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Abstract: Animal arboviruses replicate in their invertebrate vectors and vertebrate hosts. They use
several strategies to ensure replication/transmission. Their high mutation rates and propensity to
generate recombinants and/or genome segment reassortments help them adapt to new hosts/emerge
in new geographical areas. Studying arbovirus genetic variability has been used to identify
indicators which predict their potential to adapt to new hosts and/or emergence and in particular
quasi-species. Multiple studies conducted with insect-borne viruses laid the foundations for the
“trade-off” hypothesis (alternation of host transmission cycle constrains arbovirus evolution). It was
extrapolated to tick-borne viruses, where too few studies have been conducted, even though humans
faced emergence of numerous tick-borne virus during the last decades. There is a paucity of
information regarding genetic variability of these viruses. In addition, insects and ticks do not have
similar lifecycles/lifestyles. Indeed, tick-borne viruses are longer associated with their vectors due
to tick lifespan. The objectives of this review are: (i) to describe the state of the art for all strategies
developed to study genetic variability of insect-borne viruses both in vitro and in vivo and potential
applications to tick-borne viruses; and (ii) to highlight the specificities of arboviruses and vectors as a
complex and diverse system.
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1. Introduction

1.1. Vector-Borne Diseases in the World

More than half of the world is at risk from vector-borne diseases. They are illnesses caused by
pathogens in human and animal populations. Each year more than one billion humans are infected
and more than one million die from vector-borne diseases. The most affected by these diseases are the
poorest and least-developed countries [1]. Hematophagous arthropods (mosquitoes, ticks, sandflies,
triatomine bugs, fleas and flies) transmit a wide variety of pathogens including bacteria, parasites
and viruses [1]. In addition to the public health burden, vector-borne diseases negatively impact the
economies of affected countries. For example, according to the WHO, the annual economic costs of
malaria in Africa have been estimated to be about $12 billion [2]. In animal health, vector-borne diseases
cause important economic losses particularly in the breeding industry. For instance, the Culicoides-borne
bluetongue virus (BTV) is responsible for mortality and morbidity in sheep. The economic impact of
BTV outbreaks can be substantial. In 2006, a BTV outbreak in Europe cost $1.4 billion and $85 million
to France and the Netherlands, respectively [3].
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Pathogen emergence is influenced by a range of parameters including pathogen evolution, the role
of arthropod vectors and their feeding preferences (anthropophilic and/or ornithopophilic) in global or
local geographic expansion, anthropogenic factors (human movements, etc.) and climate change [4,5].
In this review, we emphasise the role of ticks as arthropod vectors, particularly for viruses. Studying the
genetic variability of tick-borne viruses falls far behind mosquito-borne viruses. Studies conducted
with insect-borne viruses have set the methodology necessary for assessing genetic variability of
tick-borne viruses.

1.2. Ticks and Tick-Borne Disease

Approximatively 900 tick species were identified and classified into three families: Argasidae (soft
ticks, 183 species), Ixodidae (hard ticks, 683 species) and Nuttalliellidae (one species). They are obligate
hematophagous ectoparasites and feed on vertebrate hosts [6]. Ticks are found all around the world
and affect animal and human health. They are responsible for significant economic losses, especially in
livestock [7]. Ticks are involved in vector-borne diseases. Indeed, ticks can transmit a wide variety
of pathogens such as bacteria, parasites and viruses. They are considered as the primary vectors
for pathogens in animal health, and, in terms of human health, they are second to mosquitoes [8].
When ticks feed on infected vertebrate hosts, they likely ingest microorganisms. During their life
cycle, hard ticks are in stasis each time they take a blood meal. For example, the European hard tick
Ixodes ricinus is in stasis three times during its life cycle: larval, nymphal and adult stages. For ticks to
act as vectors, the pathogen must be trans-stadially transmitted, thus nymphs and adults are major
vectors [9]. Vector competence is an essential property for a tick to be considered a vector. Following
ingestion, a pathogen must replicate within the arthropod in order to be transmitted to a new host
during the next blood meal. Finally, tick population size is an important criterion which should be
taken into account when discussing vector capacity [9].

Less than 10% of known ticks are involved in field transmission of viruses. These ticks belong to
genera Ornithodoros and Argas (soft ticks) within family Argasidae and genera Ixodes, Haemaphysalis,
Hyalomma, Amblyomma, Dermacentor, Rhipicephalus and Boophilus (hard ticks) within family Ixodidae.
Certain ticks can transmit several viral species. Due to their lifespan and the potential for transovarial
transmission of certain tick-borne, ticks could play a role of reservoir for the viruses they transmit [10].
In total, 170 tick-borne viruses have been identified to date (Table 1), as described in several reviews [10,11].

Table 1. Families and genera of tick-borne viruses.

Order Family Genus Genome

Asfuvirales Asfarviridae Asfivirus dsDNA

Articulavirales Orthomyxoviridae Thogotovirus 6 ssRNA genome segments
8 ssRNA genome segmentsQuaranjavirus

Bunyavirales
Nairoviridae Orthonairovirus

3 ssRNA genome segmentsPeribunyaviridae Orthobunyavirus
Phenuiviridae Phlebovirus

Mononegavirales
Nyamiviridae Nyavirus

Non-segmented linear ssRNA
Rhabdoviridae

Ledantevirus
Vesiculovirus

Amarillovirales Flaviviridae Flavivirus Linear ssRNA

Reovirales Reoviridae
Orbivirus 10 dsRNA genome segments
Coltivirus 12 dsRNA genome segments

ss, single-stranded; ds, double-stranded.

Despite many tick-borne viruses are responsible for human infections, only a few have been
studied, in particular tick-borne encephalitis (TBE) and Crimean-Congo haemorrhagic fever (CCHF)
virus. Table 2 lists some tick-borne viruses that have been responsible for outbreaks in humans or
animals [11–13].
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Table 2. Examples of tick-borne viruses.

Virus Family Genus Vector Vertebrate Reservoir Geographical Distribution Disease References

Tick-borne encephalitis virus
(TBEV)

Flaviviridae Flavivirus
I. ricinus, I. persulcatus Bank vole Europe Asia Fever to encephalitis [14–16]

Powassan virus (POWV) I. scapularis, I. cookie Rodents North America Neurological disorders [17,18]
Omsk haemorrhagic fever

virus (OHFV)
D. reticulatus, D. marginatus

and I. persulcatus Rodents Western Siberia in Russia Haemorrhagic fever [19]

Alongshan virus (ALSV) Unclassified
flavi-like virus I. ricinus, I. persulcatus ? China Finland Fever [20–22]

Colorado tick fever virus
(CTFV) Reoviridae Coltivirus Dermacentor, Ixodes,

Haemaphysalis and Otobius Rodents and deer species North America Fever to encephalitis [23,24]

Bourbon virus (BRBV) Orthomyxoviridae Thogotovirus Amblyomma americanum ? North America

Nausea, weakness, pains and
leukopenia, lymphopenia,

thrombocytopenia,
hyponatremia

[25,26]

Heartland virus (HRTV)
Phenuiviridae Phlebovirus

Amblyomma americanum ? North America Fever, fatigue, anorexia and
thrombocytopenia [27]

Severe fever with
thrombocytopenia syndrome

virus (SFTSV)

Haemaphysalis longicornis
and Boophilus microplus ? Asia Fever, fatigue, anorexia and

thrombocytopenia [27]

Nairobi sheep disease virus
(NSDV) Nairoviridae Orthonairovirus

Rhipicephalus appendiculatus,
Haemaphysalis intermedia Sheep and goats Africa, Asia

Fever and haemorrhagic
gastroenteritis, abortion,

and high mortality
[28,29]

Crimean-Congo
haemorrhagic fever virus

(CCHFV)
Hyalomma spp. Cattle, goats, sheep

and hares?
Africa, Southern and

Eastern Europe and Asia Haemorrhagic fever [30–32]

African swine fever virus
(ASFV) Asfarviridae Asfivirus Ornithodoros spp. Swine Europe Asia

In animal: fever, depression,
anorexia, abortion in

gestating female
[33]



Pathogens 2020, 9, 915 4 of 18

2. Arboviruses

At least 500 arboviruses (arthropod-borne viruses) have been identified to date, including tick-
borne viruses. Almost half of arboviruses are transmitted by mosquitoes, a third by ticks and the rest
by sandflies and biting midges [10]. Arboviruses do replicate in two hosts: their invertebrate vector
and vertebrate host. Vectors and vertebrate hosts can play a role of amplifier and/or reservoir [34].
These viruses have important impacts on human and animal health. They are either epizootic or
zoonotic. Emergence and/or re-emergence of arboviruses is a challenge that humanity is facing during
the current century [4]. Incursions into novel geographical regions are becoming more frequent.
For example, bluetongue disease caused by BTV infection has been considered for a long time as a
tropical disease based on its geographical distribution. It was initially described within in a geographical
region between approximately 40◦ N and 35◦ S. During the second half of the 20th century, it emerged
all around the world, disrupting trade and causing severe economic damage [35].

2.1. Viruses Quasi-Species

Almost all animal arboviruses are RNA viruses, except African swine fever virus (DNA virus),
and they use several strategies to ensure their replication and transmission. Mutation rates of RNA
viruses are 300-fold higher than for DNA viruses. Substitutions during replication have been estimated
within the range of 10−3–10−5 substitutions per nucleotide per replication [36]. The genetic variation
of RNA viruses has to be considered for three levels: single replicative unit (early events when
mutants are generated), gathering of several units (recombination, gene duplication, genome segment
reassortments, gene transfers, etc.) and infection of susceptible hosts. Generation times for RNA
viruses are short and the size of generated populations (quasi-species) is large [37]. In a quasi-species,
viral progeny from a single cell is heterogeneous and non-identical but they have closely related
genomes [38].

Mutants can be compartmentalised in different organs of a single organism. There are two
mathematical models which are pertinent to study and interpret behaviour of virus quasi-species:
calculation of the concentration of copies with no changes and consequently mutants and formulations
of the error threshold for maintenance of genetic information [37].

Viruses are subject to competitive selection and random events. Some deleterious mutations lead
to the extinction of given variants as their fitness declines. Natural selection is far more efficient for
eliminating mutations with larger rather than smaller impact. In addition, viruses are confronted with
bottlenecks. Genetic bottlenecks are the events that can cause important reduction of a population size,
reducing their genetic diversity. Low frequency genomes are eliminated when they are subjected to a
bottleneck [37]. For example, a study of Venezuelan equine encephalitis virus (VEEV) showed that
the midgut of Culex taeniopus mosquito was a severe bottleneck. The size of the viral population was
significantly reduced after passage through the intestinal barrier [39]. The review by Forrester et al.
describes the multiple bottlenecks to which West Nile virus (WNV), VEEV and CHIKV are subjected to
upon infection of mosquito vectors [40]. Repeated bottlenecks lead to changes in the genomes of RNA
viruses and the emergence of novel variants [41]. If a single genome from a viral quasi-species can
generate a new viral population, this mutant probably has an advantageous mutation. This mutation
is inheritable by the next generation. Consequently, bottlenecks are responsible for the accumulation
of mutations in the consensus sequence of a quasi-species [42]. RNA viruses can cause acute and/or
chronic infections. Viral quasi-species play a role in the escape from host immune response, therapeutic
treatments and vaccines. Consequently, they play a role in the progression of pathogenesis and disease
as shown for some viruses like DENV [43].

2.2. Genetic Variability Studies of Insect-Borne Viruses

RNA viruses can expand their host range and adapt to new environment. The study of genetic
variability helps understanding and anticipating viral emergence. For example, in 2004, Chikungunya
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virus (CHIKV) caused major outbreaks in the Indian Ocean, India, Malaysia and Sri Lanka. The virus,
which was responsible for these outbreaks, was identified as the African strain of CHIKV usually
transmitted to humans by Aedes aegypti mosquitoes. The dispersal of this virus from Central/East Africa
to Comoros Islands occurred via infected mosquitoes and/or humans. As a result of a single amino
acid substitution (A226V) in the E1 envelope glycoprotein, CHIKV was able to infect Aedes albopictus,
mosquitoes found in La Réunion Island [5]. This change in CHIKV has been described to lower the
threshold of viraemia necessary to infect Ae. albopictus mosquitoes. A change at this position in Semliki
Forest virus (P226S) was previously reported to free the virus from cholesterol dependence [44].

Several studies were conducted with insect-borne viruses in order to understand their genetic
variability and fitness. Among those studied, there are viruses belonging to genera Flavivirus (WNV,
Rabensburg virus (RBGV), Saint Louis encephalitis virus (SLEV), Dengue virus (DENV) and Zika virus
(ZIKV)), Alphavirus (Eastern equine encephalitis virus (EEEV), VEEV, Sindbis virus (SINV), Chinkungunya
virus (CHIKV) and Ross river virus (RRV)), Phlebovirus (Rift valley fever virus (RVFV)), Rhabdovirus
(Vesicular stomatitis virus (VSV)) and Orbivirus (BTV). The “trade-off” hypothesis, which came as a
consequence of these studies, proposes that the alternating host transmission cycle of arbovirus likely
constrains their evolution. These studies provide the basis for assessing trade-off in tick-borne viruses
and better understanding their emergence. This review focusses on results which were highlighted by
previous studies. Both in vitro and in vivo approaches were developed in these studies.

2.2.1. In Vitro Studies

Classically, in vitro studies are designed as shown in Figure 1 with serial and alternated passages
in mammalian/avian and arthropod cell lines. Various tests are performed to assess fitness, virulence
and genetic aspects. Some of these studies result in converging hypotheses. For example, during serial
passages, viruses tend to become specialists when they are grown in a single-host cell type, whereas
in alternated passages viruses have a similar behaviour as the parental strain. This characteristic
was observed with different viruses: RVFV, EEEV, SINV, VEEV, SLEV and WNV [45–49]. Often,
adaptation to a single cell type resulted in faster growth kinetics within the same cell type. This is
the case of RVFV and SINV, where mammalian cell-adapted strains show faster replication rates as
compared to the parental strain, whereas, in mosquito cells, viral titers are lower [45,47]. Following
40 passages in mosquito cells (C6/36), WNV and SLEV showed increased fitness and replication in
this cell type [49]. For other viruses such as VEEV, the adaptation was demonstrated by an increase
in binding efficiency to mammalian cells after serial passages in this cell type. Indeed, an amino
acid substitution (G3K) was identified in the E2 glycoprotein. This position corresponds to the furin
cleavage site which is involved in binding to heparan sulfate [48]. Deep sequencing and computational
analyses of ZIKV envelope protein (E protein) were performed after transfecting cDNA libraries with
codon substitutions into C6/36 or Vero cells. Specific substitutions conferred advantages to replicate in
mosquito or primate cells, while other substitutions had negative impact on replication [50]. In a study
focussing on RBGV by Ngo et al. (2019) [51], the authors successfully adapted the virus to a vertebrate
host. RBGV was classified as lineage 3 of WNV and has never been isolated from vertebrate hosts.
After four passages of two strains of RBGV in HEK-293 cells, at increasing temperatures (from 28 to
35 ◦C), they obtained variants capable of infecting and replicating in vertebrate cells. The majority
of changes were found in two genes (NS3 and NS5 genes), which were presumed to play a role in
host specificity and fitness. Using reverse genetics, they assessed the impact of mutating NS3 position
5716 (A5716G substitution, identified during the in vitro experimental infections). They tested the
potential effect of this substitution on host range. A modest decrease of virus titers in HEK-293 cells
was observed at both 28 and 35 ◦C [51].
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Serial passages reduce the capacity of arboviruses to infect heterologous cell types, resulting in a
decreased fitness. CHIKV resulting from seven continuous passages in BHK-21 cells had a greater
fitness in BHK-21 than in C6/C36 cells as compared to the parental strain. In addition, the alternated
strain (C6/36–BHK-21 and C6/36–HeLa) showed an increased fitness in both cell types as compared
to the parental strain [52]. Fitness of VSV varies in a cell-type dependent manner. Indeed, during a
persistent infection of sanfly cells (LL-5), the fitness declined as early as the first passage, and then
slightly increased, reaching a level of stability after passage 20. By contrast, during serial passages in
BHK-21 cells, fitness continuously increased. In alternated passages, fitness initially increased slightly,
and then declined, reaching a level of relative stability around passage 20 [53]. Virulence of certain
viruses is decreased when they are grown in a single host cell type. The gene encoding phosphoprotein
NSs, which is responsible for RVFV virulence, is deleted after 30 serial passages in BHK-21 or Aag2
cells, while, during alternated passages, it is not deleted [45]. Other studies showed that the size
of EEEV plaques in BHK-21 cells is significantly reduced after 10 serial passages in avian (PDE) or
mosquito (C7-10) cells as compared to the parental strain. The strain resulting from alternating the
cycle between avian and mosquito cells showed a less important reduction of plaque size [54] Virulence
of VSV decreased after persistent infection in LL-5 and the size of plaques in BHK-21 cells decreased
over the passages [53]. A study published in 1947 on BTV showed that virulence is attenuated after
serial passages in embryonated eggs. The attenuated strain was injected into Merino sheep which
showed no clinical signs and developed a solid immunity to a challenge with a virulent strain [55].
This study established the basis for developing live attenuated vaccines for sheep [56]. Further studies
described methods of BTV attenuation, including serotypes 4, 9 and 16. Attenuation of these strains
was accomplished by serial in vitro passages. BTV-4 and BTV-16 were passaged in Vero cells and BTV-9
in BHK-21 cells. During the process of attenuation, both replication capacity and pathogenicity were
assessed in bovine foetal aorta endothelial cells (BFA) and new-born mice, respectively. The authors
showed that attenuated BTV by in vitro serial passages had a reduced capacity to replicate in BFA cells
and failed to kill new-born mice [57].

In DENV serially passaged in Huh-7 mammalian or C6/36 mosquito cells, more substitutions
were identified in the genome of the serially passaged virus in mammalian (Huh-7) than that passaged
in mosquito cells (C6/36) or by alternation [58]. During a DENV outbreak at the beginning of the 21st
century, the virus was sequenced in naturally infected mosquitoes and patients. The sequence variation
is lower in mosquitoes than in patients. A complementary study was performed in laboratory with
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experimentally infected mosquitoes by intrathoracic injection. Comparable results to those obtained
with field-caught mosquitoes were observed. The authors concluded that mosquitoes play a role in
stabilising the genome sequence and contribute to transmission of a DENV dominant variant [59].
Another study of CHIKV genetic variability was conducted. Serial and alternated passages of CHIKV
in Aag2 and/or BHK-21 cells resulted in fewer amino acid substitutions in invertebrate cells than in
mammalian cells or alternation of cells. Five substitutions were identified. Three substitutions were
common to CHIKV propagated serially in mammalian cells or by alternation of cells. The genome of
CHIKV which was propagated serially in invertebrate cells had only one substitution identified [60].
These results suggest that passages in invertebrates, constrain virus evolution significantly more than
during host cycling. In a distinct study involving CHIKV, substitutions were found more frequently
during serial mammalian passages than in alternated passages. Furthermore, mutations identified
during serial passages were less viable than those found during alternation. All observed sequences
in serial passages did not end up in viable virus particles. Genetic diversity is not synonymous
with fitness. In alternating cycles, the virus has to maintain high replication competence and high
fitness of variants [52]. Ciota et al. [61] assessed the role of the mutant spectrum in adaptation and
replication of WNV. The virus was passaged 40 times in mosquito cells (C6/36) or 20 times in chicken
embryo fibroblasts (DF-1). An alternated passage was performed in DF-1 following 39 passages in
C6/36. Throughout the 40 passages in C6/36, genetic variability of WNV increased significantly but
decreased drastically after one passage in DF-1 cells. Over the passages in DF-1 cells, the virus titer
reached its peak earlier, as compared to the parental strain. In addition, the genotypic heterogeneity
was slightly lower compared with mosquito-derived WNV. These results suggest that the size of the
mutant spectrum depends on the host cell [61]. In the latter study, the results support the “trade-off”
hypothesis. Vertebrates likely play the role of a genetic bottleneck for this virus, while invertebrate
play an essential role in expanding genetic variability of arboviruses.

Genetic diversification of BTV-17 was assessed. Ten serial and alternated passages were performed
in cells derived from Culicoides sonorensis (cell line CuVaW3) and/or bovine pulmonary artery endothelial
cells (BPAEC). The consensus nucleotide sequences from serial or alternated passages was 100% identical
to that of the parental strain in all segments, except segments 5 and 10 (>99.8%). After one passage in
CuVaW3 or BPAEC cells, amino acid substitutions were found in segments 5 (I229R) and 10 (A360G).
These changes were observed in the sequences of segments 5 and 10 of BTV-17 passaged serially or by
alternation in the two cell types. Genetic diversity of BTV-17 remains stable independently of cell types
or passages serially or by alternation in a mammalian and/or insect cell lines. The parental strain was
isolated in BHK-21 cells from an infected sheep. The virus seemed to be subjected to a strong selection
in BHK-21 cells and amino acid substitutions in segments 5 and 10 resulted from the adaptation of
BTV-17 in CuVaW3 and BPAEC cells [62]. By contrast, another study, conducted with BTV-3, showed
that genetic diversity was larger after one passage in Culicoides sonorensis (KC) cells when compared
with the parental strain, which was isolated from sheep blood. In addition, after one passage in BSR
(a clone of BHK-21) cells, diversity dropped in all segments. The passage history of the BTV-3 strain was
distinct from that of BTV-17. The blood from BTV-3 infected sheep was inoculated into embryonated
chicken eggs (ECE) or KC cells. After passage in ECE (BTV-3E1), the virus was further grown in C6/36
mosquito cells (BTV-3E1/C6-1) followed by three additional passages in BSR cells (BTV-3E1/C6-1/BSR1,
BTV-3E1/C6-1/BSR2 and BTV-3E1/C6-1/BSR3). The BTV-3 grown in KC cells (BTV-3KC1) was further
passaged three times in BSR cells (BTV-3KC1/BSR1, BTV-3KC1/BSR2 and BTV-3KC1/BSR3). Mutations
were observed in VP2 (segment 2) and NS1 (segment 5) of BTV-3E1/C6-1/BSR2 or BTV-3E1/C6-1/BSR3.
Other mutations were observed in VP5 (segment 6) and VP6 (segment 9) of BTV-3KC1/BSR2 or
BTV-3KC1/BSR3. Non-synonymous nucleotide substitutions (amino acids changes: Q169R and M5I)
were found in segment 8 (encoding NS2) of all BSR passages. The authors suggested that the various
changes are likely involved in virus attenuation and/or host specialisation [63].
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In summary, the trade-off hypothesis seems to be compatible with many of studied arboviruses
except DENV and CHICKV. The evolution of these two viruses is constrained in their arthropod vector
by contrast to WNV and the opposite is observed for WNV, for instance.

During in vitro experimental evolutionary studies of arboviruses, care should be taken when
deciding upon which multiplicity of infection (MOI) to use. Indeed, when cells are infected at a high
MOI, defective interfering particles (DI particles) are likely produced. DI particles were observed
for several viruses belonging to different families such as the Flaviviridae, Coronaviridae, Togaviridae,
Paramyxoviridae, Rhabdoviridae and Reoviridae [64]. Undiluted passages of viruses lead to accumulation
of DI particles and result in a decrease of viral fitness. The DI particles can interfere with the standard
virus replication, which can lead to rapid genome evolution. Studies of EEEV and VSV have shown
that DI particles were preferentially replicated [46,65].

2.2.2. In Vivo Studies

Conducting in vivo studies with arboviruses to assess their genetic variability is a less frequent
setting, due to the complex nature of these studies. In fact, these studies are subject to approval by
ethics committees, require high containment animal facilities, rely on the availability of a relevant
animal model and are time consuming, to cite a few essential conditions. Usually, the design of in vivo
experiments is similar of those done in vitro: ten serial or alternated passages are made in mice or
hamster and arthropods. For specific viruses, the results obtained in vitro are different from those
passaged in vivo, yet certain characteristics are common to both situations. Host specialisation in serial
passages was observed and assessed by measuring replication kinetics and viraemia in vertebrates.
A study by Coffey et al. (2008) [48], focussed on VEEV, showed host specialisation of two strains
(ID and IC) in mice or hamsters and mosquitoes. The viral strains derived from 10 serial passages in
mosquitoes induced low levels of viraemia in mice and resulted in higher infection rates in mosquitoes
as compared to the first passage. After 10 sequential passages, viraemia in vertebrates peaked earlier.
Characteristics of viraemia were similar to those of parental strain in viruses alternated between mice
or hamsters and mosquitoes [48]. These results support that alternation of host likely constrains
evolution of a large number of arboviruses. Moreover, a non-synonymous nucleotide substitution was
observed after 10 serial passages in mice in the sequence encoding the nsP4 polymerase. The frequency
of mutated nsP4 position 6174 (R6174S) increased over the passages and seemed to correlate with
earlier and higher levels of viraemia in mice. In addition, during serial passages in hamsters, a distinct
amino acid substitution was observed in nsP4 sequence. Serial VEEV passaged in mosquitoes resulted
in a synonymous substitution at nucleotide position 123 of the nsP1 sequence. The viral population
with the latter substitution occurred at very low frequency, and it was only until the eight passage that
its frequency increased, becoming relatively frequent at the tenth passage [48].

The viruses resulting from in vitro passages are usually further tested in mice and arthropods
to evaluate their phenotypes. Serial in vitro passages result in a decreased fitness (and consequently
resulted in lower levels of viraemia) in vivo as compared to the parental strain. It has been shown for
RRV after serial passages in BHK-21 cells, where virulence in mice decreased. By contrast, animals died
earlier when RRV was serially passaged in mice, thus selecting more virulent strains [66]. In a study by
Moutailler et al. (2011) [45] focussing on RVFV, the strains and clones resulting from serial passages
in BHK-21 and Aag2 cells did not cause death in mice. The parental strain and those resulting from
alternated passages induced 100% mortality in less than nine days and behaved similarly in animals.
Mice were also infected with viruses derived from serial passages in BHK-21 and Aag2 (deleted NSs).
These mice were further challenged with the virulent parental strain and all mice were protected from
the lethal infection [45].

Subpopulations generated upon infection of mammals/arthropods likely influence the outcome of
infection and onward transmission. Despite this knowledge, virus quasi-species were not analysed in a
mammalian host/arthropod vector in the majority of published studies. The extent of genetic variation
is virus dependent. For instance, analysis of blood collected from mice inoculated with Liao ning
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virus (LNV) or Banna virus (BAV) (two members of genus Seadornavirus) showed significantly higher
sequence variations for LNV than BAV [67].

2.3. Genetic Variability of Tick-Borne Viruses

Studying the genetic variability of arboviruses mainly focussed on mosquito- or sandfly-borne
viruses, especially those belonging to genera Flavivirus and Alphavirus. There is a lack of data for
tick-borne viruses, yet the “trade-off” hypothesis was extrapolated to all arboviruses, including tick-
borne viruses. While mosquitoes, sandflies and ticks do not have the same lifecycle and lifestyle,
tick-borne viruses are longer associated with their vectors than mosquito- or sandfly-borne viruses,
due to vector life span.

Limited studies were conducted on tick-borne viruses such as TBEV and CCHFV. In 2007,
Romanova et al. [68] conducted a study on TBEV in order to compare a tick-adapted strain, variant M
to a parental strain EK-328. Variant M is the result of 17 serial passages in Hyalomma marginatum
marginatum and five passages in mouse brains. The first observed difference between the two strains
was the size of plaques: EK-328 produced 7-mm plaques, whereas variant M made 1-mm plaques in
majority and few 7-mm plaques (ratio 100:2). The tick-adapted strain was less virulent in mice than the
parental strain and viral titers in ticks were higher for variant M after seven days post-inoculation.
Furthermore, growth kinetics in PEK cells (pig embryo kidney cells) differed. The yield of variant M
in cell culture supernatants was 100 times lower than from EK-328 at 22 h post-infection and did not
increase at 60 h post-infection. A full genome sequencing identified fifteen nucleotide substitutions
in variant M, six of which were non-synonymous (resulting in changes in protein sequences for E,
prM, NS2A and NS4A). Changes in the E protein sequence correlated with the smaller plaque size.
Depending on the positions impacted by amino acid changes, they were also linked to stronger
or lower affinities of the virus for cellular heparan sulphate and the binding of virions to cellular
glycosoaminoglycans. Moreover, the neuroinvasive properties in mice have been impacted for specific
substitutions in E protein [68]. A Further study was conducted with Langat virus (LGVT, a tick-borne
flavivirus), during which two variants were generated. After 20 serial passages in mouse neuroblastoma
(MNB) or Ixodes scapularis tick (ISE6) cells, variants MNBp20 and ISEp20 were, respectively, identified.
Host specialisation was observed in both cell types. The full-length genome sequences of the two
variants were determined in order to identify genetic changes associated with adaptation. Amino acid
changes found in both viruses were identified in structural and non-structural proteins. The mouse
cell adapted virus had amino acid changes in the E (E277K and Y438Y/H), NS4A (E33G) and NS4B
(K164K/R) proteins. The tick cell adapted virus had substitutions in prM (K115E), NS3 (F604F/L) and
NS4A (A81A/V) proteins. It was concluded that all five proteins E, prM, NS3, NS4A and NS4B are
involved in host adaptation of LGTV [69].

In 2016, Han Xia et al. [31] studied how a tick vector and an animal host shape the genome
plasticity of CCHFV. They showed transmission of the virus to Hyalomma marginatum ticks upon feeding
on experimentally infected mice, as well as transstadial transmission in ticks. They also conducted a
study to assess the impact of long-term association of CCHFV with ticks on the viral genome. For that
purpose, they fed nymphs on infected mice and conserved them one year after they moulted into the
adult stage, before RNA extraction from ticks and mice, followed by NGS sequencing. Substitutions in
CCHFV genome were observed only in tick samples. In total, fourteen mutations were identified: one,
four and nine in the S, M and L segments, respectively, as compared to the virus from infected mice.
Specific substitutions were common in the two groups of ticks which were used in the experiment,
while other substitutions in segment L were found in one-year-old ticks only. Among the fourteen
substitutions, four were non-synonymous in segments M and L. In addition, CCHFV genome diversity
was higher in ticks than in mice [31]. These results showed that tick vectors play a principal role in
expanding the genetic variability of tick-borne viruses. To assess the “trade-off” hypothesis for CCHFV,
it would have been valuable to infect mice using the adult ticks which moulted from infected nymphs.
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The sequence of the resulting virus in mice would have been a source of valuable information, to prove
or disprove the “trade-off” hypothesis for this tick-borne virus.

3. Arbovirus–Vector as a Complex System

3.1. Co-Evolution between Arboviruses and Arthropod Vectors

There are different views as to whether arboviruses co-evolved or not with their arthropod vectors.
Looking at genomes of arboviruses in genera where tick-borne, mosquito-borne, sandfly-borne and/or
Culicoides-borne are encountered such as the flaviviruses or the orbiviruses, different observations are
made. One of the important observations pertains to the G + C content of their genomes. For flaviviruses,
the G + C content of insect-only viruses is in the range of 50–53%, that of mosquito-borne viruses is in
the range of 47–53%, for tick-borne viruses it is 53–54% and for no known vector viruses (NKV) it is
43–48%, with the exception of Tamana bat virus (TABV) genome where G + C content is ~38%. As for
orbiviruses, the G + C content of mosquito-borne orbiviruses ranged from 35% to 41%. The G + C
content of Culicoides-borne viruses ranged from 40% to 45%. For tick-borne orbiviruses, the G + C
content ranged from 52% to 58%. The G + C content of arthropod vector genomes is ~56% for ticks,
~39–42% for Culicoides and 35–38% for mosquitoes [70,71]. There are clear differences between the two
genera. Regarding flaviviruses, only tick-borne viruses have a G + C content which is similar to that of
their tick vectors (~57%). G + C content of insect only flaviviruses is very similar to that of tick-borne
viruses and for mosquito-borne flaviviruses the G + C content is largely overlapping with that of the
insect-only and tick-borne flaviviruses. This largely contrasts with orbiviruses where G + C content is
very similar to that of their respective arthropod vectors. These observations and clear specialisation,
among other findings, provided ground to suggest that orbivirus ancestors were arthropod viruses
which coevolved with their vectors and adapted to vertebrate hosts [70].

Earlier phylogenetic studies classified flaviviruses within four groups: two mosquito-borne
groups, a tick-borne group and a group where viruses are designated as non-vectored or having no
known vectors (NKV) [72]. Phylogenetic studies based on NS5 gene showed it to contain insufficient
signal to corroborate a specific tree topology. Phylogenetic trees based on the NS3 protein or full
polyprotein sequences do suggest that mosquito-borne flaviviruses root all other flaviviruses. They also
suggest that these viruses adapted later on to tick transmission [73]. According to the gene used for
building a phylogenetic tree for flaviviruses, the phylogenetic relationships between the various groups
differ. Trees based on NS5 protein sequence showed that mosquito-borne viruses and tick-borne viruses
are sister groups whereas trees based on NS3 protein sequence showed that tick-borne viruses and NKV
are sister groups, with insect-specific flaviviruses as outgroup for both [74]. Other studies suggest that
NKV flaviviruses do not form a single phylogenetic group. They suggest that possible recombination
events may explain discrepancies of clustering in phylogenetic trees (based on full-length polyproteins
or specific genes such as the envelope, NS3 or NS5). These studies suggested that Yokose (YOK),
Sokoluk (SOK) and Entebbe bat (ENT) virus seem to cluster with mosquito-borne flaviviruses. The other
NKV viruses either cluster with tick-borne flaviviruses (Envelope, NS3 or polyprotein trees) or are basal
to mosquito and tick-borne flaviviruses (NS5 trees) [75]. It was also suggested that YOKV, SOKV and
ENTV may be arboviruses instead of being NKVs and that based on usage of dinucleotide frequencies
they do not seem to be specifically adapted to vertebrate hosts. Only TABV seems to be a vertebrate
specific virus, having a significantly lower CpG dinucleotide frequency than insect-specific flaviviruses
or arthropod/vertebrate flaviviruses [75].

Whether flaviviruses co-evolved with their arthropod vectors (i.e., originated before the split of
invertebrates and vertebrates during evolution) or they have originated in one group or the other
followed by co-adaptation, remains a debatable question. However, the high G + C content of most
flavivirus genomes (including insect-only viruses) raises questions as to whether flaviviruses did
originate in ticks or if this trait provided advantage to the dispersal of flaviviruses among various
arthropod vectors. Certain insect-borne viruses are capable of infecting and replicating in tick cell lines.
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Semliki Forest virus (SFV) and Venezuelan equine encephalitis virus (VEEV), two mosquito-borne
alphaviruses, replicate well in tick cell lines Rhipicephalus decoloratus BDE/CTVM16 and Rhipicephalus
appendiculatus RAE/CTVM1 [76,77]. The G+C content of SFV genome is ~53% and that of VEEV is
~50%. Replication of 13 flaviviruses including DENV, WNV, SLEV, yellow fever virus (YFV), TBEV,
POWV, Louping ill virus (LIV), Negishi virus (NGV) and LGTV was compared in mosquito and tick cell
lines. The mosquito-borne viruses replicate efficiently in mosquito cells and it was shown that WNV is
capable of infecting and replicating in four tick cell lines. The tick-borne viruses replicate only in tick
cell lines, except LGTV where signs of infection were observed in C6/36 [77]. A previous study using
Singh’s non-cloned Ae. albopictus cells (from which C6/36 were derived) failed to show replication
of LGTV [78]. Two NKV flaviviruses were also tested in this study and none replicated in any cell
line [77]. The G + C contents of DENV, SLEV and YFV are between 45% and 50%, whereas those
of WNV, TBEV, POWV and LIV are up to 51%. Larvae and nymphs, but not adults, of Amblyomma
species were shown experimentally to be susceptible for infection by WNV or SLEV [79]. These results
highlight important differences between flaviviruses in terms of their capacity to potentially infect a
distinct arthropod vector.

Colorado tick fever virus (CTFV) and Eyach virus (EYAV) are two species belonging to genus
Coltivirus (family Reoviridae). Replication of CTFV or EYAV in mosquito and/or tick cell lines has
been explored. CTFV was grown in Ae. albopictus cells over seven weeks and the titer reached
~106 pfu/mL after six weeks, declining afterwards [80]. As compared to titers of the same virus grown
mammalian cells (~108 pfu/mL), the difference represents approximately 99% less virus in mosquito
cells. Limited replication of a EYAV-Fr578 was shown in C6/36 cells [81]. A strain of Kemerovo
virus (KEMV, genus Orbivirus) was grown both in Ae. albopictus C6/36 cells and I. ricinus tick cells.
While titers of approximately 107–108 pfu/mL were observed in tick cells, titers of 104 or less were
obtained with C6/36 (unpublished data), that is to say 99.9–99.99% less virus in mosquito cells.

In summary, the lower levels of replication of a given animal arbovirus in a heterologous cell culture
system suggest that a heterologous arthropod would not act as a likely vector for that particular virus.

3.2. Role of Arthropods in Natural Survival and Spread of Arboviruses

Since the 1930s, several basic concepts were established for arbovirus–vector systems. Plant arbovirus
associations with their competent insect vectors fall into circulative propagative, circulative
non-propagative or non-circulative cycles. There are no examples of circulative non-propagative
transmission of an animal arbovirus. Competent arthropod vectors of animal arboviruses ingest
their blood meal and the virus replicates in arthropod cells and disseminate, reaching salivary glands
to ensure transmission during the next blood meal. In addition, viruses must survive arthropods’
behavioural characteristics. Indeed, according to the arthropods, the conditions are not the same if it is
an insect or an acarian (e.g., ticks). Contrarily to mosquitoes that can take several blood meals at the
same life stage (adult female), hard ticks feed only once before moulting, meaning that viruses must
survive upon moulting into the next stage. Moreover, several months can pass between two stages [82].
The extrinsic incubation period (EIP) corresponds to the time between the ingestion of pathogens and
the transmission to a next host [83]. Viruses also have to establish strategies to survive in arthropod.
Tick-borne viruses need to persist in ticks, for instance by infecting tissues which do not undergo
histolysis during moulting [84]. Some tick-borne viruses can also be transmitted trans-ovarially and/or
trans-sexually to the next generation. Vertical transmission and transmission by co-feeding between
ticks contribute to the natural survival and spread of tick-borne viruses [82].

The EIP spans the time starting with initial virus attachment to midgut cells, replication and
dissemination into the arthropod. These are key phases for virus transmission, requesting the crossing
of biological barriers including the gut barrier until reaching salivary glands [83]. The gut barrier,
a determinant of vector competence, controls the virus both qualitatively and quantitatively and
defines the permissivity of an arthropod to a given virus. In addition, the process of blood digestion
is important for a successful infection of the arthropod. Ticks are heterophagous, meaning that the
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first step of digestion is intracellular (midgut cells) while insects such as mosquitoes digest their blood
meal in the lumen of midgut [84]. Tick gut cells were shown to be a site where Thogoto virus (family
Orthomyxoviridae, genus Thogotovirus) genome segments reassort [85]. After crossing the gut, the virus
replicates within. It is then released into the haemolymph circulation and is carried until the salivary
glands. A new phase of replication takes place within these glands, provided that virus titers are
sufficient enough in the haemolymph. A successful dissemination of the virus to key tissues of the
arthropod is a parameter for studying vector competence. That was observed in CHIKV upon assessing
virus fitness and vector competence of Aedes mosquitoes [60]. Furthermore, the concentration of
ingested virus as well as ecological factors must be taken into consideration [83]. Antiviral mechanisms
developed by hosts and vectors could be the source of genetic variability of viruses. Arthropod vectors
developed various innate immune responses to limit or control viral infections. These responses
include RNA interference (RNAi, generating short interfering RNA or siRNA), Jak-STAT (Vago), Nf-κB,
Imd and Toll and autophagy. siRNA seems to be the most robust pathway to control virus after an
infection, by degrading RNA and limiting replication [86].

One of the entomological variables which are considered for pathogen transmission is the vectorial
capacity. This variable includes biotic (vectorial competence) and abiotic (geographical area, climate,
population density, etc.) factors. Geographical distribution of vectors is influenced by climate
change and human activities (farming, deforestation, urbanisation, international travel and trade,
etc.). These parameters impact vector ecology and consequently human exposure to infection [87].
Abundance of vectors considerably impacts the emergence of a pathogen. This was observed during
the CHIKV outbreak in the Indian Ocean in 2004, where the conditions were optimal (high abundance
of Ae. albopictus) for the virus to emerge since the amino acid substitution A226V in the E1 envelope
glycoprotein helped the virus to switch vector. Aedes albopictus has a larger geographical distribution
than Aedes aegypti, which is almost absent in the Indian Ocean islands [88,89]. The abundance of
vectors must be considered, taking into account other abiotic factors such as climate, temperature and
seasonality. The emergence of specific viruses can be facilitated by optimal climate conditions and the
presence of local competent vectors. The emergence of BTV in the north of Europe in summer of 2006
is a typical example, where transmission occurred by the local midge population. Other examples
include ZIKV in Brazil in 2015 and DENV in India in 2015 [90]. Arboviruses and their vectors must be
considered as complex systems where several parameters affect their dynamics. The genetic variability
of arboviruses strongly influences this system. The genetic variability of insect-borne arboviruses has
been assessed for a range of viruses. Additional focus should be placed on tick-borne viruses to bring
these studies up to speed.

4. Conclusions

Nowadays, vector-borne diseases are important both medically and economically. Characteristics
and molecular aspects of arboviruses were identified during multiple studies aiming to assess their
genetic variability and in particular the insect-borne viruses (Table 3). Viruses host-specialise in serial
passages or are able to infect two distinct hosts or cell types in alternating passages. The loss or gain of
fitness can be evaluated by studying different in vitro and in vivo characteristics: (i) growth kinetics
(time course study of virus titers); (ii) capacity to infect distinct cell types; (iii) induction of viraemia
in experimentally infected mice (strain dependent: peaking earlier or later, being lower or higher as
compared to the parental strain); (iv) infection rates of arthropods; and (v) virus dissemination in
arthropods (see references in Table 3). The experimental set-up influences virulence. Hence, virulence
tends to decrease in vitro set-ups, whereas the contrary is observed in vivo set-ups. Sequence analyses,
in particular deep sequencing, helped linking changes in virulence or fitness to specific viral genes.
Virulence can be measured by evaluating morbidity/mortality rates in vertebrates. Genes and encoded
proteins that are responsible for interactions between viruses and cells, particularly envelope or outer
capsid proteins, accumulate mutations which allow the virus to infect efficiently one cell type or distinct
vector species.
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Table 3. Summary of all studies described in this review.

Virus In Vitro, In Vitro/In Vivo,
In Vivo Findings References

WNV

Flavivirus

in vitro

Specialisation to a single cell type in serially
passaged virus

Increased genetic variability after serial passages in
mosquito cells as compared to

mammalian-derived strain

[49,61]

SLEV in vitro Specialisation to a single cell type in serially
passaged virus [49]

RBGV in vitro
Adaptation to cell culture in mammalian cells at

high temperature
Role of NS3 in host range

[51]

DENV in vitro
Lower number of substitutions in mosquito-cell

serially passaged virus as compared to
alternated virus

[58,59]

ZIKV in vitro Substitutions in envelop protein that give benefits for
replication in a cell type [50]

TBEV in vivo

Tick-adapted strain less virulent in mice than the
parental strain

Mutations in E, prM, NS2A ans NS4A—a role of E
protein in fitness

[68]

LGVT In vitro

Specialisation to a single cell type in serially
passaged virus

Mutations in E, prM, NS3, NS4A and NS4B—a role
of these proteins in host adaptation

[69]

EEEV

Alphavirus

in vitro
Specialisation to a single cell type in serially

passaged virusSame characteristics as parental strain
in alternated passages

[46,54]

VEEV

in vitro
Specialisation to a single cell type in serially

passaged virus—Increased binding efficiency to
mammalian cells [48]

in vivo Host specialisation following serial passages
in mammals

SINV in vitro Faster growth kinetics in single cell type [47]

CHIKV in vitro

Specialisation to a single cell type of serially
passaged virus

Same characteristics as parental strain in
alternated passages

Fewer amino acid substitutions in invertebrate cells
than in mammalian cells and alternation of cells

[52,60]

RRV
in vitro Decreased virulence following serial passages

[66]
in vivo Increased virulence following serial passages

RVFV Phlebovirus

in vitro
Specialisation to a single cell type and decreased

virulence following serial passages
Faster growth kinetics in the same cell type [45]

in vitro/in vivo Mammalian-cell adapted strain less virulent in mice
than parental and alternated strains

VSV Rhabdovirus in vitro

Decreased virulence following serial passages
Decreased fitness in serial passages in arthropod

cells and alternating passages
Increased fitness following serial passages in

mammalian cells

[53]

BTV Orbivirus in vitro Decreased virulence in serially passaged virus
Increased genetic diversity in arthropod cells [55,57,63]

CCHFV Orthonairovirus in vivo
Substitutions in viral genome observed only in

tick samples
Genetic variability higher in ticks than in mice

[31]

Several studies of the genetic variability have been conducted with mosquito- or sandfly-borne
viruses in order to understand their capacity to emerge and potentially adapt to new hosts, notably by
generating virus quasi-species. The latter are produced and compartmentalised into different
tissues/organs of the infected subject. Quasi-species should be taken into account upon studies
focussing on characterisation of genetic diversity, as important drivers predicting virus emergence
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(see references Table 3). Alternating host transmission cycle may constrain arbovirus evolution as
suggested by the “trade-off” hypothesis. However, this hypothesis was extrapolated to all animal
arboviruses including tick-borne viruses where there is a paucity of information regarding genetic
variability. Insects and ticks do not have the same life cycle and behavioural characteristics and
viruses might not be exposed to the same pressure depending on the arthropods they infect. In total,
170 tick-borne viruses were identified so far and they are understudied compared to insect borne
viruses. During the last few decades, we faced tick-borne virus emergence and it is necessary to
understand and anticipate such an emergence. Strategies have been developed to study mosquito-
or sandfly-borne viruses. These strategies are useful to build on and study the genetic variability of
tick-borne viruses. They will be useful to attempt identifying genes or genetic elements, which are
essential for replication in both vectors and hosts and which potentially drive virus emergence into
new geographic areas.
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