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Receptor tyrosine kinase MET ligand-interaction 
classified via machine learning from single-
particle tracking data

ABSTRACT Internalin B–mediated activation of the membrane-bound receptor tyrosine ki-
nase MET is accompanied by a change in receptor mobility. Conversely, it should be possible 
to infer from receptor mobility whether a cell has been treated with internalin B. Here, we 
propose a method based on hidden Markov modeling and explainable artificial intelligence 
that machine-learns the key differences in MET mobility between internalin B–treated and  
–untreated cells from single-particle tracking data. Our method assigns receptor mobility to 
three diffusion modes (immobile, slow, and fast). It discriminates between internalin B–treat-
ed and –untreated cells with a balanced accuracy of >99% and identifies three parameters 
that are most affected by internalin B treatment: a decrease in the mobility of slow molecules 
(1) and a depopulation of the fast mode (2) caused by an increased transition of fast mole-
cules to the slow mode (3). Our approach is based entirely on free software and is readily 
applicable to the analysis of other membrane receptors.

INTRODUCTION
Receptor tyrosine kinases are a family of membrane-bound recep-
tors that transmit information from the extracellular space across the 
membrane after ligand binding. Ligand-dependent signal transduc-

tion is initiated by the formation of ligand–receptor complexes and 
receptor dimerization (Dietz et al., 2013). The activated signaling 
complexes are then rapidly internalized, mainly by clathrin-medi-
ated endocytosis (Lemmon and Schlessinger, 2010; Trenker and 
Jura, 2020). These reactions are accompanied by a ligand-induced 
change in receptor mobility (Harwardt et al., 2017). Conversely, this 
means that ligand-treated cells differ from untreated cells in their 
receptor mobility, allowing the hypothesis that ligand-labeled cells 
can be identified by their receptor mobility.

To obtain information about the mobility and activation of mem-
brane receptors in living cells, fluorescence methods are particularly 
suitable, such as restoration of fluorescence after photobleaching 
(FRAP; Axelrod et al., 1976), fluorescence correlation spectroscopy 
(FCS; Magde et al., 1972; Haustein and Schwille, 2007), and single-
particle tracking (SPT; Saxton and Jacobson, 1997). However, be-
cause FRAP and FCS provide ensemble-average information on re-
ceptor mobility, function-dependent heterogeneity is lost. This 
shortcoming is overcome by using SPT (Shen et al., 2017), in which 
the motion of a single molecule is tracked by creating a trajectory of 
the molecule’s localization at different time points. Using single-mol-
ecule fluorescence microscopy, it is possible to record the trajecto-
ries of many molecules located on the cell membrane simultaneously 
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with nanometer-scale lateral resolution and millisecond-scale tempo-
ral resolution (for a review, see Shen et al., 2017). The resulting data 
sets contain the trajectories of hundreds of receptors per cell, provid-
ing a representative snapshot of cellular receptor diffusion. SPT data 
are usually analyzed by modeling the particles’ mean squared dis-
placement (MSD) for different time periods using linear models of 
Brownian motion (Saxton and Jacobson, 1997). Unfortunately, the 
time averaging during MSD calculation limits this technique to deter-
mining exactly one diffusion coefficient per trajectory. Using FCS- 
and MSD-based analysis of SPT data, a previous study demonstrated 
that the mobility of membrane-bound MET receptors decreased 
when cells were previously treated with the bacterial ligand intern-
alin B (InlB; Harwardt et al., 2017). Furthermore, analyzing the SPT 
data with nonlinear diffusion models showed that the receptors can 
adopt multiple mobility modes (Harwardt et al., 2017). However, the 
analysis of possible transitions of an MET receptor molecule between 
mobility modes has so far been impossible due to the aforemen-
tioned limitations of the data analysis techniques used.

An alternative to MSD-based linear models for the analysis of 
SPT data are hidden Markov models (HMM; Eddy, 2004). Based on 
the work of Lawrence Rabiner, these are described as follows 
(Rabiner, 1989): HMMs are based on the hypothesis that the data-
generating mechanism relies on a finite number of unobservable 
modes (N), each characterized by a molecular mobility (B) and each 
associated with a distinct diffusion coefficient (D). Thus, it is possible 
to infer the state of an observed molecule if its diffusion coefficient 
is known. Furthermore, an HMM assumes that mobility mode transi-
tions only take place at the measurement times. The probability of 
such a change is described in an N × N matrix (A) of transition prob-
abilities between the modes (Das et al., 2009; Chung et al., 2010; 
Low-Nam et al., 2011; Ott et al., 2013; Slator et al., 2015; Sungka-
worn et al., 2017; Zhao et al., 2019). Finally, the initial mode distribu-
tion (π) reports the initial probability of a molecule existing in one of 
the N modes at the beginning of the observation. HMMs are param-
eterized by unsupervised machine learning (Baum et al., 1970). Dur-
ing parameterization the models learn the molecular mobilities (B) 
that characterize the hidden modes, the initial occupation of the 
modes (π), and the matrix of probabilities that a receptor changes its 
mobility mode between two measurements (A) directly from the SPT 
data. Thus, a HMM with N hidden modes is described by a para-
meter set A B, ,( )Θ = π  that comprises 2N + N² parameters. A 

FIGURE 1: Schematic flow chart of the data analysis performed. The four main steps of data 
analysis are represented as columns. The rows represent the main task of the analysis step, the 
main analysis operations of the respective step, and the result of the respective step, as well as 
a possible forwarding of the results to subsequent.

trained HMM can assign each jump of a tra-
jectory to a particular mobility mode (Vit-
erbi, 1967).

Here, we apply a data-based analysis to 
a SPT data set of MET receptors on HeLa 
cells either treated with InlB or untreated to 
gain deeper insights into the InlB-mediated 
changes in MET mobility. We propose a 
data analysis pipeline that uses machine 
learning paired with explainable artificial in-
telligence (XAI) (Lundberg and Lee, 2017b) 
in combination with computed item catego-
rization (Juran, 1975) to learn and interpret 
the main differences in receptor tyrosine ki-
nase mobility between ligand-treated and 
untreated cells from the resulting HMM 
parameters.

The proposed data analysis pipeline is 
divided into four steps (Figure 1): first, the 
acquisition of SPT data from differently 
treated cells; second, the cellwise training of 

HMMs on the data; third, the training of classification algorithms on 
the HMM parameters to assign cells to one of the two groups; 
fourth, the identification of the main group differences by interpre-
tation of the classifier decisions.

As a result, our method assigns MET diffusion to three mobility 
modes (immobile, slow, and fast) and identifies the three HMM pa-
rameters that are most affected by InlB treatment: the diffusion co-
efficient of the slow state decreases significantly (1). The fast diffu-
sion mode is depopulated (2). The latter is due to an increase in the 
transition probability from the fast to the slow mode (3). Based on 
these three parameters, the two cell populations can be classified 
with a balanced accuracy of >99%.

RESULTS
Single-particle tracking data of MET
The data used within this study, together with experimental details, 
were published previously (Harwardt et al., 2017). They include SPT 
data on the mobility of the membrane-bound MET receptor in a 
total of 117 HeLa cells. Of these, 57 were treated with InlB and 60 
cells were untreated. The raw data are single-molecule movies with 
a length of 1000 frames recorded with an exposure time of 20 ms 
per frame. For InlB-treated cells, an average of 9168 ± 5435 trajec-
tories per cell (mean ± SD) were recorded with a trajectory length 
range of [5, 9, 19] (first, second, third quartile) frames and 4143 ± 
2807 trajectories (mean ± SD) with a trajectory length range of [5, 9, 
20] (first, second, third quartile) frames were recorded for untreated 
cells. The higher degree of receptor labeling with InlB may be due 
to the high affinity of InlB for the MET receptor (Dietz et al., 2014), 
which likely exceeds the binding affinity of the Fab fragment. (For 
more information on cellular statistics of trajectory lengths, see the 
dataset “met_diffusion_hmm_parameters.csv” included in the Sup-
plemental Material of the paper.)

Training hidden Markov models on single-particle tracking 
data
HMMs were trained on MET receptor SPT data with the aim of reduc-
ing the information to the optimized HMM parameter set Θ = (π, A, 
B). The optimal model with N mobility modes was determined by 
assessing the HMM quality using the Bayesian information criterion 
(BIC) and likelihood ratio tests. Subsequently, the parameter space 
was expanded to include mode occupancy (ω) and the HMM mobility 
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parameter (B) was replaced by its associated diffusion coefficient (D) 
to increase the physiological interpretability of the parameter data. 
Cells with abnormal parameters were identified using isolation for-
ests and density-based spatial clustering of applications with noise 
(DBSCAN) analyses and removed from the parameter data.

MET mobility is best described by hidden Markov models 
with three mobility modes
For each cell, HMMs with N = 1–5 mobility modes were trained us-
ing the respective single-molecule trajectories. This resulted in five 
HMMs per cell, each with a parameter set A B, ,opt opt opt( )Θ = π  
that was optimized to describe the data and that is characterized by 
N2 + N +1 degrees of freedom. Based on the distribution of BIC 
values of each model, it appeared that the diffusion of membrane-
bound MET receptors in both groups was best described by a three-
mode model (Supplemental Figure 1, A–D). This result was repro-
duced by performing likelihood ratio tests between cellular HMMs 
of increasing complexity and selecting the first HMM whose perfor-
mance did not improve significantly when complexity was increased 
by adding an additional mobility mode (Supplemental Figure 1, E 
and F).

Mobility mode population estimation
The initial mode distribution (πopt) describes the probability of a mol-
ecule populating a distinct mobility mode at the beginning of the 
observation. This definition is rather theoretical and difficult to inter-
pret physiologically. Equating the initial mode distribution with the 
overall mode population is not justifiable, as a diffusion mixture 
model built from the two HMM parameters (P(r|πopt, Bopt)) differs 
from the corresponding jump distance distribution (Supplemental 
Figure 2, blue model). Therefore, an additional parameter (ωopt) is 
introduced that describes the overall mode population considering 
the mobilities learned from the HMM (P(r|ωopt, Bopt)), Supplemental 
Figure 2, black model).

Associating mobility modes with diffusion coefficients
The mobility learned from the HMM is actually the expected MSD 
that molecules undergo between two consecutive images, or within 
the time interval defined by the camera integration time. The mea-
sured molecular displacement is caused by the superposition of two 
phenomena. The first phenomenon is the molecular diffusion. The 
second phenomenon is the erroneous determination of the mole-
cule position. Because only diffusion is a molecular property and the 
positional error is a characteristic of the experimental setup, the lat-
ter must be factored out of the mobility. For this purpose, the theo-
retically estimated minimum detectable MSDs for InlB-treated and 
untreated cells were determined from the average detected photon 
distribution of the fluorescence probes. They will be referred to as 
the limits of detection (LODs; LODFab = 3043.57 ± 431.57 nm2, 
LODInlB = 2430.6 ± 392.73 nm2). The expected MSDs of the slowest 
diffusing modes as determined by the HMM analysis for untreated 
cells (min〈r2〉Fab = 1175.35 ± 217.03 nm2) and InlB-treated cells 
(min〈r2〉InlB = 738 ± 39 nm2) were both below the respective LODs 
(Supplemental Figure 3). Therefore, their measured expected MSDs 
are dominated by the positional error and no information about 
molecular diffusion can be learned from the data. These modes 

were defined as immobile =
µ





D : 0

m

c

2

. Their measured expected 

MSDs are considered to be formed solely by the static error. There-
fore, the static error for each model is calculated from the slowest 
mobility modes using the nearest neighbor analysis (NeNA) distri-
bution (εFab = 17.08 ± 2.63 nm, εInlB = 14.06 ± 2.24 nm; Endesfelder 

et al., 2014). Finally, the diffusion coefficients of the remaining two 
states for both groups were corrected for static errors and dynamic 
measurement errors. As a result, the three HMM mobility modes will 

be referred to as immobile = =






D

s
D

s
0.00

µm
, 0.00

µm
1
Fab

2

1
InlB

2

, 

slow = ± = ± <






D

s
D

s
0.07 0.01

µm
, 0.04 0.01

µm
2
Fab

2

2
InlB

2

, and fast 

= ± = ±






D

s
D

s
0.25 0.02

µm
, 0.22 0.01

µm
3
Fab

2

3
InlB

2
 based on their as-

signed diffusion coefficients in ascending order throughout the 
manuscript for reasons of physiologically interpretability. (Values are 
given as mean ± SD.)

Anomaly detection
Nine cells had an anomalous set of parameters (πopt, ωopt, Aopt, Dopt) 
identified by isolation forests and DBSCAN-based analysis (Supple-
mental Figure 4). These abnormalities, of which six were untreated 
and three were InlB-treated cells, were excluded from further analy-
sis, resulting in a balanced data set with 54 cells from each group. 
The resulting dataset is available as a text file in the Supplemental 
Material of the article (“met_diffusion_hmm_parameters.csv”).

Statistical parameter exploration
The results of the HMM analysis is exemplarily visualized for two 
cells in Figure 2. The physiologically interpretable parameters (ωopt, 
Aopt, Dopt) of InlB-treated and untreated cells were compared by pa-
rameterwise statistical hypothesis tests. In a second explorative 
analysis, the parameter interdependence was demonstrated. The 
parameters originate from a HMM and therefore several parameter 
interdependencies are defined by the nature of the model (Rabiner, 
1989). These result in the redundancy of one mode population 
probability as 1ii

N opt
1∑ ω =

=
 and one entry of the transition probabil-

ity matrix per mobility mode as 1i ji

N
,

opt
1∑ α =

=
. Furthermore, the pa-

rameters are screened for pairwise interdependence by correlation 
analysis. Finally, the interdependence between ωopt, Aopt, and Dopt is 
demonstrated by simulations.

Internalin B–treated and untreated cells differ in nearly all 
HMM parameters
Comparison of HMM parameters between the two groups was per-
formed using the Mann–Whitney U test, because several parame-
ters were not normally distributed and pairs of parameters had un-
equal variances. Comparison showed that the groups differ 
significantly in 12 of 15 parameters (Figure 3 and Supplemental 
Table 1). The parameters that did not change significantly upon InlB 
treatment were the diffusion coefficient of the immobile mode 
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the immobile to the fast mode (PFab (3|1) = 9.29 × 10–5 ± 3.48 × 10–4, 
PInlB (3|1) = 1.64 × 10–4 ± 3.82 × 10–4) and the transition probability 
from the fast to the immobile mode (PFab (1|3) = 7.74 × 10–5 ± 1.78 × 
10–4, PInlB (1|3) = 1.46 × 10–4 ± 2.49 × 10–4). Their values either were 
close to zero or were set to zero during error correction. Here, a 
problem with the interpretability of results from HMM analyses of 
SPT data becomes apparent: when two groups differ significantly on 
almost all parameters, it is difficult to narrow the differences down to 
variations in key parameters.

Bivariate correlation analysis reveals pairwise parameter 
interdependencies
A bivariate correlation of the parameters (ωopt, Aopt, Dopt) was per-
formed using Spearman’s rank correlation (Supplemental Figure 5). 
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A high correlation was defined by a correlation coefficient of |rS| ≥ 
[0.7; 0.89] and a very high correlation was defined by a correlation 
coefficient of |rS| ≥ [0.9; 0.1.0] (Hinkle et al., 2003; Mukaka, 2012). 
However, thresholds of correlation coefficients are arbitrary and 
should be used judiciously (Schober et al., 2018). The parameter set 
of the Fab-labeled cells included four pairs with a very high correla-
tion while the parameter set of the InlB-labeled cells included three 
pairs with a very high correlation and 18 pairs with a high correla-
tion. This indicates that there is a high pairwise interdependence 
among the parameters.

Stochastic simulations reveal multivariate parameter 
interdependencies
Assuming that the population of mobility modes described by the 
trained HMMs describes an equilibrium, a stochastic simulation 
was designed based on the HMM transition probabilities with the 
goal of reproducing the equilibrium. The experiment was per-
formed for InlB-treated and untreated cells and the effect of InlB 
treatment on the equilibrium was analyzed (Figure 4, A and B). 
The analysis of the HMM-mode population parameters proposed 
different equilibrium distributions for untreated cells and InlB-
treated cells (ω1–3 in Figure 3 and Figure 4C). Both InlB-treated 
and untreated cells showed more mobile MET receptors (slow and 
fast) than immobile. More MET receptors diffused fast than slowly 

in untreated cells (Figure 4C blue distributions, Table 1, and Sup-
plemental Table 2). This situation changed with InlB treatment. 
After this, most MET receptors diffused slowly. However, still more 
receptor molecules were assigned to a mobile mode than to the 
immobile one (Figure 4C orange distributions and Table 1). The 
populations of mobile modes for untreated and InlB-treated cells 
each gave the same ranking when the simulated results were com-
pared with the analytical results (Figure 4, Table 1, and Supple-
mental Table 2). As a result, the InlB-induced differences found for 
the HMM parameters in the mobility mode population were re-
produced by the simulation equilibrium, although these were 
based only on the transition probabilities. These simulations dem-
onstrate that the information about the mode population is incor-
porated into the transition probabilities. Furthermore, it is known 
that certain reaction events are collision-driven and are therefore 
directly associated with the molecular diffusion (Gillespie, 2007). 
This means that differences in individual transition probabilities 
that are caused by changes in the diffusion shifted the response 
equilibrium, and thus parameters are interdependent. As a result, 
the demonstrated interdependencies rectify dimension reduction 
of the parameter space without loss of information. The complex-
ity of the parameter interdependencies makes it difficult to narrow 
down the differences between the two groups to a few key param-
eters, since the specific change in a transition probability due to 

FIGURE 2: Hidden Markov model (HMM)-based analysis of two representative cells, unlabeled (Fab) and labeled with 
InlB. The trajectory data sets of the individual cells were each analyzed with a three-state HMM. Each state is 
characterized by a specific diffusion coefficient. Based on these diffusion coefficients, the receptor movement is either 
characterized as immobile (blue), slow (green), or fast (orange). Graphical representation of the HMM-based analysis of 
an untreated cell: (A, B) diffusion map of the whole cell membrane, A and zoom-in on a boxed region, B. (C) Overlay of 
the jump-distance probability density function and a three-state diffusion mixture model of the state occupancy P(r|ωopt, 
Bopt). (D) The resulting HMM of the untreated cell is depicted as a transition-state diagram with states color coded by 
their diffusion (immobile [blue], slow [green], or fast [orange]). The state occupancy (ωopt) is encoded in the node size 
and the transition probability between states (Aopt) is encoded in the arrow widths. Graphical representation of the 
HMM-based analysis of an InlB-treated cell: (E, F) diffusion map of the whole cell membrane, E, and zoom-in on a boxed 
region, F. (G) Overlay of the jump-distance probability density function and a three-state diffusion mixture model of the 
state occupancy P(r|ωopt, Bopt). (H) The resulting HMM of the InlB-treated cell is depicted as a transition-state diagram 
with states color coded by their diffusion (immobile [blue], slow [green], or fast [orange]). The state occupancy (ωopt) is 
encoded in the node size and the transition probability between states (Aopt) is encoded in the arrow widths.
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the introduction of an external stimulus such as a ligand is accom-
panied by changes in several dependent parameters.

Training of classification algorithms on hidden Markov 
parameters
The multivariate changes in MET mobility induced by InlB treatment 
were determined using supervised machine learning. For this pur-
pose, a data set was composed from the physiologically interpreta-
ble parameters that were derived from the former trained N-modal 
HMMs (ωopt, Aopt, Dopt). Thus, each cell formed one instance. This 
resulted in a balanced data set of cells that were labeled by their 
treatment (InlB-treated or not). Subsequently, different supervised 
classification algorithms (classification and regression tree [CART], 
random forest [RF], extreme gradient boosting tree [XG-Boost], and 
artificial neural network [ANN]) were trained on 2/3 of the data (train-
ing data) to identify InlB-treated cells. The performance of the trained 
algorithms was quantified on their ability to correctly identify cells 
from the remaining one-third of the data (validation data) that were 
so far not known to the algorithms. For performance quantification 
the receiver operator characteristic-area under the curve (ROC-AUC), 
balanced accuracy (Brodersen et al., 2010), F1-score, precision, and 
recall metrics were used (Branco et al., 2015; Luque et al., 2019).

Defining training data from physiologically relevant 
parameters
Parameter exploration revealed that the parameter set comprises 
redundant parameters due to interdependencies. Unfortunately, it 
did not identify the key parameters that yield the desired informa-

tion about the physiological differences between InlB treated and 
untreated cells. For example, the nature of the model makes it pos-
sible to drop one entry of the mode occupation probability vector. 
However, it does not provide any guidance on how to choose the 
right parameter. Therefore, all physiologically interpretable para-
meters are first used for training the classifier. In summary, these 
were the mode occupation probability (ωopt), the transition probabil-
ities of a molecule to switch between mobility modes (P(j|i) with 
i ≠ j), and the diffusion coefficients that characterize the mobility 
modes (Dopt). Furthermore, the diffusion coefficients of the immobile 
modes of both groups, which were previously defined as 
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because they would not contribute to classification. The result was 
two balanced datasets with n = 11 features (n = N + (N2–N) + (N – 1)). 
The training data consisted of 72 instances, of which 36 represented 
untreated and 36 represented InlB-treated cells. The validation data 
consisted of 36 instances, of which 18 represented untreated and 18 
represented InlB-treated cells.

Internalin B-treated and untreated cells can be classified 
based on MET mobility with a balance accuracy >90%
All classifiers trained with this dataset were able to distinguish InlB-
treated cells from untreated cells with a balanced accuracy of >93% 
(Table 2). Nevertheless, the random forest classifier did solve the 
binary classification task best in all of the measured metrics (ROC-
AUC, balanced accuracy, F1 score, precision score, and recall score) 
and was therefore chosen for further investigation of the differences 

FIGURE 3: Distribution of parameters associated with membrane-bound MET mobility. The parameters were machine 
learned by 108 three-state HMMs and diffusion mixture models. For simplicity, the resulting list of optimized model 
parameters θopt = (ωopt, Aopt, Dopt) are termed optimized HMM parameters. The distributions of the optimized HMM 
parameters are shown as violin plots. The quartiles of the distributions are highlighted as dashed lines. Each state is 
characterized by a specific diffusion coefficient. Based on these diffusion coefficients the states are either characterized 
as immobile (blue, A, D, G, J, M), slow (green, B, E, H, K, N) or fast (orange, C, F, I, L, O). The data set is split into 54 
untreated cells (Fab) and 54 InlB-treated cells (InlB). The parameter distributions of the two groups are pairwise 
compared using a two-sided Mann–Whitney U test. The p-values are corrected for multiple testing using the method of 
Bonferroni. The number of tests performed is 14. The significance thresholds were set to α = 0.05(*), α = 0.01 (**), and 
α = 0.01 (***). Corrected p-values above a significance threshold of α = 0.05 are termed not significant (n.s.).
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FIGURE 4: Comparison of the state occupancy machine-learned by HMMs with the equilibrium 
state occupancy generated by the simulation of stochastic PNs parameterized with the 
transition probabilities of the HMMs. The time evolution of small ensembles of 1000 molecules, 
initially all fast-diffusing, was simulated with the stochastic PNs until equilibrium was reached. 
For each simulation, the average equilibrium population ratio was calculated from the last 1000 
time steps. (A, B) Simulated time evolution of a representative untreated cell, A, and a 
representative internalin B (InlB)-treated cell, B. The time traces represent the populations of the 
three diffusive states immobile (blue), slow (green), and fast (orange). (C) The effect of InlB 
treatment on the distribution of state occupation as learned by the 108 HMMs is shown in the 
form of a statewise comparison of the two groups. (D) The effect of InlB treatment on the 
equilibrium mobility state distribution of MET as generated by the simulation of 108 stochastic 
PNs. Here, the 54 untreated cells are depicted as blue violin plots (Fab) and the 54 InlB-treated 
cells are depicted as orange violin plots (InlB). The distribution quartiles are highlighted as 
dashed lines. Differences in state occupation are tested using a two-sided Mann–Whitney U test. 
For each experiment (HMM, stochastic PN), three tests were performed and the p-values were 
corrected for multiple testing using the method of Bonferroni. The significance thresholds were 
set to α = 0.05 (*), α = 0.01(**), and α = 0.001 (***). Corrected p-values above a significance 
threshold of α = 0.05 are termed not significant (n.s.).

between the two groups. If all performance measurement metrics 
were ranked equally, then the XGBoost performed second best, fol-
lowed by the ANN and finally the CART (Table 2). The random forest 
model achieved a ROC-AUC of 1.0 (Figure 5A) and a balanced ac-
curacy of >99.9% on the validation data. As a result, the model mis-
classified 0.055% of the validation instances, each time classifying 
an activated cell as resting (Figure 5B). To check whether the classi-
fiers learned the differences between the two groups based on the 
measured receptor mobility, a control experiment was conducted in 
which the classifiers were trained on permuted training data. As ex-
pected, the performance of the classifiers trained on permuted pa-
rameters was not better than guessing (Supplemental Table 3).

Model interpretation and identification of key parameters 
for classification
Shapely additive explanations (SHAP; Lundberg and Lee, 2017a) 
were calculated for each cell of the validation data using the assign-
ment accuracy achieved by the random forest classifier (Figure 5C). 
The mean value of the absolute SHAP values for each feature was 

calculated and interpreted as feature impor-
tance for the classification task (Figure 5D). 
Finally the most relevant parameters for the 
classification task were identified via com-
puted ABC analysis of feature importance, 
which is an item categorization technique 
that divides each set of positive numeric 
items into three nonoverlapping subsets 
named “A,” “B,” and “C” (Juran, 1975). The 
parameters in ABC subset “A” were consid-
ered “the important few” (Juran, 1975) and 
therefore retained as the key parameters 
that contained the important information re-
garding the differences in MET mobility be-
tween the groups of InlB-treated and un-
treated cells (Figure 5D, Table 3, and 
Supplemental Figure 6).

The internalin B-induced changes in 
MET mobility are best described by 
three key parameters
The set size of “A” comprised the diffusion 
coefficient of the slowly diffusing population 
(D2) with a mean absolute SHAP value of 0.19 
± 0.01, the population of the fast-diffusing 
state (ω3) with a mean absolute SHAP value 
of 0.09 ± 0.01, and the transition probability 
from the fast-diffusing state to the slowly dif-
fusing state (P(2|3)), with a mean absolute 
SHAP value of 0.07 ± 0.01. The SHAP value 
distributions of all three variables were char-
acterized by a bimodal distribution with a 
decision boundary formed at a SHAP value 
of 0 that also separated high and low feature 
values (Figure 5C). The transition probability 
from the fast state to the immobile state and 
the transition probability in the reverse direc-
tion had the least effect on the decision of 
the classifier. To prove the feature selection 
mediated by the ABC analysis, the classifica-
tion task was performed with a reduced fea-
ture set that included only the three features 
in category “A.” As a result, the performance 

of the random forest and ANN classifiers increased to the point where 
the ANN classifier now shows the second best performance after the 
random forest classifier, followed by the XGBoost classifier and the 
CART classifier (Supplemental Table 4). Repeating the experiment 
100 times each with three randomly chosen parameters resulted in 
less accurate models (Supplemental Figure 7). Therefore, the increase 
in performance was due to the key parameters identified by ABC 
analysis and not to the dimension reduction. Thus, it is reasonable to 
assume that the InlB-mediated changes in features D2 P(2|3), and ω3 
represent the main differences between InlB-treated and untreated 
cells. In conclusion, it was shown that the diffusion coefficient of the 
slow state (D2) decreased significantly due to InlB treatment. Further, 
InlB treatment of MET receptors led to a depopulation of the fast-
diffusing state (ω3), which was caused by an increase of the transition 
probability from the fast to the slow state (P(2|3)).

DISCUSSION
To compress the information encoded in SPT data sets of 
membrane receptors, hidden Markov models are frequently used 
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Classifier Rank ROC-AUC Accuracy F1-score Precision Recall

ANN 2 1.000 ± 0.001 0.968 ± 0.022 0.967 ± 0.022 1.000 ± 0.000 0.937 ± 0.043

CART 1 0.969 ± 0.030 0.931 ± 0.054 0.926 ± 0.058 0.966 ± 0.052 0.894 ± 0.088

RF 4 1.000 ± 0.007 0.999 ± 0.004 0.999 ± 0.004 1.000 ± 0.000 0.999 ± 0.008

XGBoost 3 0.999 ± 0.007 0.993 ± 0.022 0.992 ± 0.024 0.997 ± 0.013 0988 ± 0.039

TABLE 2: Classifier performance measure based on validation metrics. The performance of different classifiers on classifying single cells as 
either untreated or internalin B (InlB)-treated was measured. The analysis was performed in three steps: First the hidden Markov model (HMM) 
parameter list (ωopt, Aopt, Dopt) was filtered for highly correlated parameters and split into a training and a validation data set (2:1). Second, an 
ANN, a CART, an RF, and an XGBoost were trained on the training data set to predict whether cells are untreated or InlB-treated from the 
variables learned from the HMM. To rule out a random result, the experiment was repeated 100 times with different classifier initializations. 
Third, the classifier performance was validated on the validation data set by different metrics: The area under the receiver operating 
characteristic curve (ROC-AUC), the balanced accuracy, the f1-score, the precision, and the recall are shown. The values are given as mean ± SD. 
The rank is calculated as the summed rank of all five validation metrics.

State ( )ωrank Fab
opt ( )ωrank InlB

opt ( )ωrank Fab
Sim ( )ωrank InlB

Sim

Immobile 1 1 1 1

Slow 2 3 2 3

Fast 3 2 3 2

TABLE 1: Diffusion state occupancy distributions ranked by their 
distribution medians. The significance of the rank distributions is 
tested by pairwise-performed two-sided and one-sided Mann–
Whitney U-tests of independent samples (Supplemental Table 2). A 
comparison of the rank vectors shows that for both the mode 
populations learned by the hidden Markov model (ωopt) and the 
simulated equilibrium distributions (ωsim), the rank order changes 
equally upon treatment with internalin B (InlB): The ascending rank 
order for untreated cells is [ω1, ω2, ω3] and for InlB-treated cells the 
rank order is [ω1, ω3, ω2].

(Das et al., 2009; Chung et al., 2010; Low-Nam et al., 2011; Ott 
et al., 2013; Slator et al., 2015; Sungkaworn et al., 2017; Zhao et al., 
2019). These HMMs describe the membrane diffusion of single 
molecules by the use of three types of parameters (π: the initial 
modal weights; A: the transition probabilities; B: the molecular mo-
bilities). A system with N mobility modes is described by an HMM 
with 2N + N² parameters. These were extended by two additional 
parameters due to physiological interpretability (ω: the modal oc-
cupancy; D: the molecular diffusion coefficient). Most of these pa-
rameters are interdependent (Rabiner, 1989). The transition proba-
bility matrix, for example, describes the transition probabilities of 
single molecules between the individual mobility modes. The matrix 
can be transformed into the chemical master equation (Gillespie, 
1977), which describes the system as a closed reaction network that 
is defined by first-order reaction equations. Because many reactions 
are based on collisions between two reactants, they are diffusion-
limited. Their molecular diffusion is directly coupled to their reaction 
rate constants (Gillespie, 2007). Furthermore, the reaction rate con-
stants of a reaction network also define the equilibrium population. 
The latter could be demonstrated experimentally in this report by 
reproducing the equilibrium mode distribution with stochastic Petri 
nets (PNs) that were parameterized with the transition probability 
matrix learned by HMMs. This interdependence of HMM parame-
ters makes it difficult to narrow down the main differences in mem-
brane diffusion between groups of differently treated cells. To iden-
tify the HMM parameters, which contain important information 
regarding the differences between the groups, a previously pub-
lished approach based on machine-learned feature importance in 

combination with computed item categorization was used in a 
slightly modified form (Lotsch and Malkusch, 2021):

The problem is first transformed into a classification problem 
where classifiers are trained to identify members of certain groups 
based on the HMM parameters. The decisions of the trained classi-
fiers are then interpreted using SHAP values to determine the im-
portance of each parameter for the classifier decision (Lundberg 
and Lee, 2017b). Subsequently the HMM parameters that are most 
important for the classifier decision are identified using ABC analysis 
as an item categorization method (Juran, 1975).

We demonstrated the validity of our approach on a single-parti-
cle trajectory data set that comprises diffusion information about 
MET receptor mobility on the membranes of InlB-treated and un-
treated cells. Using our approach, we could show that the lateral 
membrane diffusion of individual MET receptors is best described 
by a system of three mobility modes, with each mode characterized 
by an individual diffusion coefficient. All states exhibiting a diffusion 
coefficient below the spatial resolution of the experiment were as-
signed to an immobile state. The other two diffusion states, the slow 
diffusion state (D2,Fab = 0.07 ± 0.01 μm2/s, D2,InlB = 0.04 ± 0.003 
μm2/s) and the fast diffusion state (D2,Fab = 0.25 ± 0.01 μm2/s, D3,InlB 
= 0.21 ± 0.01 μm2/s) can probably be assigned to more confined 
movement and freely diffusing particles, respectively (Harwardt 
et al., 2020). Confinement can occur due to receptor localization 
inside nanodomains on the cell membrane (Seveau et al., 2004) and 
it is also likely that receptors are confined before immobilization. 
MET receptors become immobilized due to interactions with the 
actin cytoskeleton and before endocytosis (Shen et al., 2000; Li 
et al., 2005; Orian-Rousseau et al., 2007). The diffusion coefficients 
of the mobile InlB-treated MET receptors are always lower than 
those of the untreated receptor, which indicates that the diffusion of 
ligand-bound receptors is in general slower. This could be due to 
ligand-induced dimerization of the receptors (Dietz et al., 2013) and 
the formation of signaling hubs by recruitment of adapter proteins 
and signaling molecules to the receptors (Furge et al., 2000; Truso-
lino et al., 2010; Niemann, 2013).

InlB treatment shifts the population of the states toward the less 
mobile and the immobile state. Increased immobilization upon acti-
vation with InlB was previously observed (Harwardt et al., 2017; 
Baldering et al., 2021). The diffusion state with the highest diffusion 
coefficient becomes less stable in the case of InlB and transitions to 
the less mobile population are more likely. These observations are 
reflected in the fact that the diffusion coefficient features D2, the 
probability P(2|3) of switching from the highly mobile state to the 
less mobile state, and the occurrence ω3 of the fast diffusion state 
are the most important features to distinguish between untreated 
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and InlB-treated cells. These observations can be explained by InlB-
induced MET dimerization, signaling transduction, and receptor in-
ternalization as described above.

It should be mentioned that a HMM will only reliably detect tran-
sitions from data if the transition rate is low enough on one hand so 
that assuming transitions within observation times is a reasonable 
approximation, but high enough on the other hand so that one will 
see some transitions in the data. If this is not the case, the experi-
mental design must be adjusted. In the case of high transition rates, 

FIGURE 5: Machine learning of internalin B (InlB)-induced changes in MET mobility. (A) Receiver 
operating characteristic (ROC) curve calculated from the predictions for the validation data set 
(consisting of 36 cells, of which 18 were InlB-treated and 18 were untreated) made by a random 
forest classifier that was trained on the training data set (HMM, blue). To rule out random 
effects, the experiment was repeated 100 times with different seed-based classifier 
initializations. For the control experiment, the training data were permuted before training 
(Control, orange). The control experiment was repeated 100 times. The envelope represents the 
95-confidence interval of the control experiment. The green line indicates an absolutely random 
guess. (B) Confusion matrix for the ability of the trained model to correctly classify Fab-labeled 
cells from the validation data set. Shapely additive explanations (SHAP) for the impact of the 
parameters on the classification task: (C) SHAP values for individual cells. The SHAP values 
indicate the relationship between a variable and a possible classification result for the individual 
cell. Here, positive SHAP values are indicative of untreated cells, while negative SHAP values are 
indicative of InlB-treated cells. The color code represents the relative variable value of the 
individual cell. Blue indicates a low value and red indicates a high value. As an example, cells 
with a high value in D 2 are more likely to be classified as untreated. (D) The model parameters 
are ranked by their importance for the classification task, which is calculated by the mean 
absolute SHAP values. Here, a higher absolute mean SHAP value indicates a higher parameter 
importance. The parameters are categorized by their importance based on an ABC analysis (set 
A: blue, set B: green, set C: orange).

the integration time of the camera can be 
reduced. In the case of low transition rates, 
the observation time can be increased either 
by introducing stable fluorescent probes 
such quantum dots instead of organic fluo-
rophores (You et al., 2014; Fricke et al., 
2015) or by reducing the probability of pho-
tobleaching events by using photostabiliz-
ing buffer systems (Vogelsang et al., 2008; 
Wilmes et al., 2015). The biocompatibility of 
both approaches should be verified to ex-
clude an influence of the measuring system 
on the reaction to be investigated (Abraham 
et al., 2017). If it is not possible to learn the 
transition probabilities reliably from the ex-
perimental data, it is also possible to apply 
the proposed method using only the param-
eters from the diffusion mixture model. For 
the MET SPT data set analyzed in this study, 
it was shown that changes in mobility modes 
in single-molecule trajectories can be ob-
served by a combined application of seg-
mentation and mean squared displacement 
analysis (Rahm et al., 2021).

Post hoc modification of molecular mo-
bility learned from the HMM should also be 
done with caution. The determination of the 
localization error via photon statistics is only 
an estimation (Savin and Doyle, 2005; 
Mortensen et al., 2010). In the present study, 
the expected MSD caused by the localiza-
tion error estimated by the photon distribu-
tion exceeds the measured expected MSD, 
which means that the method overestimates 
the true localization error, which in turn 
would result in a negative diffusion coeffi-
cient after error correction. This is why the 
localization error was estimated by the 
NeNA probability density function instead 
(Endesfelder et al., 2014). Furthermore, the 
interpretation of a slow state as immobile is 
only permissible if the expected MSD 
caused by the localization error is greater 
than or equal to the measured expected 
MSD. In the case where the expected MSDs 
of all modes exceed the expected MSD 
caused by the localization error, the method 
is not applicable.

The procedure is highly modular. It is 
therefore possible to introduce alternative 
methods for each step depicted in Figure 1. 
Alternative methods for the acquisition of 
single-molecule positions and alternative 

tracking methods are available (Chenouard et al., 2014; Sage et al., 
2015). Regarding the modeling step, there are several alternative 
approaches to the data-driven estimation of mobility modes (Linden 
and Elf, 2018; Falcao and Coombs, 2020; Karslake et al., 2021), as 
well as alternative HMMs that can handle diffusion types apart from 
Brownian motion (Chen et al., 2021) and post hoc modifications of 
diffusivities associated with mobility modes (Michalet and Berglund, 
2012). There are also alternative methods for the algorithm-inde-
pendent interpretation of classifier decisions (Ribeiro et al., 2016). 
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Given the abundance of possible algorithms, their optimal composi-
tion for a wide range of experimental conditions is proving to be a 
challenge in this research field.

In conclusion, the proposed method provides a modular repro-
ducible interpretation of the results of HMM-based analyses of SPT 
data by attributing ligand treatment to a change in individual model 
parameters. On the biological side, the procedure is not limited to 
receptor tyrosine kinases and thus will provide new insights into 
membrane bound receptor–ligand interaction in general. However, 
the classification performances that will be achieved for different 
receptor–ligand pairs may vary. The cell-specific SHAP value distri-
butions of feature fraction “A” (Figure 5C) showed a small overlap 
between activated and nonactivated cells. For feature subsets with 
a higher overlap between the SHAP value distributions, the classifi-
cation performance dropped (Supplemental Figure 7). Because the 
proposed method determines and interprets differences from mea-
surements of single-molecule mobilities, it in turn assumes that 
there are differences. Therefore, as long as receptor activation 
causes a measurable change in mobility, the classification procedure 
will probably be able to learn the differences.

METHODS
Request a protocol through Bio-protocol.

Experimental setup
The single-molecule localization microscopy data used within this 
study were previously published by our group (Harwardt et al., 
2017). A detailed description of the experiments can be found in the 
original publication. Briefly, HeLa cells were cultivated on glass cov-
erslides with a thickness of 0.17 mm that were functionalized with 
poly-l-lysine-grafted polyethylene glycol modified with a CGRGDS 
peptide (VandeVondele et al., 2003). The membrane-bound MET 
receptors were either stained by a 3H3-Fab antibody fragment that 
is able to bind but not activate MET or by the bacterial ligand InlB321 
that activates MET and initiates signaling pathways and endocyto-

sis, similarly to the physiological ligand HGF/SF. Both ligands were 
chemically coupled to ATTO 647N (ATTO-TEC, Siegen, Germany).

Data acquisition was performed using an N-STORM microscope 
(Nikon, Duesseldorf, Germany) equipped with a 647-nm laser, an oil 
immersion objective with a numerical aperture of NA = 1.49 (100 × 
Apo TIRF oil), and an electron-multiplying charge-coupled device 
camera (DU-897U-CS0-BV; Andor Technology, Belfast, United King-
dom). Receptors labeled with ATTO 647N were excited by illuminat-
ing the sample with an evanescent field at an intensity of 0.1 kW/
cm2 in total internal reflection mode. The fluorescence signal was 
collected by the same objective, cleaned by appropriate optical fil-
ters, and detected by the camera. The image size was set to 256 × 
256 pixels with a pixel size of 0.158 μm. The camera’s electron-mul-
tiplying gain was set to 200 and the integration time per frame was 
20 ms. For each cell, a movie of 1000 frames was recorded without 
temporal delay between frames. A total of 117 cells was measured. 
Of these, 60 cells were labeled with 3H3-Fab and 57 with InlB.

Computational setup
All experiments were performed on an Intel Xeon E5-2620 v3 (12) at 
3.200 GHz equipped with 128 GB of memory and a GeForce GTX 
750 Ti GPU running Linux (openSUSE Leap 15.2). Machine learning 
on the GPU was enabled using the CUDA library (v. 10.2). Data-sci-
ence pipelines are implemented in the python language (python 
3.7.7) using the libraries matplotlib (Hunter, 2007) (v. 3.3.1), numpy 
(Harris et al., 2020) (v. 1.19.1), pandas (McKinney et al., 2010) (v. 
1.1.1), seaborn (Waskom, 2021) (v. 0.11.1), scikit-learn (Pedregosa 
et al., 2011) (v. 0.23.2), SciPy (Virtanen et al., 2020) (v. 1.5.2), tensor-
flow (Abadi et al., 2016) (v. 2.2.0), and xgboost (Chen and Guestrin, 
2016) (v. 1.3.3). Experimental development of data science pipe-
lines was performed using the Spyder-IDE (v. 5.0.0). Hidden Markov 
models were trained and stochastic PNs were simulated in parallel 
on multiple cores using GNU parallel (Tange, 2018) (v. 20180422).

Analysis of single-molecule localization microscopy data
Single-molecule localization. The positions of isolated MET ligand 
complexes were determined by modeling the photon distribution 
emitted from the ligand bound fluorescent probe with a normal 
distribution using the ThunderSTORM (Ovesny et al., 2014) plugin of 
the free image processing software suite ImageJ (Schindelin et al., 
2015). Model parameter optimization was performed using maximum 
likelihood estimation. The option “Multi-emitter fitting analysis” was 
enabled with the parameter “maximum numbers of molecules per 
fitting region” set to 3. The parameter “limit intensity range” was set 
to the 2σ interval of the photon distribution in log-space of 
localizations found with “multi-emitter fitting analysis” disabled. The 
“remove duplicates filter” was applied. The quality of the experimental 
data was determined by means of the average localization precision.

Single-particle tracking. The localizations of individual MET–li-
gand complexes in consecutive frames were connected to trajecto-
ries using the swift tracking software (Turkowyd et al., 2020; Version 
0.4.2, used in this manuscript, and all subsequent versions of the 
swift software, as well as documentation and test data sets, can be 
obtained on the swift beta-testing repository http://bit.ly/swifttrack-
ing and upon request to the authors). Parameters for swift were es-
timated using the SPTAnalyser software (https://github.com/Johan-
naRahm/SPTAnalyser). The following parameters were set globally 
for all cells: “diffraction_limit” = 14 nm, “exp_displacement” = 85 
nm (Fab) / 75 nm (InlB), “p_bleach” = 0.01 (Fab) / 0.014 (InlB), and 
“p_switch” = 0.01. The parameters “exp_noise_rate” and “preci-
sion” were determined individually per cell.

HMM parameter
Mean absolute  

SHAP value ABC category

D2 0.192 ± 0.010 A

ω3 0.091 ± 0.014 A

P(2|3) 0.066 ± 0.014 A

ω1 0.058 ± 0.015 B

P(1|2) 0.050 ± 0.016 B

D3 0.035 ± 0.019 C

ω2 0.011 ± 0.003 C

P(3|2) 0.009 ± 0.006 C

P(2|1) 0.003 ± 0.001 C

P(1|3) <0.001 C

P(3|1) <0.001 C

TABLE 3: ABC analysis–based identification of the most important 
parameters for the classification task. The importance of individual 
HMM parameters to the classification task of identifying untreated 
and internalin B–treated cells was determined by calculating the 
absolute mean SHAP value for each parameter. The values are given 
as mean ± SD. The parameters were ordered by descending SHAP 
values and item categorization was performed using ABC analysis 
(see Supplemental Figure 6). The items rated A were considered very 
important for the classification task.

https://en.bio-protocol.org/cjrap.aspx?eid=10.1091/mbc.e21-10-0496
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Hidden Markov modeling of single-particle tracking data
Hidden Markov modeling was performed using the ermine (esti-
mate reaction rates by Markov-based investigation of nanoscopy 
experiments) package for python (https://github.com/SMLMS/py-
Ermine). HMMs were used to map the diffusion behavior of mem-
brane-bound MET receptors measured at discrete time points 
equally separated by Δt onto a hidden transition network. This tran-
sition network is defined by a set of N states S = {s1, …, sN}. The 
starting probability for each state is given by , , N1{ }π = π … π  with 

1ii

N

1∑ π =
=

. The probability of interstate transitions between con-
secutive discrete time steps is given by an N × N-state transition 
probability matrix A = {ai,j}. Given a discrete time sequence H = 
(hΔt,…, hMΔt) of M hidden states drawn from S, a state at time t is 
denoted by ht = si. The probability of a state transition between two 
consecutive entries of H is given by ( )= =+∆P h s h s|t t j t i  with 
∑ ( )= = =+∆=

P h s h s| 1t t j t ij

N

1
. Therefore, the state of ht solely de-

pends on the state of ht-Δt. The observed sequence of the HMM 
O o o, ,t M t( )= …∆ ∆  is a sequence of M Euclidean point-to-point dis-
tances of the molecules’ displacements between two consecutive 
discrete time points and will be referred to as the jump distance 
sequence. A jump distance at time t is denoted by ot = r. Each hid-
den state in S is associated with an individual diffusion model 
B r r, ,

N
2

1
2{ }= …  that is characterized by its expected MSD 

<r2>. The probability of observing ot = r is given by 
P o r t h s, |t t i( )= ∆ = . It follows a Markov property (Rabiner, 1989) 
and is therefore solely dependent on ht (see equation 6). The para-
meter space of a HMM is given by Θ = (π, A, B) and has dof = N–
1+N(N–1) +Ndegrees of freedom.

Data preprocessing. Before modeling, the single-particle localiza-
tion trajectories obtained from the swift-based tracking analysis 
were transformed into jump distance trajectories that are readable 
by the ermine package. For each particle’s localization trajectory, 
the Euclidean point-to-point distances between all directly succes-
sive localizations in time were calculated. These distance trajectories 
are further referred to as jump distance trajectories. The calculation 
of jump distance trajectories from localization-based trajectories 
was performed using the “preprocess_swift_data” function of the 
ermine package. Jump distance trajectories with less than four 
jumps were filtered from the data by setting the “min_track_length” 
parameter to 4, as short trajectories seldom exhibit state transitions 
(Rahm et al., 2021).

Initial model parameter determination. Initial diffusion models B 
associated with the hidden states S were determined by optimizing 
the probability of observing the distribution of jump distances given 
a diffusion mixture model

B Max P r B P r t r, arg | , , |i ii

Ninit init 2
1∑( )( )( )ω = ω = ω ∆

=  (Sup-
plemental Material: Appendix A, Equations 1–7). The optimization 
process was performed using the expectation-maximization algo-
rithm (Dempster et al., 1977) implemented in the “JumpDistance-
MixtureModel” class of the ermine package with B and ω as free fit 
parameters. The initial starting probability of the HMM πinit was set to 
ωinit. Further, the states were assumed to be relatively stable. There-
fore, the entries of the diagonal of the state transition matrix Ainit 
were initially set to ( )= = =+∆ =P h s h s| 0.9t t i t j i  while the remaining 
entries of the state transition matrix were filled with a uniform distri-
bution ( ) ( ) ( )= = = − −+∆ ≠P h s h s N| 1 0.9 / 1t t i t j i .

Model parameterization. Starting with the initial HMM parameters 
A B, ,init init init init( )Θ = π , the likelihood for observing the measured 

jump distance trajectories O was maximized using the Baum–Welch 
algorithm argMax P (O|Θ) to obtain the model parameters with mul-
tiple observations A B, ,opt opt opt opt( )Θ = π  (Rabiner, 1989; Li et al., 
2000). The optimization process was performed using the “Ermine-
HMM” class of the “ermine” package, which uses a diffusion mix-
ture HMM that is designed using the _BaseHMM class of the hm-
mlearn package (https://github.com/hmmlearn/hmmlearn) with a 
diffusion mixture model as custom emission probability.

Reaction state sequence estimation. For the optimal HMM, the 
most likely sequence of hidden states Hopt underlying the observa-
tion sequence of jump distances O was postulated using the Viterbi 
algorithm (Viterbi, 1967). Reaction state sequence estimation was 
performed using the “predict” function of the “ErmineHMM” class 
of the ermine package.

Model selection
The capability of different HMMs to describe a given set of jump 
distance trajectories was measured using the Bayesian information 
criterion (Schwarz, 1978) BIC k n L Oln 2 ln ˆ | opt( )( )( )= − Θ . Here, 
k N N N N1 1( )= − + − +  is the number of estimated parameters, n is 
the number of observed jump distances, and L Oˆ | opt( )Θ  is the 
maximized likelihood of observing O with HMM Θopt. The favoured 
model is the HMM that minimizes the BIC.

The number of estimated parameters falls below the number of 
HMM parameters due to the stochastic constraints of the optimized 
parameters as defined by Rabiner (1989). Based on these constraints, 
the initial mode population probability for state N can be calculated 

from the remaining initial mode probabilities ∑( )π = − π
=
=

1N ii

Nopt opt
1

1
 

and the probabilities that no transition is observed in two consecu-
tive observation frames can be calculated from the probabilities that 

a transition occurs ∑( )= − ≠= =
a a for i j1i j i i ji

N
,
opt

,
opt

1
.

An alternative approach to model comparison is the likelihood 
ratio test (Neyman and Pearson, 2020). It legitimizes the use of a 
more complex model if increasing the model complexity is accom-
panied by a significant increase in the likelihood ratio (α = 0.05). 
Here, the models are compared with each other along ascending 
complexity. As soon as a model does not satisfy the test parameter, 
the search is stopped and the most complex model that meets the 
search criterion is favored.

Using these two tests, the minimum number of states was deter-
mined by a majority vote, based on which there is an HMM for each 
cell that describes the diffusion of the MET receptor sufficiently well.

Post hoc hidden Markov model parameter analysis
Mobility mode population estimation. The overall populations of 
the mobility modes during the measurement ωopt were determined 
by optimizing the likelihood of a diffusion mixture model ωopt = 
argMax P (r|ω, Bopt) while keeping Bopt fixed.

Limit of detection estimation. The LOD was defined as the ex-
pected apparent MSD of an immobile particle < >r m( )i

2 . The LOD 
was determined by calculating the average localization error (σ) 
from the fluorescent probes photon distributions (Mortensen et al., 
2010; LOD = 4σ2; see Supplemental Material: Appendix B). All 
HMM modes with an expected apparent MSD below the LOD were 

assumed to be immobile =
µ





D

s
: 0

m2

.

Diffusion coefficient estimation. The mobility modes of the HMM 
(B) are directly characterized by a specific MSD (<r2>), which is 
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defined by the state’s diffusion coefficient and a global static error 
(ε) shared by all modes (see Supplemental Material: Appendix B). To 
assign a specific diffusion coefficient to each state, ε needs to be 
known. For this purpose the diffusion coefficient of the immobile 

state was defined as =
µ

D
s

: 0
m

im

2

. Dim and rim
2  were inserted into 

r D t4
3

42 2= −
ν





+ ε  (Savin and Doyle, 2005) to obtain the static 

error ε. With ε at hand, the diffusion coefficients of the remaining 
modes were calculated similarly, resulting in the diffusion coefficient 
vector Dopt.

Anomaly detection. Anomalies within the two groups of the de-
fined data set were identified by multivariate analyses using either 
an isolation forest (Liu et al., 2008) or the DBSCAN algorithm (Ester 
et al., 1996) trained on the features ωopt, πopt, Aopt, Dopt. Prior to al-
gorithm training, the features were scaled into a range of [0, 1] by 

Min–Max scaling X
X X

X X

min

max mins
( )

( ) ( )=
−

−
. Finally, the results of the 

analyses were visualized by centering the feature values to 0 and 
reducing the data set’s dimensionality to two using principal compo-
nent analysis (PCA) (Pearson, 1901) and plotting the first two princi-
pal components (PCs). Instances characterized as outliers by the 
isolation forest or as noise by DBSCAN analysis were discarded from 
the data set.

Parameter exploration
Parameterwise determination of differences between groups 
using hypothesis tests. For groupwise comparison of the 
parameter distributions, the choice of an appropriate hypothesis 
test was based on the distribution of the two test variables, as well 
as their variances. As most variables were not normally distributed 
(tested by the D’Agostino test; d’Agostino, 1971; D’Agostino and 
Pearson, 1973) and differed in their variances (tested by Levene’s 
test for equal variances; Brown and Forsythe, 1974), the Mann–
Whitney U test was used (Mann and Whitney, 1947). The significance 
level was set to α = 0.01. The p-values were corrected for multiple 
testing using the Bonferroni method (m p ≤α; m = number of tests; 
Bonferroni, 1936).

Demonstration of pairwise parameter interdependence. Spear-
man’s rank correlation coefficient (Beyer, 1991) was calculated pair-
wise between all features of the data set. The analysis was per-
formed individually for Fab- and InlB-labeled instances.

A generative approach to demonstrate the 
interdependence of the hidden Markov model parameters
Defining the chemical master equation from transition 
probabilities. The machine-learned HMM parameter Aopt defines 
the probability of a single molecule switching its diffusive behavior 
within the time span of two consecutive measurements P(j|i). In a 
HMM, these transition probabilities are temporally stable over the 
measurement period and independent of the instantaneous 
weighting of the states S. Therefore, the transition matrix Aopt can be 
interpreted as a closed system of first-order chemical reactions.

The reaction rate constant k si j
1 →

−  was calculated from Δt 
and P(j|i) (Supplemental Material: Appendix C). With the reac-
tion rate constants k s withi j( [ ] )i j( )

( 1) ≠→
−  at hand, the system 

is then fully described by the chemical master equation (CME) 

∑ ( ) ( )[ ]= →   − →
≠

dx

dt
j i x k i j xi

j ij i .

Stochastic simulation of the chemical master equation. The CME 
was transformed into a stochastic PN (Bause and Kritzinger, 1999) 
and Monte Carlo simulations of the state trajectories were simulated 
using the Stochastic Simulation Algorithm (SSA; Gillespie, 1977) as 
implemented in the fossa (free objective-c stochastic simulation al-
gorithm) software (https://github.com/SMLMS/fossa). For first-order 
chemical reactions the reaction rate constant equals the stochastic 
rate constant k s c s( [ ] [ ]i j i j( )

( 1)
( )

( 1)=→
−

→
−  with i ≠ j; Gillespie, 2007). For 

each cell a stochastic PN was set up and parameterized by calculat-
ing ksim from HMM learned transition matrix Aopt. Simulations were 
performed on ensembles comprising 1000 molecules, all of which 
were defined as free at the initiation of the experiment (t = 0 s). The 
chosen simulation period guaranteed that an equilibrium was 
reached toward the end.

Validation of the machine-learned chemical master equation by 
verification of the effect of receptor labeling on simulated diffu-
sion state populations. To prove whether the stochastic PNs that 
were parameterized using the HMM learned transition probabilities 
could reproduce the InlB-caused repopulation of HMM states, the 
equilibrium state population of the stochastically simulated CMEs 
was calculated as the mean population of the last 1000 simulation 
time steps measured in the steady state (ωsim). The repopulation ef-
fect was qualified by determining the differences in state popula-
tions using hypothesis tests (see Parameterwise Determination of 
Differences between Groups Using Hypothesis Tests). The simu-
lated effect of InlB-mediated cell activation was compared with the 
InlB-mediated effect learned from the data (ωopt).

Machine learning associated model interpretation
Data set definition. A labeled data set was created from the 
extracted physiologically interpretable parameters obtained by 
HMM and diffusion mixture model training with optimal mobility 
mode number. From these optimized parameters (ωopt, Aopt, Dopt), 
the mode occupation probability (ωopt), the transition probabilities 
of a molecule switching between mobility modes (P(j|i) with i≠ j), and 
the diffusion coefficients that characterize the mobility modes 

( )≠D i, immobilei
opt  were defined as features and the measured 

cells as instances. Therefore, the resulting data set of an N-modal 
HMM comprises n = N + (N2 – N) + (N – 1) extracted physiologically 
interpretable parameters.

Model training. The data set was split in a two to one ratio into a 
training set and a validation set. Care was taken to maintain the ratio 
of activated to nonactivated instances in training and validation 
data. The hyperparameters of four different classifiers—CART (Brei-
man et al., 2017), RF (Ho, 1995), XG-Boost (Chen and Guestrin, 
2016), and ANN in the form of a multilayer perceptron (Bradley, 
1995)—were optimized by performing a randomized grid search 
through the hyperparameter space, during which the model perfor-
mance was measured by using the balanced accuracy as a metric. 
Hyperparameter optimization was performed using a stratified 10-
fold cross validation on the training set to guarantee that the model 
never saw instances of the validation set during training.

Model validation. The performance of the four classifiers with opti-
mized hyperparameters was measured by training the models on 
the complete training set and measuring the model’s capability to 
predict the classes of the validation set correctly by calculating the 
balanced accuracy (an accuracy score that is not affected by class 
imbalances within the data; Brodersen et al., 2010), ROC-AUC 
score, F1 score, precision score, and recall score (Branco et al., 2015; 



12 | S. Malkusch et al. Molecular Biology of the Cell

Luque et al., 2019; Supplemental Material: Appendix D). To reduce 
random effects caused by model initialization values, the procedure 
was repeated 100 times with randomly chosen model initialization.

To verify the learning capability, the models were trained on the 
training set with permuted feature values. This procedure was re-
peated 100 times with different permutations. It is expected that the 
models cannot learn anything from the permuted training data.

The model with the optimal performance on the validation set is 
chosen for further analyses.

Model interpretation and feature importance. Model interpreta-
tion was performed post hoc using the SHAP framework (Lundberg 
and Lee, 2017a), which calculates cell-individual Shapley additive 
explanation values for each feature. The feature importance was 
given by the mean absolute SHAP value of a feature. The higher the 
mean absolute SHAP value of a feature, the more the feature con-
tributes to the decision of the binary classifier. Based on the SHAP 
value distribution, the feature set yielding the optimal amount of 
information about the data was identified by ABC analysis, which 
identifies the features that achieve the maximum effect with the low-
est possible effort. This analysis is a generalization of the Pareto 
80/20 rule, which claims that 80% of the results are achieved with 
20% of the total effort.

To verify the model interpretation, the classification procedure 
was repeated with a reduced data set that only contained the HMM 
parameters rated as “A” by the ABC analysis. The classification per-
formance was evaluated using the balanced accuracy, ROC-AUC 
score, F1 score, precision score, and recall score. To exclude effects 
due to general dimension reduction, the validation procedure was 
repeated 100 times with randomly chosen HMM parameter 
subsets.

Package implementation and data availability
Ermine. The software for estimation of reaction rates by Markov-
based investigation of nanoscopy experiments (ermine) is 
implemented as a python library and thus requires the python 
software package (https://pypi.org/project/pyErmine/). The 
methods included in the ermine library can be used in python 
scripts to produce individual problem-specific workflows or in 
interactive jupyter notebooks that follow a specific preprocessing 
workflow. The ermine package is free and open source software. 
The source code is freely available at GitHub (https://github.com/
SMLMS/pyErmine) and can be redistributed and/or modified 
under the terms of the GNU General Public License as published 
by the Free Software Foundation, either version 3 (GPLv3) of the 
License, or any later version. The programming work was 
performed in the python language and is based upon the library 
hmmlearn (v. 0.2.4). Tutorials on the usage of the ermine package 
can be obtained from our github site (https://github.com/SMLMS/
ermine-tutorial).

fossa. The free open-source stochastic simulation algorithm 
(fossa) was written in objective-c for the purpose of simulation 
execution speed (Blankenbecler, 1990). It uses the open source 
standard library framework “gnustep” (v. 1.25.1; Botto et al., 
2001) and was compiled using gnustep-make (v. 2.7.0) and gcc (v. 
7.5.0). The “fossa” package is free and open-source software. 
The source code is freely available at GitHub (https://github.
com/SMLMS/fossa) and can be redistributed and/or modified un-
der the terms of the GNU General Public License as published by 
the Free Software Foundation, either version 3 (GPLv3) of the Li-
cense, or any later version.

SPT data. The SPT data of InlB-treated and -untreated cells are 
available from https://www.ebi.ac.uk/biostudies/studies/S-BSST712 
(Heilemann et al., 2021).

MET diffusion hidden Markov model parameter data. The data 
set of hidden Markov model parameters of MET diffusion is avail-
able as a text document within the Supplemental Material of the 
article (“met_diffusion_hmm_parameters.csv”).
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