdominal surgery did not show
a similar increase in serum G-CSF [25].
The rise in serum G-CSF does not appear to be re-

stricted to hepatic injury in the form of surgery. Stoiser
et al. found significantly increased serum G-CSF in pa-
tients with acute malaria who had evidence of concur-
rent liver injury with elevated serum bilirubin and
alanine transaminase (ALT). The effect also does not ap-
pear to be limited to acute liver injury [36]. Kaya et al.
reported serum G-CSF to be significantly higher in pa-
tients with cirrhosis than in normal control subjects, as
well as reporting a trend toward higher serum G-CSF
levels with increasing Child-Pugh classification [27]. A
potentially confounding variable is that all patients studied
by Kaya et al. [27] had hepatocellular carcinoma (HCC),
which has been reported to produce G-CSF in some in-
stances [37]. Bazarniy et al., however, have also reported
increasing serum G-CSF corresponding to worsening
Child-Pugh scores in patients with cirrhosis, who were
not known to have HCC [28].
Splenomegaly is thus more consistently associated

with increased serum G-CSF than with elevated portal
venous pressure. G-CSF both mobilizes stem cells and
downregulates bone production. Downregulation of
bone production, and potentially hematopoiesis, in con-
junction with stem cell mobilization would not seem lo-
gical unless bone marrow stem cell resources were
insufficient to meet all demands simultaneously.
Finite stem cell resources?
Animal experiments and clinical studies have raised the
possibility that bone marrow stem cell resources are finite
and that insufficient stem cell resources may manifest
as cytopenias. The concept of finite stem cell resources
has been incorporated into clinical practice in the tim-
ing of chemotherapy and bone marrow stem cell collec-
tion for autologous stem cell transplantation. Stem cell
mobilization is intended to allow collection of sufficient
numbers of stem cells for successful transplantation,
but this does not work in all cases. Prior chemotherapy
is associated with insufficient stem cell collection, which
researchers believe is due to the toxicity of chemother-
apy to stem cells [38, 39]. To minimize the risk of insuf-
ficient collection, stem cell mobilization and collection
are performed earlier, rather than later, in a course of
chemotherapy [38].
In addition to prior chemotherapy, platelet count at

the time of mobilization is a significant predictor of stem
cell yield, with lower platelet counts associated with in-
sufficient collection [38]. A history of prior chemother-
apy and a lower platelet count would appear to convey
the same information, namely that there are fewer stem
cells available. The cytopenias of liver disease may indi-
cate the same deficiency.
Animal experiments are also consistent with reduced

stem cell resources manifesting as cytopenias. Seed et al.
studied beagles exposed to gamma radiation for 22 hours
per day for life with different groups receiving different
exposure rates. Platelet and leucocyte counts declined
with initial irradiation, but then plateaued. The higher
the daily radiation exposure, the lower the plateaus. Des-
pite the ongoing irradiation, the plateaus were generally
maintained over an initial 1,000-day observation period.
Erythrocyte counts were more resistant to radiation dose
and did not decline in the lower exposure groups but
did at higher levels [40].
The pattern suggests a process whereby production of

erythrocytes is maintained, in preference to platelets and
leucocytes, as marrow resources are diminished. The ap-
pearance of cytopenias in liver disease also appears to
conserve erythrocyte production in preference to plate-
lets and leucocytes. Qamar et al. found that during
follow-up (median 54.9 months), patients with compen-
sated cirrhosis developed thrombocytopenia at a median
of 28 months, leucopenia at a median of 30 months and
anemia at a median of 39.6 months [41]. The similarity
in development of cytopenias between irradiated dogs
and cirrhotic humans may reflect the same underlying
state, namely insufficient marrow stem cell resources.
Whether diminished by radiation or diverted to repair,
there appear to be insufficient marrow stem cells to
maintain normal hematologic production.
Cytopenias and risk of death
A similar pattern of mortality in irradiated dogs and cir-
rhotics is also consistent with diminished stem cell re-
sources in liver disease. In irradiated dogs, the risk of
death increased with the degree of cytopenias [40]. In
cirrhotic patients, the risk of death also corresponded
with the severity of cytopenias. Qamar et al. noted that
patients without hematologic abnormalities had a 6 %
mortality rate during their study vs. 18 % for those with
thrombocytopenia and 28 % for those with both
thrombocytopenia and leucopenia [41].
If insufficient stem cell resources result in cytopenias,

then we might expect a reduced demand for stem cell
resources to allow resumption of normal hematologic
production and correction of cytopenias. For example, if
freed from the need to support an injured liver, stem cell
resources might resume hematologic production. Liver
transplantation does reverse pre-transplant cytopenias in
most instances, and can do so months prior to any sig-
nificant decrease in spleen size [10, 22]. Of note, cases
where there is delay in return to normal hematologic pa-
rameters after transplant may occur in patients who had
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poor stem cell resources prior to transplant, and possibly
a higher demand for stem cell resources after transplant.
Stanca et al. investigated the persistence of

thrombocytopenia after liver transplantation and found
that patients with persistent thrombocytopenia had sig-
nificantly lower platelet counts (P < .001) prior to trans-
plant, and had received livers from older donors (P < .04).
No significant differences were noted in recipient age, eti-
ology of liver disease, bilirubin level, international normal-
ized ratio (INR), Mayo end-stage liver disease (MELD)
score, United Network for Organ Sharing (UNOS) status,
or other donor variables. The lower pre-transplant platelet
count suggests, as in autologous stem cell transplant pa-
tients, reduced stem cell resources. The older donor livers
may require more stem cell support from recipients who
are already “stem cell poor” [42].
Observations in patients with liver disease do match

those of patients and experimental animals with reduced
stem cell resources. If stem cell resources were, in fact,
finite, then managing allocation between completing
uses would require signaling for allocation between
competing demands. Signaling, such as Dameshek pro-
posed, would not be needed in splenic sequestration, as
that process would be passive.

Signaling?
There is direct evidence of in vivo downregulation of a
non-repair demand for stem cell resources, namely bone
production. Bone abnormalities in patients with liver
diseases, termed hepatic osteodystrophy, are well de-
scribed. In a review article, Luxon noted that osteopor-
osis is common in patients with disparate liver diseases,
that the etiology is poorly understood, and that the
prime cause appears to be decreased bone formation ra-
ther than increased resorption [29].
Elevated serum G-CSF may provide the explanation,

downregulating bone production while mobilizing stem
cells for repair efforts. Long-term administration of G-CSF
is associated with the development of osteopenia in
humans, and causes bone loss in mice [31, 43].
If bone production is downregulated, then other non-

repair uses for stem cells might be as well, namely
hematologic production, as Dameshek suggested. Ohki
et al. reported that sera from patients with cirrhosis and
anemia, when added to cultures of normal marrow, sup-
pressed colony formation of hematopoietic progenitor
cells. The degree of suppression correlated with the se-
verity of patient cytopenia. Sera from patients who were
cirrhotic but not anemic did not cause suppression [32].
These results were published in 1988, well after Doan’s
theory superseded Dameshek’s, and well before the dis-
covery that bone-marrow-derived stem cells incorporate
into the liver. (Note: Ohki’s study employed the marrow
culture techniques available at the time—using agar as a
culture medium—and to date has not been repeated
using current bone marrow culture techniques that em-
ploy methylcellulose as a culture medium.)
In addition to granulocyte-colony stimulating factor

(G-CSF), Interleukin 17 (IL-17) and Interleukin 23
(IL-23) are critical components of stem cell mobilization,
at least in mice. Mice with a genetic defect resulting in
chronically elevated serum G-CSF display higher than
normal numbers of circulating stem cells. Additionally,
these mice have high serum levels of IL-17 and IL-23.
Antibody blocking of any one of the three cytokines re-
duces stem cell mobilization [44]. G-CSF, IL-23, and IL-
17 have all been found to be elevated in diverse liver in-
juries, consistent with activation of the stem cell
mobilization process [27, 28, 45–49]. Blocking or redu-
cing any of the three cytokines may have the same effect
in humans as it does in mice, reducing stem cell
mobilization.
Splenic embolization has been employed to improve

cytopenias in patients with liver disease [50, 51]. The at
least partial success of this approach might appear to
support the theory of splenic sequestration. The effect
may instead be due to altered signaling and provide fur-
ther support for Dameshek’s theory.
In mice, IL-23 is produced in part in the spleen [44].

Splenic embolization in patients with liver disease may
in fact be reducing IL-23 production, and thus the
mobilization of marrow resources for repair, leaving
marrow stem cell resources in place for hematologic
production.
The above in combination suggest not the passive

process of splenic sequestration promoted by Doan, but
rather, the active management of stem cell resources,
employing signaling, including the downregulation of
hematopoiesis suggested by Dameshek. A management
process diverting bone marrow stem cell resources away
from hematologic and bone production, and toward
hepatic repair, could thus account for splenomegaly, cy-
topenias and loss of bone mass observed in patients with
liver disease.

Systemic Lupus Erythematosus (SLE)
If there were a mechanism that managed stem cell re-
sources, that mechanism ought to be active not solely in
liver disease, but also in other situations where there are
competing demands for stem cell resources. Bone-
marrow-derived cells can, in fact, incorporate into tis-
sues other than the liver [52], raising the possibility that
repair efforts in other disease states could trigger the ac-
tive allocation of stem cell resources.
With activation of a stem cell allocation mechanism,

one might anticipate findings that are due to allocation
rather than to the injury that is triggering the allocation
process. If the allocation process is active in liver disease,
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then other disease states that activate the same alloca-
tion mechanism might share similar findings: namely,
splenomegaly; progressive hematologic abnormalities
with associated mortality; osteopenia; evidence of stem
cell mobilization signaling, such as elevation of serum
G-CSF; and possibly suppression of hematopoiesis. We
looked for other disease states that have chronic injury
and thus might have activation of a stem cell allocation
mechanism. Patients with (SLE) suffer chronic multi-
organ injury and have findings matching the above
[11, 26, 30, 33, 53–55].
Hematologic abnormalities are common in patients

with SLE, and include anemia, leucopenia and
thrombocytopenia [11]. Cytopenias in SLE are associated
with greater disease activity and greater mortality, paral-
leling the increase in mortality with worsening cytope-
nias reported in patients with liver disease [41, 53, 56].
There are multiple proposed etiologies for the cytope-
nias, including immune and non-immune processes and,
as in patients with chronic liver disease, splenic seques-
tration [11]. Liver disease, and thus portal hypertension,
is, however, infrequent in SLE [12].
Splenomegaly does occur in SLE, and may be due to a

response to demand for stem cell resources rather than
portal hypertension. Hellmich et al. found that patients
with SLE and neutropenia had a mean serum G-CSF level
more than double that of SLE patients without neutro-
penia (p = 0.007) [26]. Elevation of serum G-CSF suggests,
as in liver disease, both a demand for, and mobilization of,
stem cells, with splenomegaly a consequence.
More extensive injury could be expected to generate

greater demand for stem cell resources for repair.
Splenomegaly in SLE patients does correlate with SLE
disease activity, in that patients with more severe disease
were found to have larger splenic volumes [55].
Again paralleling liver disease, patients with SLE may

develop osteoporosis. The elevated serum G-CSF noted
by Hellmich might contribute, at least in patients with
sufficient stem cell demand to have chronic elevation of
serum G-CSF [26]. In fact, Pineau et al. found that SLE
patients with osteoporosis had significantly longer dis-
ease duration and greater SLE-related organ damage
than those with normal bone density [30]. The lower
bone density did not correlate with steroid use. It is thus
possible that chronically elevated G-CSF in these indi-
viduals may result in loss of bone mass.
There may be downregulation of hematologic produc-

tion in SLE as in liver disease. Pyrovolaki et al. have re-
ported upregulation of apoptosis of hematopoietic
progenitor cells in SLE patients [57]. Dainiak et al. noted
suppression of hematopoietic precursors in bone marrow
culture by SLE sera [33], paralleling the suppression of
hematopoietic precursors in marrow culture by cirrhotic
(and anemic) sera reported by Ohki [32]. The effect
appears to be reversible; Dainiak reported a patient
whose sera obtained during an SLE flare suppressed
marrow culture, while sera obtained during a remission
did not [33]. SLE can be treated with bone marrow
transplantation where reduced disease activity (less
auto injury) might result in reduced demand for stem
cell resources for repair. Wang D. et al. reported signifi-
cant increases in hemoglobin and platelet count in SLE
patients following allogeneic mesenchymal stem cell
transplantation [58].
Irradiated dogs and patients treated with chemother-

apy have cytopenias attributable to reduced bone mar-
row stem cell resources. We have suggested that the
cytopenias in liver disease may also reflect limited stem
cell resources, due not to destruction of stem cells, but
rather to diversion of stem cells to repair efforts. Cytope-
nias in patients with SLE may also reflect reduced stem
cell resources due to repair efforts. Statkute et al. re-
ported that SLE patients had significantly lower stem cell
mobilization than patients with multiple sclerosis treated
with the same mobilization regimen [59].

Summary/Conclusions
The contribution of bone marrow stem cells to the re-
pair of organs was unknown at the time when Doan and
Dameshek developed their theories to account for the
association between liver disease, splenomegaly and cy-
topenias. The discovery that bone marrow contributes to
organ repair has two relevant consequences. One, that
there is a normal sequence of events in a response to a
demand for stem cells; and two, that there may be com-
petition for stem cell resources in the event of an injury.
The normal response to stem cell demand appears to

include splenic enlargement as demonstrated in bone
marrow stem cell donors, where G-CSF administration
both mobilizes stem cells and causes splenic enlarge-
ment. That enlargement is not accompanied by a drop
in platelet count, and in fact white blood cell counts in-
crease, suggesting that cytopenias are not due to spleen
size alone nor to G-CSF directly [6, 7]. The disconnect
between spleen size and cytopenias is supported by the
observation that splenomegaly persists after correction
of cytopenias following liver transplant [10]. Addition-
ally, spleen size does not correlate with portal venous
pressure nor does decompression of the portal venous
system either correct or prevent cytopenias [5, 8, 9].
These observations raise doubts as to sequestration be-
ing a full explanation of cytopenias in liver disease.
If spleen size is not altered by portal pressure in liver

disease, then by what is it altered? The elevated serum
G-CSF reported in two studies of patients with liver
disease suggests an alternative, that splenic enlargement
in liver disease is, as in bone marrow donors, part of the
normal response to demand for stem cells [27, 28].
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Concurrent splenomegaly and liver injury thus more
likely reflect response to injury, rather than Doan’s the-
ory that increased portal venous pressure causes splenic
enlargement and sequestration. Organ injury, spleno-
megaly and elevated G-CSF are also present in SLE, typ-
ically without liver disease [12, 26, 55]. This is further
evidence in favor of splenic enlargement being a compo-
nent of a response to injury, possibly mediated by G-
CSF, rather than an effect of portal pressure. If increased
spleen size is a part of a normal response to demand for
stem cells, and is not accompanied by cytopenias in nor-
mal individuals (bone marrow donors), then why do cy-
topenias occur in patients with liver disease or SLE?
Injury that triggers stem cell demand for organ repair

will increase the total demand for bone marrow stem
cells. Unless stem cell resources are infinite, this added
demand might result in a need for prioritization. Ex-
perience with cancer patients and irradiated dogs indi-
cates that stem cell resources are not infinite, and that
low stem cell resources may be evidenced as cytopenias
[38, 40]. While decompressing the portal venous system
does not reverse cytopenias, reducing stem cell demand by
replacing an injured organ can do so, as in the case of liver
transplantation [10, 22]. Similarly, reducing auto injury in
SLE with bone marrow transplantation can reverse
cytopenias [58].
If stem cell resources are finite, then non-repair uses

for stem cells might be downregulated in the event of in-
jury, an active process such as Dameshek envisioned. G-
CSF does inhibit bone production while mobilizing stem
cells from bone marrow [31]. This suggests that repair
efforts take priority, and thus it would be reasonable to
expect downregulation of blood production, as Dame-
shek suggested. Studies of sera from patients with liver
disease and those with SLE indicate that downregulation
of hematopoiesis may occur [32, 33].
The above is neither intended to provide a compre-

hensive explanation of the cytopenias of liver disease
and SLE, nor to try to simplify the interactions among
bone marrow, spleen, and blood components. On the con-
trary, an active process would add complexity by suggesting
that there is at least some contribution by a process not
currently recognized. How much of a contribution to cyto-
penias an active suppression of hematopoiesis might make
is unclear. Cytopenias are most likely multifactorial, and
downregulation of hematopoiesis would more likely have
identifiable effects in chronic rather than acute injury.
Acute malaria causes liver injury with increased serum G-
CSF, yet hematologic abnormalities can be present within
days of onset of symptoms, sooner than would be expected
due to an altered rate of production [36, 60].
Cytopenias in SLE are likely to be particularly complex in

nature. There are more than 100 autoantibodies reported
in SLE, including autoantibodies to platelet glycoproteins
thought to result in platelet destruction [61, 62]. In
addition, Su et al. have reported that, “leucocyte apoptosis
is significantly higher in SLE patients and correlates well
with the levels of several autoantibodies” [63].
Although Dameshek may be correct in that there is an

active process suppressing hematopoiesis, this does not
mean that Doan’s theory of sequestration is entirely incor-
rect. While evidence that portal pressure affects spleen size
is lacking, blood components can be trapped in the spleen.
Note that in primary immune thrombocytopenia, tagging
platelets with Indium 111 often demonstrates platelet se-
questration in the spleen, and that in this disease splenec-
tomy can be effective in relieving thrombocytopenia [64].
On the whole, the current evidence does support

Dameshek’s theory that there is suppression of hematopoiesis,
at least in some instances.

Clinical implications
The existence of an active signaling mechanism directing
allocation of stem cell resources would raise the possibility
for errors of that system. For example, over-suppression
of hematologic production might account for some cases
of cytopenias, notably those that occur following viral
hepatitis [65].
Knowledge that a signaling mechanism may be in action

directing the flow of stem cell resources could aid in the
work-up of anemias. Evaluation of anemia in patients with
SLE, liver disease or other chronic illness could include
evaluation of stem cell demand, such as obtaining serum
levels of IL-23 and G-CSF.
A signaling mechanism could also provide an opportun-

ity for therapy. Rather than treating cytopenias in patients
with liver disease by embolizing portions of the spleen,
clinicians could seek agents that block the routing of stem
cells to repair. This would have the disadvantage of
reducing repair efforts, but would also offer the potential
to lessen cytopenias without permanent damage to the
spleen.
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