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Abstract

Background: Compared to other ascomycetes, the barley powdery mildew pathogen Blumeria graminis f.sp. hordei
(Bgh) has a large genome (ca. 120 Mbp) that harbors a relatively small number of protein-coding genes (ca. 6500).
This genomic assemblage is thought to be the result of numerous gene losses, which likely represent an evolutionary
adaptation to a parasitic lifestyle in close association with its host plant, barley (Hordeum vulgare). Approximately 8% of
the Bgh genes are predicted to encode virulence effectors that are secreted into host tissue and/or cells to promote
pathogenesis; the remaining proteome is largely uncharacterized at present.

Results: We provide a comparative analysis of the conceptual Bgh proteome, with an emphasis on proteins with known

roles in fungal development and pathogenicity, for example heterotrimeric G proteins and G protein coupled receptors;
components of calcium and cAMP signaling; small monomeric GTPases; mitogen-activated protein cascades and

extreme habitat: the living plant cell.

GTPase, Transcription factors

transcription factors. The predicted Bgh proteome lacks a number of proteins that are otherwise conserved in
filamentous fungi, including two proteins that are required for the formation of anastomoses (somatic hyphal
connections). By contrast, apart from minor modifications, all major canonical signaling pathways are retained in
Bgh. A family of kinases that preferentially occur in pathogenic species of the fungal clade Leotiomyceta is unusually
expanded in Bgh and its close relative, Blumeria graminis fsp. tritici.

Conclusions: Our analysis reveals characteristic features of the proteome of a fungal phytopathogen that occupies an

Keywords: Blumeria graminis, cAMP, Calcium, GPCR, Heterotrimeric G protein, MAP kinase, Powdery mildew, Small

Background

Powdery mildew is a prevalent disease of many higher
plant species that is caused by ascomycetes of the order
Erysiphales [1]. Members of the order Erysiphales have
an obligate biotrophic lifestyle, i.e. they can only grow
and propagate on living plant tissue; in vitro propagation
and genetic manipulation (transformation) are currently
impossible. While some powdery mildew fungi have a wide
host range and can infect a broad spectrum of plant spe-
cies, others have a narrow host range and can often infect
only a single plant species. A well-known representative of
the latter is Blumeria graminis f.sp. hordei (Bgh), the causal
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agent of the barley powdery mildew disease, which exclu-
sively colonizes barley (Hordeum vulgare). Grass powdery
mildews of the genus Blumeria are serious phytopathogens
that cause considerable yield losses in agricultural set-
tings [2].

We previously sequenced and partially assembled the
genomes of the three powdery mildew species Bgh (isolate
DH14), Erysiphe pisi (the pea powdery mildew pathogen)
and Golovinomyces orontii (one of several powdery mildew
species that are able to colonize the model plant species
Arabidopsis thaliana; [3]). Recently, the genome sequence
of a fourth powdery mildew species (Blumeria graminis
f.sp. tritici (Bgt), the wheat powdery mildew pathogen),
has been published [4] and additional Bgh isolates have
been sequenced [5]. These studies show that in compari-
son to other ascomycetes, powdery mildew genomes are
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unusually large (ca. 120-160 Mbp). This is chiefly due
to a genome structure typified by the presence of numerous
nested retrotransposon copies with few interspersed genes.
Haplotype structure of the Bgh and Bgt genomes reveals
a mosaic pattern of alternating homomorphic and poly-
morphic blocks, which has been interpreted as an indica-
tion of frequent asexual and rare sexual reproduction [4,5].

Despite their huge size, powdery mildew genomes are
characterized by a comparatively small number of conven-
tional protein-coding genes. For example, the genomes of
Bgh and Bgt each harbor ~6,500 annotated genes [3,4].
This is at the lower end for ascomycete phytopathogens
[6]. The reduction in gene content is partly due to a
drastic decrease in genes coding for cell wall-degrading
enzymes (carbohydrate-active enzymes; CAZys) and sec-
ondary metabolite biosynthesis enzymes, which is consist-
ent with their parasitic obligate biotrophic lifestyle. In
addition, powdery mildews have lost multiple genes that
are otherwise conserved in ascomycetes, ranging from uni-
cellular yeasts to filamentous fungi. These genes comprise,
amongst others, enzymes required for nitrate and sulfate
assimilation and biosynthesis of thiamine (vitamin B1) [3].
Interestingly, similar gene losses can also be seen in the
genomes of the very distantly related rust fungi (basidiomy-
cetes) and downy mildews (oomycetes), which also possess
obligate biotrophic lifestyles, suggesting that the reduction
in gene content represents lifestyle-associated conver-
gent evolution [3].

It can be assumed that the list of common fungal genes
found to be missing in Bgh is incomplete. First, very strict
criteria were applied to identify missing genes in Bgh. Pro-
teins belonging to different families, but sharing common
domains, may thus have escaped detection. Second,
the starting point for the analysis was the well-annotated
proteome of yeast, which is a unicellular fungus. Therefore,
all proteins that are specific to filamentous fungi were not
considered. Third, missing family members cannot be iden-
tified by this approach. Fourth, species-specific gene losses
in individual powdery mildew species might well have been
overlooked, since absence of the genes in all three powdery
mildew species under consideration (Bgh, G. orontii and
E. pisi) was a criterion of the bioinformatic pipeline. We
therefore expect that careful manual analysis would un-
cover additional genes missing in the Bgh genome.

As other phytopathogens, powdery mildew fungi are
thought to deploy a suite of secreted effector proteins
for host cell manipulation. Genome-wide analysis revealed
491 Candidate Secreted Effector Proteins (CSEPs) that are
encoded by the Bgh genome [7]. CSEPs represent com-
paratively small polypeptides that harbor a predicted
N-terminal signal peptide for secretion, lack sequence-
relatedness to known proteins in the NCBI database
and often show evidence of diversifying selection [7].
Notably, a considerable number of the Bgh CSEPs show
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predicted structural similarities to microbial ribonucleases
[7]. A similar, though slightly higher, number (602) of
effector-encoding genes was found in Bgt [4]. Interestingly,
437 CSEPs are shared between Bgh and Bgt, and appear to
represent Blumeria-specific genes, since there is no evi-
dence for their existence outside this genus. First func-
tional studies have begun to elucidate the contribution of
individual CSEPs to plant colonization [8,9]. Besides the
CSEPs, the Bgh genome encodes a huge suite of uncon-
ventional effector candidates that lack an amino-terminal
secretion signal and are physically associated and seem-
ingly coevolved with LINE-1 retrotransposons [10]. These
proteins were first recognized upon cloning of the aviru-
lence genes matching the barley MlkI and Mlal0 re-
sistance genes [11] and are therefore also designated
putative effectors with similarity to AVRK1 and AVRA10
(EKAs).

Despite extensive characterization of genomic organi-
zation [3], haplotype structure [5] and effector content
[7,10] of the Bgh genome, little attention has been paid
to its core proteome. Here we provide a global charac-
terization of the full Bgh proteome and analyze in detail
selected protein families with well-known roles in fungal
development and pathogenicity.

Results and discussion

Global characterization of the conceptual Bgh proteome
The annotated Bgh isolate DH14 genome (v3.0) com-
prises 6,470 genes, including ca. 250 partial genes (5'- or
3’- truncated) and/or genes that are split on two contigs
(http://www.blugen.org/). In the course of this analysis
we annotated an additional 25 genes, of which one (mating
pheromone receptor Ste3) was not represented by a
genomic contig of isolate DH14 but deduced from RNA
sequencing data from Bgh isolate K1 [5]. Altogether, this
resulted in a total of 6,495 genes, which form the basis
for the present study (Additional file 1: Table S1, sheet
“Summary”). We used the respective predicted amino acid
sequences to perform a number of bioinformatic analyses
to characterize the proteome of Bgh DH14.

The size of the predicted Bgh proteins is 483 + 372
(mean + standard deviation) amino acids, which is close
to the average protein size of 487 amino acids recently
reported for fungi [12]. A major proportion (37.5%) of the
Bgh proteins lie between 250 and 500 amino acids in size
(Figure 1A). Few proteins are larger than 1,500 amino
acids (509, ca. 8%) or smaller than 100 amino acids (183,
ca. 3%). According to the current annotation, the smal-
lest protein, with 25 amino acids, is the 60S ribosomal
protein L41 (EBI/GenBank accession number CEA17194).
The largest protein (accession number CCU82148),
composed of 4,817 amino acids, is a homolog of mida-
sin, a huge AAA ATPase distantly related to the motor
protein dynein.
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TMHMM2.0 analysis indicated that 1,091 Bgh pro-
teins harbor at least one transmembrane (TM) domain
(Additional file 1: Table S1, sheet “Summary”). The range
of predicted TM domains per protein is between one (469
proteins) and 24 (one protein), with few proteins (95)
having more than ten predicted TM domains (Figure 1B).
Similar to this calculation, the extrapolation of experimen-
tally determined subcellular localization data suggests the
presence of somewhat more than 1,000 integral membrane
proteins in the unicellular ascomycete Saccharomyces
cerevisiae [13]. Analysis with SignalP4.1 revealed that
731 proteins (~11% of the predicted Bgh proteome) har-
bor a predicted signal peptide for secretion at their amino
terminus (Additional file 1: Table S1, sheet “Summary”).
In absolute numbers this value is at the lower end for
SignalP-predicted proteins of the fungal subphylum
Pezizomycotina; however, in relation to the size of the
proteome it is rather at the upper end [14]. These pu-
tatively secreted Bgh proteins comprise 421 of the 491
previously identified CSEPs. The seeming discrepancy
for the remaining 70 CSEPs results from prediction al-
gorithm changes, in the now used SignalP4.1 version,
compared to the formerly used version 3.0. These in-
stances may thus comprise borderline cases for which
signal peptide prediction is ambiguous. However, analysis
with the SignalP4.1 algorithm corroborated the presence
of an N-terminal signal peptide for 86% of the previously
identified CSEPs and allowed the identification of 42 add-
itional secreted effector candidates that were differentially
classified or overlooked before (Additional file 1: Table S1,
sheet “Additional effector candidates”). In conclusion, this
analysis shows that CSEPs account for more than half of
the Bgh proteins with a predicted signal peptide.

BLASTP searches, in the context of BLAST2GO ana-
lysis, revealed 5,665 Bgh proteins with one or more hits
in the NCBI database (E value <1e-06), while 830 proteins
had no significant hits (E value > 1e-06; Additional file 1:
Table S1, sheet “No BLAST hit”) at the time of ana-
lysis. Botryotinia fuckeliana, Glarea lozoyensis, Marssonina
brunnea, Fusarium oxysporum and Sclerotinia sclerotiorum

were the species that yielded the greatest total number
of BLAST hits (Additional file 2: Figure Sla); whereas
Marssonina brunnea, Glarea lozoyensis and Botryotinia
fuckeliana were the species that yielded most top BLAST
hits for the Bgh query sequences (Additional file 2:
Figure S1b).

We used Markov clustering (MCL) to group the 6,495
predicted Bgh proteins into polypeptide families (see
Methods for details). This type of analysis revealed that
the Bgh genome encodes 619 protein families, ranging
in size from two to 230 members, plus 3,758 singletons.
Most protein families are small (544 families with 2-5
members) or medium-sized (68 families with 6-25 mem-
bers), and only seven families comprise more than 25
members (Additional file 3: Table S2). EKA-like avirulence
proteins, six different CSEP families, kinases, WD40 domain
proteins, ATP-dependent RNA helicases, mitochondrial
carrier proteins and AAA ATPases comprise the protein
families with the highest number of members in the Bgh
proteome (Table 1). This outcome is largely consistent with
the analysis of protein domains by InterProScan, which re-
vealed that WD40 and kinase domains are amongst the
most prevalent domains in Bgh proteins (Additional file 4:
Table S3). WD40 domains exhibit a -propeller archi-
tecture and are amongst the most abundant domains in
eukaryotic organisms. They are typically involved in medi-
ating protein-protein or protein-DNA interactions [15].
Notably, seven of the 20 largest protein families appear
to be, largely, Blumeria-specific. These include the EKA
avirulence proteins and the six largest CSEP families
(Table 1).

Predicted subcellular localization of Bgh proteins

We performed an analysis of potential subcellular loca-
lization for the 6,495 conceptual Bgh proteins using
ProtComp (Version 9.0), which combines several methods
for prediction of protein localization (see Methods for de-
tails). In the context of our study we considered the out-
come of “neural network analysis” and the “integral final
score”, the latter condensing the results of four different
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Table 1 The 20 largest Bgh protein families according to
MCL analysis

Number of family Protein function

members

230 EKA family (effectors paralogous to AVRK1
and AVRA10)

150 CSEP (family 1)

75 Serine/threonine kinase

70 Fungus-specific tyrosine kinase

57 CSEP (family 2; RNAse domain)

41 WD40 domain protein

27 Mitochondrial transporter/carrier protein

25 CSEP (family 3; RNAse domain)

25 ATP-dependent RNA helicase

24 Reverse transcriptase/endonuclease

20 CSEP (family 4)

20 Bromodomain-containing ATP-dependent
chromatin remodeling factor (DNA repair
protein/helicase)

20 30 kDa heat shock protein

19 AAA family ATPase

17 Small monomeric GTPase

16 RNA recognition motif-containing protein

15 (Short-chain) dehydrogenase (oxidoreductase)

15 Ubiquitin conjugating enzyme (E2)

14 CSEP (family 5)

13 CSEP (family 6)

prediction methods into a final mark. Both approaches
yielded similar prediction profiles (Additional file 5:
Figure S2), with consistent predictions of subcellular
localization for 4,724 proteins and conflicting predic-
tions for 1,771 proteins. Results of the ProtComp analysis
further support a secretory pathway route for a subset of
the known CSEPs and additional effector candidates, since
200 out of the 491 previously published CSEPs and 17 out
of the 42 additional CSEPs proposed in the context of
this work, were classified as “extracellular (secreted)” by
both the neural network method and the integral final
score (Additional file 1: Table S1, sheets “CSEPs” and
“Additional effector candidates”).

A family of fungus-specific kinases is expanded in Bgh
and Bgt

We noted the drastic expansion of a family of fungus-
specific kinases in Bgh compared to other fungi (family 4,
Table 1). This type of kinases appears to be largely re-
stricted to the fungal clade of Leotiomyceta; outside of
this taxonomic division only few kinases with low se-
quence similarity can be found (no BLAST hit with an
E value <le-20). Within the Leotiomyceta, the kinases
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appear to be most prevalent in pathogenic species repre-
senting different taxonomic classes, in particular phyto-
pathogens, but also some facultative human and insect
pathogens. By contrast, saprophytic fungi seem to either
lack these kinases (for example Penicillium chrysogenum
or S. cerevisiae) or only harbor single/few copies thereof
(for example Aspergillus niger, Glarea lozoyensis or Neu-
rospora crassa; Additional file 6: Table S4). Nevertheless,
some phytopathogenic fungal species lack these ki-
nases (for example Botryotinia fuckeliana, Colletotrichum
higginsianum, Fusarium oxysprum, Magnaporthe oryzae
and Marssonina brunnea), indicating that their presence is
not a strict prerequisite for a pathogenic lifestyle. The
presence/absence pattern of these proteins in fungal taxa
suggests several independent losses of genes encoding this
kinase type within the Leotiomyceta, concomitant with a
convergent expansion of this gene family in a subset of
pathogenic species. This notion is further supported by
phylogenetic analysis of this protein family, which in most
cases revealed species-/clade-specific grouping rather
than paralog-specific clustering of the respective protein
sequences (Figure 2). Such a phylogenetic pattern is indi-
cative of species-specific expansions of the kinase family
subsequent to fungal speciation events.

According to our sequence similarity database searches,
the Bgh genome encompasses the highest number of genes
encoding this kinase type (70 members), while the Bgt
genome encodes 25 members of this protein family
(Additional file 6: Table S4). The difference in the size
of this kinase family between these two closely related
formae speciales is striking and may relate to problems
with genome annotation (see below). Alternatively, this
finding could indicate that the kinase genes evolved dif-
ferently in Bgh and Bgt. Notably, the genomes of the pow-
dery mildews infecting dicotyledonous plant species,
E. pisi and G. orontii, each seem to contain only one
member of this kinase type (corresponding to Bgh
CCU83175; E values 7e-13 and le-24, respectively;
Additional file 1: Table S1, sheet “Fungus-specific kinase”).
In Bgh, many members of the Bgh kinase family reside on
comparatively small contigs of the current DH14 genome
assembly (41 of the 70 contigs are <10 kb; http://www.
blugen.org/). In most cases these contigs lack other
genes (only 20 of the 70 contigs harbor one or more
additional genes; http://www.blugen.org/). This scenario
suggests that these genes are mostly localized/isolated within
highly repetitive genomic regions that are difficult to assem-
ble. The full-length sequences of these kinases are typically
500—1000 amino acids in length. Owing to the small size of
the corresponding genomic contigs several members are N-
and/or C-terminally truncated. Thus, the actual number of
these kinases might be lower than indicated in Additional
file 6: Table S4, since pairs of N- and C-terminally truncated
proteins may represent the same protein.
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Figure 2 Cladogram of the fungus-specific kinase family. The tree integrates BLASTP results (E value <1e-20) using the Bgh protein CCU82254 as
a query sequence. Phylogenetic analysis was performed with the tool Phylogeny.fr (http://phylogeny.lirmm.fr/phylo_cgi/index.cgi) with the following
workflow: Protein sequences were aligned using MUSCLE3.7 with default settings. Poorly aligned positions and divergent regions were eliminated by
Gblocks 0.91b with default settings. Presumably incomplete sequences (lacking an N-terminal methionine or < 250 amino acids) as well as sequences
that were not properly aligned after curation were removed from the alignment. The phylogenetic tree was calculated by PhyML3.0 with computation
of bootstrap values (100 replicates). MEGA6 was used to render the cladogram. Condensation of branches was performed with a cut off of for bootstrap
values <2. Gene bank accessions and taxa are given in green (plant pathogenic fungi), red (human pathogenic fungi), blue (insect pathogenic fungi) and
black (saprophytic fungi). Ac, Ajellomyces capsulatus; Ad, Ajellomyces dermatitidis; Bb, Beauveria bassiana; Bgh, Blumeria graminis f. sp. hordei; Bgt, Blumeria
graminis f. sp. tritici; Ci, Coccidioides immitis; Cp, Claviceps purpurea; Fp, Fusarium pseudograminearum, Gl, Glarea lozoyensis; Mac, Metarhizium acridum; Man,
Metarhizium anisopliae; Mp, Macrophomina phaseolina, Nc, Neurospora crassa; Pb, Paracoccidioides brasiliensis; Ss, Sclerotinia sclerotiorum.
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The predicted kinase domain resides in the carboxy-
terminal half of the proteins. Twenty-one of the 70 Bgh para-
logs are annotated with InterProScan domain IPR008266
(Tyrosin protein kinase, active site; Additional file 1:

Table S1, sheet “Fungus-specific kinase”), suggesting that
these proteins possess tyrosine kinase activity. However, it
is generally thought that fungi lost tyrosine kinases in the
course of evolution [16,17] and that only subgroups of the
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basidiomycetes encode kinases that are closely related to
tyrosine kinases [17]. Consistent with this belief, virtual
structure prediction, via the protein fold recognition ser-
ver Phyre? (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.
cgi?id=index), revealed highest structural similarity of 27
of these kinases to the human serine/threonine kinase
vaccinia-related kinase 1 (vrfl). The contradictory in silico
predictions prevent, at present, the reliable classification
of this kinase family regarding its substrate specificity;
however, the lack of additional tyrosine kinase specific
sequence motifs [17] rather suggests that these proteins
may have no tyrosine kinase activity. Apart from the
signatures mentioned above, no other known protein
domains can be found in these kinases. Interestingly, the
genome of the obligate biotrophic wheat rust pathogen
(Puccinia graminis f.sp. tritici, a basidiomycete) encodes a
family of kinases, comprised of 14 members, with similar
protein size. These show distant sequence similarity to the
presumptive Bgh kinase family (E values le-04 to 1le-20)
and may represent the basidiomycete equivalent of the
ascomycete pathogen-associated kinases. It remains to be
seen whether these proteins are active kinases, what their
substrates are and whether and how they contribute to
pathogenic processes.

Bgh- and powdery mildew-specific proteins

We identified 1,072 Bgh proteins without significant
NCBI BLASTP hits (E value >1e-06) except from hits to
other Bgh proteins (Additional file 1: Table S1, sheet
“Bgh BLAST hits only”). These include the 830 proteins
without any considerable BLASTP hit mentioned above
(Additional file 1: Table S1, sheet “No BLAST hit”) plus
224 EKA-like proteins and 18 proteins with solely Bgh-
specific BLASTP hits. In total, the 1,072 proteins com-
prise 487 CSEPs, 231 EKA-like proteins and otherwise
mainly unknown/hypothetical proteins. Only 77 of the
1,072 proteins contain an InterProScan domain, IPR016191
(ribonuclease/ribotoxin) being present 61-times, while all
other domains occur only once or twice. This finding is
consistent with the previous analysis of Bgh CSEPs, which
uncovered unexpected affinities of a subset of this protein
group to microbial ribonucleases [7]. TBLASTN analysis
reveals that 303 of the proteins are also encoded by the
E. pisi genome (E value <le-10), while 278 are encoded
by the G. orontii genome (E value <le-10) as well. In
total, 266 proteins, the majority thereof EKA proteins
but also including twelve CSEPs, are common to all three
powdery mildews and thus seem to represent powdery
mildew-specific proteins (Additional file 1: Table S1, sheet
“Powdery mildew-specific proteins”). On the other hand,
709 proteins appear to be Blumeria/Bgh-specific proteins
since recognizable orthologs (E value <le-5) are absent in
both E. pisi and G. orontii (Additional file 1: Table S1,
sheet “Bgh-specific proteins”). These 709 Blumeria/
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Bgh-specific proteins include 445 of the previously de-
scribed 491 CSEPs [7].

Proteins conserved in and specific to filamentous fungi
We recently found that the genomes of powdery mildew
fungi lack a core set of 99 genes that are otherwise con-
served in fungal species from yeasts to filamentous fungi
[3]. These and possibly further missing genes could be
the molecular cause for the obligate biotrophic lifestyle
of these parasites. We speculated that the actual number
of “missing genes” in powdery mildews might be consid-
erably higher, since we applied very strict criteria for the
automated BLAST searches, which would exclude all bor-
derline cases that could for example arise from the pres-
ence of similar domains in otherwise unrelated proteins.
To obtain a first insight whether this hypothesis was cor-
rect, we analyzed the powdery mildew genomes for the
presence of 37 fungal ortholog MCLs that were previously
found to be present exclusively in a set of 25 analyzed
genomes of filamentous fungi, but not in the genomes
of seven tested unicellular fungi (yeasts; [18]). Of the 37
MCLs analyzed, eight (22%) were not represented in
the Bgh genome (Table 2). Thus, the analysis of this
diagnostic set of proteins that are otherwise conserved
in and specific to filamentous fungi confirms our hypoth-
esis that additional genes have been lost in the powdery
mildews.

Proteins crucial for the formation of hyphal anastomoses

Hyphal anastomoses (somatic cell fusions during vegeta-
tive growth) are common in filamentous fungi. They are
typically formed during colony expansion and contribute
to the development of an extensive interconnected my-
celium [19]. Somatic fusion of fungal cells often occurs
early during fungal development and involves dedicated
conidial anastomosis tubes (CATs; [20]). Formation of

Table 2 Proteins conserved in and specific to filamentous
fungi that are absent in the Bgh proteome?®

MCL ID® Annotation (accession number)b

MCL94  O-methylsterigmatocystin oxidoreductase (cytochrome P450)
(013345)

MCL1912 Neutral/alkaline non-lysosomal ceramidase
(PF04734; Afu1g06470)

MCL2061 Homogentisate 1,2-dioxygenase (Q00667)

MCL2812 Vegetatible incompatibility protein HET-E-1 (Q00808)
MCL3026 Saccharopine dehydrogenase (Q8R127)

MCL3518 Similar to human LRP16 (Q9BQ69)

MCL3670 Ketosamine-3-kinase (Q8K274)

MCL4033 Citrate lyase beta chain (053078)

®based on BLASTP searches against the Bgh proteome and TBLASTN searches
against the Bgh genome; BLAST searches had to be either negative (E value >
1e-10) or when positive were inspected manually for protein identity.
baccording to [18].
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anastomoses can take place within a fungal colony and
between fungal colonies. In the case of genetically di-
verse colonies, the latter can result in a heterokaryon,
i.e. the presence of genetically different nuclei in a com-
mon cytoplasm [19]. Genetic analysis revealed a few factors
that are required for anastomosis formation in the model
ascomycete N. crassa [21]. These encode transcription fac-
tors, components of signal transduction and proteins in-
volved in vesicle trafficking and membrane fusion [21].

To our knowledge, formation of hyphal anastomoses
has never been reported for powdery mildews, suggesting
that these ascomycetes are incapable of developing this
type of cell-cell connections. To find out whether the ap-
parent inability to generate somatic cell fusions is corre-
lated with the absence of genes known to be required for
anastomosis formation, we analyzed the presence/ab-
sence of these genes in the powdery mildew genomes. We
found that of the 24 genes analyzed, two (ada-3 and so/
ham-1) were absent in the genomes of all three pow-
dery mildew species (Bgh, E. pisi and G. orontii). By con-
trast, these two genes were present in the genomes of
the closely related fungal species B. fuckeliana and S.
sclerotiorum, which are both capable of forming hyphal
anastomoses [22,23]. In conclusion, these findings sug-
gest that powdery mildews possibly lack the ability to
form hyphal anastomoses owing to a lineage-specific
loss of at least two genes coding for proteins that are
essential for this process.

Analysis of protein families with prominent roles in
fungal development, signaling and pathogenesis

To find out whether additional fungal pathways that are
known to play important roles in fungal development,
signaling and pathogenesis are affected by genes not
present in Bgh, we conducted manual inspection of a
number of key pathways, comprising heterotrimeric G pro-
tein signaling, mitogen-activated protein kinase (MAPK)
signaling, cyclic adenosine monophosphate (cAMP) signal-
ing, small G protein signaling, calcium signaling and tran-
scription factors (TFs).

Heterotrimeric G protein signaling

G protein coupled receptors (GPCRs) are heptahelical
cell surface receptors that, upon extracellular binding of
a cognate ligand, initiate intracellular signal transduction
pathways via heterotrimeric G proteins. In fungi, GPCRs
sense diverse extracellular signals including: pheromones,
carbohydrates, amino acids, nitrogen sources and photons
[24,25]. Together with the associated downstream hetero-
trimeric G protein signaling complex they engage in
essential functions during growth, asexual and sexual
development and virulence in the case of pathogenic
fungi. In contrast to mammals, where GPCRs form a
large and sequence-diversified family with several hundred
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members per species [26], most fungal genomes encode
few GPCR proteins (often less than ten) and a limited set
of heterotrimeric G protein components (typically three
Go subunits, one G and one Gy subunit; [24,25]. Notably,
species of the ascomycete subphylum Pezizomycotina en-
code a type of GPCR (PTH11) not found in other fungal
groups. This type of GPCR is present as an expanded fam-
ily of 61 members in the phytopathogen M. grisea [27].
Regulator of G protein signaling (RGS) proteins control
the activity of Ga subunits [24], while phosducin proteins
regulate GPy subunits, possibly by serving as chaperones
[24]. Therefore these two types of proteins represent im-
portant rheostats of G protein signaling pathways.

We mined the Bgh genome for the presence of genes
coding for heterotrimeric G protein subunits, GPCRs, RGS
and phosducin proteins. We identified the archetypal set of
heterotrimeric G protein components (three Ga subunits,
one Gp and one Gy subunit), GPCRs (eight canonical
GPCRs, including: putative pheromone, carbohydrate, ni-
trogen, cAMP and light receptors) and as well as five RGS
and two phosducin proteins (Figure 3; Additional file 7:
Table S5, sheet “GPCRs-heterotrimeric G proteins”). We
identified one additional Bgh gene (besides the one encod-
ing the regular Gf protein) that encodes a protein har-
boring InterProScan domain IPR001632 (G protein beta
WD40 repeat; CCU74556). This domain is characteristic
of GP subunits; however, it still remains to be seen
whether the respective protein, which is also encoded
in the genomes of many other ascomycetes, has an au-
thentic role in heterotrimeric G protein signaling. While
three of the five predicted RGS proteins are well-conserved
in other fungi (CCU76565, CCU75320, plus one corre-
sponding to yeast Sst2, which is split on two genomic con-
tigs and thus no GenBank accession number available), the
other two (CCU82385, CCU82752) show limited sequence
conservation and thus represent less common or less
preserved types of RGS. The domain architecture of
CCU75320 resembles human RGS-PX1, a presumably
bifunctional protein in which the RGS domain is asso-
ciated with sorting nexin features, thereby possibly linking
G protein regulation to vesicular trafficking [28]. The ge-
nomes of many ascomycetes and higher plants encode a
protein representing a presumed translational fusion of a
GPCR with an RGS protein (Aspergillus nidulans GprK
being the fungal prototype; [24,29,30]). Such a gene is
absent in Bgh, but also missing in the genomes of B.
cinerea and S. sclerotiorum, suggesting that this gene might
have been lost in the lineage of the Leotiomycetes. Besides
the eight canonical GPCRs, we found five additional high
confidence GPCR candidate gene products based on the
presence of characteristic InterProScan domains (including
one homolog of M. grisea PTH11). Moreover, we identified
twelve genes encoding proteins that, according to their
predicted transmembrane topology and lack of homology



Kusch et al. BMC Genomics 2014, 15:843
http://www.biomedcentral.com/1471-2164/15/843

Page 8 of 15
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CCU74543, CCU74611, CCUTB632,
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CCU75199
CCU77413

Other high confidence
GPCR candidates
CCU74862, CCU75181,
CCUT76297, CCU77395,

Cccus18s3

Heterotrimeric G protein complex

Figure 3 Heterotrimeric G protein signaling components conserved in Bgh. The scheme depicts GPCR candidates, heterotrimeric G protein
subunits and regulatory components of GPCR signaling (phosducin, RGS). Note that the Ste3-like pheromone receptor is not shown since it is not
represented in the current genome assembly of the Bgh DH14 isolate, but present in the transcriptome assemblies of Bgh isolates A6 and K1.
One “Further GPCR candidate” and one RGS protein whose gene models are split on two contigs are also not included in the Figure. For further
details see Additional file 7: Table S5 (sheet “GPCRs-heterotrimeric G proteins”).

Further GPCR candidates
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CCUB2091, CCUB2829

CCU75320
CCU76585
CCcu82385
ccus2752

to characterized proteins, may also represent GPCRs
(Figure 3; Additional file 7: Table S5, sheet “GPCRs-
heterotrimeric G proteins”). Either way, the number of
GPCRs in Bgh seems to be considerably smaller than
the extended GPCR complement found in the hemibio-
trophic phytopathogen M. grisea [27].

MAPK signaling

Mitogen activated kinases (MAPKs) are highly conserved
eukaryotic protein kinases. They typically function in
modules of three-tiered signaling cascades, in which
MAPKSs are phosphorylated and activated by MAPK-
kinases (MAPKKs), which in turn are phosphorylated
and activated by MAPKK-kinases (MAPKKKs). MAPKKKs
are connected to cell surface sensors via small monomeric
GTPases and/or other upstream protein kinases. MAPK
signaling is required for appressorium formation in several
phytopathogenic and entomopathogenic fungi [31-35].
Analysis of the Bgh proteome revealed the presence of four
canonical MAPKKKs (CCU75550, CCU77369, CCU78411
and CCU82598,), three prototypical MAPKKs (CCU75305,
CCU76709 and CCU81577) and three archetypal MAPKs
(CCU74295, CCU75807 and CCU82891; Additional file 7:
Table S5, sheet “M AP kinases”). These proteins harbor
characteristic kinase domains (for example PTHR24355,
PTHR24360, PTHR24361 or IPR003527), and comprise
presumptive orthologs of key MAP(K/K)Ks that are
known to have important roles in fungal signaling and
development (Figure 4; [36]). In addition to these classical

MAP(K/K)Ks, the presence of distinctive protein domains
suggests five additional MAPKKKs and three further
MAPKs in Bgh. However, some of these proteins appear
to be kinases acting upstream of MAPK modules (for
example CCU77522 and CCU83089, corresponding to
yeast Cla4 and Ste20, respectively) or kinases that have
sequence similarity to MAPKKKs/MAPKs, but may not
necessarily exert this function.

Based on the compilation of [37], we also studied the
presence/absence of genes that encode proteins known
to act upstream or downstream of MAP(K/K)K signaling.
All signaling components typically present in filamentous
fungi were found to be present. These include some
known upstream kinases (corresponding to yeast Ste20,
Cla4, Pkcl and Sskl) and downstream transcription
factors (corresponding to yeast Mcml, Skol, Stel2 and
Swid/Swi6). Thus, the canonical MAPK signaling pathways
as found in yeast appear to be complete in Bgh (Figure 4).
The additionally identified MAPKKK and MAPK candi-
dates leave, however, room for combinatorial modifications
of the existing cascades or novel types of MAPK modules.

Two of the three canonical Bgh MAPKs identified by
our genome-wide search (CCU75807 and CCU82891;
corresponding to MAPK-I and MAPK-II, respectively)
have been previously described and analyzed [38]. An-
other experimental study revealed a rapid transient in-
crease in MAPK activity during early development of
Bgh sporelings (appressorial germ tube formation and
differentiation of appressoria) on cellulose membrane.
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In addition, exogenous application of activators of MAPK
signaling (sphingosine and PAF-16) promoted fungal de-
velopment on this artificial surface, while a MAPK inhibi-
tor (PD 98095) had the opposite effect [39]. Thus, similar
to other phytopathogens [31,33,40,41], MAPK signaling in
Bgh appears to play a role in the differentiation of key in-
fection structures.

cAMP signaling

The cAMP pathway is a highly conserved central node
of fungal development and virulence. It is responsive to
nutrient and oxidative stress and regulates growth, cell
cycle and pathogenesis in fungi [42-45]. The pathway is
essentially comprised of adenylate cyclase, which forms
cyclic AMP (cAMP) from ATP and is activated by
stress-responsive upstream components, and protein
kinase A (PKA), which acts as a heterotetramer composed
of two catalytic subunits and two cAMP-binding regula-
tory subunits. PKA activates, in turn, transcriptional regu-
lators that control expression of stress-responsive and cell
cycle-associated genes (Figure 5). In our analysis we found
that Bgh possesses all components involved in cAMP
signaling, i.e. adenylate cyclase (CCU76253), an adenylate
cyclase-associated protein (CCU82809), three types of
catalytic PKA subunits (CCU79627, CCU82108 and
CCU75464) and one regulatory PKA subunit (CCU82360),
as well as two cyclic nucleotide phosphodiesterases
(CCU82746 and CCUS80431), which convert cAMP back
to its non-cyclic form. Additionally, genes encoding sev-
eral known downstream targets of PKA, such as Stel2/
SteA (a transcription factor involved in fungal sexual

reproduction; CCU76030), SFL1 (a flocculation suppression
protein; CCU81131) and Rim101/PAC1 (a pH-responsive
transcription factor; CCU80343) are also represented in the
Bgh genome. Accordingly, the cAMP pathway seems to be
complete in Bgh (Figure 5).

The findings from our in silico genomic analysis are
consistent with previous experimental studies, which
support a role for cAMP signaling in Bgh pathogenesis.
For example, a rise in Bgh cAMP levels correlates with
conidial differentiation on the host surface, while cAMP
levels remain unaltered on a non-inductive glass surface
[46]. Moreover, exogenous application of cAMP analogs
and pharmacological stimulation and inhibition of PKA
further support a role for cAMP signaling in conidial
differentiation and appressorial development in Bgh
[39,47,48].

Small monomeric GTPase signaling

Members of the small monomeric GTPase superfamily
play crucial roles in many cellular processes, including:
signaling, endomembrane trafficking, cell cycle regulation
and protein transport through the nuclear pore complex
[49]. In Bgh, we found 33 small GTPases, belonging to the
canonical Ras-, Ras-like-, Rab-, Ran-, and Rho-families, and
6 Arf-type GTPases (Additional file 7: Table S5, sheet
“Small monomeric GTPases”). None of the families shows
abnormalities concerning number of members or presence/
absence of essential small GTPases. Furthermore, three
mitochondrial small GTPases were found in the Bgh
genome. Two of these belong to the Ras superfamily,
whereas the other one corresponds to the Rho-type
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GTPase Mirol/2 (Gemlp in yeast; Bgh CCU80313), a
calcium-dependent mitochondrial GTPase ubiquitously
present in eukaryotes [50]. As described for Gemlp,
Bgh Mirol/2 harbors two predicted GTPase domains
and EF-hand like calcium binding domains. Numerous
genes coding for corresponding GTPase activating proteins
(GAP) and Guanine nucleotide exchange factors (GEF) are
present in the Bgh genome. Bgh possesses 26 GAPs and 5
ArfGAPs, the latter being involved in vesicle fusion and fis-
sion, 16 GEFs, and 4 ArfGEFs (Additional file 7: Table S5,
sheet “Small monomeric GTPases”). Taken together, all
canonical small GTPase families are represented in the
Bgh genome.

Calcium signaling

The secondary messenger calcium (Ca®") is involved in the
regulation of a variety of cellular processes in eukaryotes.
In filamentous fungi, Ca*>*—mediated signal transduction
is linked to responses to environmental stress as well as
the regulation of fungal development including: spore ger-
mination, appressorium formation, polar growth, hyphal

branching and sporulation (reviewed in [37,51]). The per-
ception of extracellular signals results in a transient increase
in the cellular concentration of free Ca**, often mediated
via activation of phospholipase C (PLC) by GPCRs. PLC
subsequently hydrolyses the membrane phospholipid PIP2
to form IP3 and diacylglycerol (DAG), two secondary mes-
sengers that initiate Ca>* fluxes from the ER, vacuole and
extracellular space. The resulting increase of cytoplasmic
Ca®* concentration is a prerequisite for activation of a
number of diverse downstream signaling components
for example kinases, including protein kinase C (PKC),
Ca**/calmodulin and (CaM)-dependent kinases (CCaMKs).
The tight regulation of cytosolic Ca®>* concentration
requires the activity of several cellular components
(Figure 6; [51,52]).

In resting eukaryotic cells, the intracellular Ca®* concen-
tration is maintained at a remarkably low level and in-
creases upon extracellular cues due to the activity of Ca**
pumps and transporters located in the plasma membrane
(PM), ER membrane or the tonoplast [51]. In Bgh we found
putative homologs for most proteins known or predicted to
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be involved in transmembrane Ca®* transport, including:
Ca®* channels (Yvcl, Cch1/Mid1), ATPases (Spfl, SERCA-
like, Pmrl, Pmc1) and Na**/Ca®* exchangers (Vnx1, Ecm27)
(Figure 6, Additional file 7: Table S5, sheet “Calcium
signaling”; [52,53]). However, no obvious homolog could
be identified for the plasma membrane-resident yeast
Ca®* P-type ATPase Ena2, which is conserved in N.
crassa and M. oryzae and in the latter critical for ap-
pressorium formation [52]. On the other hand, an add-
itional putative Ca>* ATPase not present in yeast was
identified (CCU78880). This protein is related to the
endoplasmic/sarcoplasmic Ca®*P-type ATPases Ila of the
SERCA type, which is conserved in M. oryzae and N.
crassa and involved in virulence of the human pathogenic
basidiomycete Cryptococcus neoformans [54]. Ca** ion
fluxes from the environment or intracellular organ-
elles precede the binding of Ca®* to calmodulin (CaM/
calcium-modulated protein), which transduces Ca**
signatures by Ca**-mediated interactions with various
target proteins. CaM is present in all eukaryotes and
usually highly conserved. Interestingly, we found a relatively

low degree of CaM conservation between yeast and Bgh
(60% amino acid identity, E value 2e-58). The best BLAST
hit for Bgh CaM (CCUB82138) is found in Metarhizium
robertsii, an entomopathogenic, insect-infecting ascomycete
(99% amino acid identity, E value 3e-94, EXV03624).
Subsequently, CaM interacts with and activates a var-
iety of downstream acting proteins including calcineurin
(Cn), a protein phosphatase that controls morphogenesis
and stress responses in eukaryotes. Fungal pathogens
have adopted the calcineurin pathway to survive and ef-
fectively propagate within the host (reviewed in [37,51]).
Calcineurin is formed by a heterodimer of a catalytic
subunit (CnA) and a regulatory subunit (CnB) and is fur-
ther regulated by calcipressin (Cp), which in yeast is repre-
sented by the Calcipressin-1 Renlp that is not conserved
in Bgh. However, BLAST searches with mammalian Cp-2
and Cp-3 family members as query identified the Bgh
protein CCU74958 as a possible candidate for calcipressin,
albeit with low amino acid identity (ca. 38% to human
calcipressin isoforms). In accordance with this finding,
InterProScan predicts the calcipressin motif IPR006931
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for the Bgh protein. In yeast, active calcineurin dephos-
phorylates the transcription factor Crzl, which subse-
quently enters the nucleus [55]. Nuclear Crz1 binds to
calcineurin-dependent response elements (CDRE) and
activates its own transcription as well as target genes
linked to cell wall synthesis and Ca** homeostasis includ-
ing: Pmr1, Pmcl, Cchl, Enal [56].

Transcription factors

Transcription factors (TFs) are essential components in
signal transduction, linking signal flow to transcriptional
output. They are thus crucial mediators in fungal devel-
opment and pathogenesis. Fungi contain dozens of TF
families, including some seemingly fungus-specific types
of TF families [57]. We inspected the meta-analysis data
of TFs provided by the Fungal Transcription Factor
Database (FTFD; http://ftfd.snu.ac.kr/index.php?a=view;
[58]) and compared the results of the semi-automated
classification provided in this database to respective data
sets from the closely related species B. cinerea and S.
sclerotiorum. According to this analysis, which is based
on 5,473 open reading frames, the Bgh genome encodes
240 TFs that can be classified into 36 families, represent-
ing ca. 4.4% of the Bgh ORFs (Additional file 7: Table S5
(sheet “Transcription factors”). These numbers compare
to 454 TFs (43 families; 2.8%) in B. cinerea and 648 TFs
(44 families; ca. 4.5%) in S. sclerotiorum, respectively. The
overall average for the ratio of transcription factors to
all ORFs for fungi in the FTFD database is 4.6% (on the
basis of 178 fungal species/strains), indicating that the
relative number of TFs in Bgh is in the common range
(Additional file 7: Table S5 (sheet “Transcription factors”).
Although the FTFD database indicates that some TF
families might be absent in Bgh (including: Forkhead TFs,
GATA-type zinc finger TFs, Homoeobox TFs, MADS box
TFs, negative transcriptional regulators and BED-type zinc
finger TFs), manual inspection revealed that members of
most of these families are in fact encoded by the Bgh
genome and were possibly excluded or ignored by the
automated FTFD classification pipeline. Exceptions are
the negative transcriptional regulators - a class of TFs
that seems indeed to be absent in Bgh. The prototype of
this family is NmrA, a negative transcriptional regulator
involved in metabolite (for example nitrogen) repression
in various fungi, including N. crassa and A. nidulans [59].
Since Bgh, as a highly host-adapted obligate biotrophic
pathogen, does not rely on alternative nitrogen sources,
such regulatory circuits might be dispensable.

Conclusions

Our study reports basic characteristics of the Bgh genome
(Figure 1, Table 1, Additional file 1: Table S1). Apart from
the largest protein families, which revealed Bgh-specific at-
tributes (CSEPs and EKAs), most features are comparable
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to other fungal genomes. However, consistent with our hy-
pothesis that the list of missing genes in Bgh might be
incomplete, our analysis uncovered a number of protein
coding genes lacking in Bgh compared to other (filament-
ous) fungi. These include: proteins, specific to filamentous
fungi (Table 2), which are required for anastomosis forma-
tion, negative transcriptional regulators and individual
components in common signaling pathways. By contrast,
all main components of major signal transduction path-
ways (heterotrimeric G protein signaling, MAPK signaling,
cAMP signaling, Ca>* signaling, small GTPases) are present,
suggesting that these pathways are functional in Bgh
(Figures 3, 4, 5 and 6). We identified a set of powdery
mildew- and Bgh-specific genes and found that a fam-
ily of pathogenesis-related kinases with unknown kin-
ase specificity is unusually expanded in Bgh (Figure 2,
Additional file 6: Table S4). The functional relevance
of these kinases for the Bgh life cycle remains to be
discovered.

Methods

Protein sequences

The 6,470 protein sequences deduced from the annotated
Bgh isolate DH14 genome (v3.0) (http://www.blugen.org/)
form the basis of this study. This core protein set was sup-
plemented with 25 additional proteins that were annotated
in the course of this analysis. GenBank accession numbers
of all proteins can be found in Additional file 1: Table S1,
except for the Ste3-like GPCR, which is missing in the
genome assembly of isolate DH14. The latter protein se-
quence was deduced from the transcriptome of Bgh iso-
lates A6 and K1 [5]. The EBI/GenBank accession numbers
for 24 out of the 25 newly annotated sequences are
CEA17182-CEA17205 (note that for the Ste3-like GPCR
there is no accession number since the gene is missing in
the genome assembly of isolate DH14).

BLAST2GO analysis and BLAST searches

BLAST2GO (http://www.blast2go.com/b2ghome/about-
blast2go) analysis [60,61] was conducted in July 2013
using standard parameters (BLAST threshold set to 1e-06).
Bgh BLAST searches were performed against the genomic
assembly of Bgh isolate DH14 [3] and the transcriptome
assemblies of Bgh isolates A6 and K1 [62]. BLAST searches
against the genomes of E. pisi and G. orontii were per-
formed on the basis of genomic draft assemblies (http://
www.mpipz.mpg.de/23693/Powdery_Mildews) [3].

Signal peptides and transmembrane domains

Prediction of signal peptides for secretion was performed
with SignalP4.1 (http://www.cbs.dtu.dk/services/SignalP/;
[63]), the presence of transmembrane domains was
analyzed with TMHMM2.0 (www.cbs.dtu.dk/services/
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TMHMM/; [64]) and TOPCONS (http://topcons.cbr.
su.se/; [65]).

Markov clustering of Bgh proteins

A BLASTP [66] search was performed with each Bgh
protein against the database containing all Bgh proteins,
retaining all hits with an E value <1e-10. The results
were converted into an abc file as input for the Markov
clustering algorithm mcl (www.micans.org/mcl) [67] so
that sequence similarities could be used as the basis for
clustering. The inflation parameter 2 resulted in 4377 pro-
tein families. All data conversions and final data summar-
ies were implemented in Perl scripts.

Subcellular localization

Subcellular localization of proteins was inferred by
ProtComp (Version 9, http://linuxl.softberry.com). The
resulting files were parsed with a Perl script. In cases
where the neural net prediction was the same as reported
with the highest integral score, the predicted location was
assigned to the protein.

Analysis of proteins conserved in, and specific to,
filamentous fungi

Based on the MCL designations listed in the study by
[18] we selected query protein sequences from the NCBI
database to interrogate (local BLASTP and TBLASTN
searches) the presence of genes encoding these proteins
in the Bgh genome. In cases where BLAST results were
inconclusive, manual inspection for the presence of in-
formative domains via InterProScan was performed.

Fungal signaling pathways

We analyzed prominent fungal signaling pathways in Bgh,
including: heterotrimeric G proteins/GPCR, MAPKs, cAMP
signaling, small monomeric GTPases and Ca*" signaling, by
performing sequence similarity searches. Query sequences
were selected from other ascomycetes (for example S. cerevisiae,
S. pombe, N. crassa, C. neoformans, and M. oryzae) on the
basis of literature data [24,37,42,52,53,68]. Putative Bgh
orthologs of the query sequences were typically verified
by reciprocal BLAST analysis and in many instances
further corroborated by the presence of informative
protein domains identified via InterProScan analysis.
Additional GPCR candidates were identified by manual
inspection of proteins with six to eight predicted trans-
membrane domains based on TMHMM2.0 and TOP-
CONS analysis (see Additional file 7: Table S5, sheet
“GPCRs-heterotrimeric G proteins”).

Availability of supporting data
The data sets supporting the results of this article are
included within the article and its additional files.
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Additional files

Additional file 1: Table S1. Global Analysis of the Bgh proteome. Sheet
“Summary”: This sheet serves as a master sheet and contains all data
regarding BLAST2GO analysis, GenBank accession numbers, protein
description, SignalP4.1 analysis, TMHMM2.0 analysis, InterProScan results,
BLAST results against the G. orontii and E. pisi genome and ProtComp
analysis. Sheet “SignalP4.1 details”: Detailed output from the SignalP4.1
analysis. Sheet “No BLAST hit": The 830 entries of the “Summary” sheet
that have no BLAST hit. Sheet “Bgh BLAST hits only”: The 830 entries of
the sheet “no BLAST hit” plus 224 EKA-like proteins plus 18 proteins with
solely Bgh-specific BLAST hits (total of 1072 entries). Sheet “Fungus-specific
kinase”: The 70 entries of the “Summary” sheet that correspond to the
fungus-specific kinase. Sheet “CSEPs": The 491 entries of the “Summary”
sheet that correspond to the previously described CSEPs. Sheet “Additional
effector candidates”: The 42 entries of the “Bgh BLAST hits only” sheet that
have no BLAST hit and a prediction for a signal peptide by SignalP4.1. Sheet
"Powdery mildew-specific proteins”: The 265 entries of the “Bgh BLAST hits
only” sheet with TBLASTN hits E <1e-10 against both the G. orontii and the
E. pisi genome. Sheet “Bgh-specific proteins”: The 709 entries of the “Bgh
BLAST hits only” sheet with no TBLASTN hits E <1e-5 against both the G.
orontii and the E. pisi genome.

Additional file 2: Figure S1. BLAST hit distribution. Histograms
showing the frequency distribution of BLAST hits with regard to species.
The diagram is based on all BLAST hits (A) or only the top BLAST hits (B)
obtained in BLAST2GO analysis (i.e, using the 6,495 Bgh proteins as a query).

Additional file 3: Table S2. Bgh protein family size distribution.

Additional file 4: Table S3. The 25 most abundant InterProScan
domains found in the Bgh proteome.

Additional file 5: Figure S2. Prediction of subcellular localization by
ProtComp. The pie charts illustrate the prediction profiles of subcellular
protein localization obtained by “neural network analysis” (A) and the
“integral final score” (B). Figures indicate the number of proteins falling
into a given category.

Additional file 6: Table S4. Presence of a fungus-specific kinase family
in selected fungal species.

Additional file 7: Table S5. Bgh protein families with prominent roles
in fungal development, signaling and pathogenesis. Sheet “GPCRs-
heterotrimeric G proteins”. Sheet “MAP kinases". Sheet “cAMP signaling”.
Sheet "Small monomeric GTPases". Sheet “Calcium signaling”. Sheet
“Transcription factors”.
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