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1  | INTRODUC TION

Natural bioactive molecules from marine resources have shown 
many health beneficial effects. Hence, a growing interest was at-
tributed to marine organisms (Chaula et al., 2019; Wijesekara 
et al., 2011), from which seaweeds were known for their functional 
polysaccharides (Sanjeewa et al., 2017; Sinurat & Rosmawaty, 2015; 
Zhao et al., 2018).

The sulfated fucans, also known as fucoidans, represented fu-
cose-containing sulfated polysaccharides that were widely ex-
tracted from brown seaweeds. They were reported to have many 

interesting bioactivities, such as antioxidant (Ashayerizadeh 
et al., 2020), anticancer (Thinh et al., 2018), anti-inflammatory (Hadj 
Ammar et al., 2015), antiangiogenic (Liu et al., 2020), and antibac-
terial (Ashayerizadeh et al., 2020) activities. Fucoidans were non-
toxic, biodegradable, and biocompatible compounds approved by 
the Food and Drug Administration (FDA). In fact, they were applied 
in many nutraceuticals and functional foods (Tanna & Mishra, 2019; 
Vo & Kim, 2013). Moreover, fucoidans were used as food additive 
for emulsion stabilization (Shi et al., 2020) and as fruits conserva-
tive (Duan et al., 2019). These polysaccharides were characterized 
by variable, irregular, and heterogeneous structures (He et al., 2020; 
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Abstract
A fucoidan, sulfated polysaccharide, was extracted from the brown seaweed 
Cystoseira schiffneri during 4 harvest periods (December, April, July, and September) 
and studied for its structural and chemical properties. The Cystoseira schiffneri fu-
coidan (CSF) showed important variation in sulfate content ranging from 7.8% in 
December to 34.8% in July. This was confirmed by Fourier transform infrared and 
nuclear magnetic resonance spectroscopies showing characteristic signals of sul-
fated polysaccharides. Molecular mass of the CSF varied as a function of season from 
3,745 in December to 26,390 Da in July. Gas chromatography–mass spectroscopy 
showed that CSF fractions were “mannogalactofucans” composed mainly of man-
nose, fucose, and galactose with low levels of other monosaccharides. Moreover, in-
teresting in vitro antioxidant activities that depend on the harvest season were noted 
for CSF. Thus, the present work might contribute to establish criteria for extracting 
bioactive fucoidans from an endemic Tunisian seaweed C. schiffneri.
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Pradhan et al., 2020). In fact, the main chain could be homogenous, 
formed only by fucose monomers, or heterogeneous, composed of 
various monosaccharides and uronic acids. Monomers were mostly 
linked by bonds of type α(1 → 2). However, the bonds α(1 → 3) and 
α(1 → 4) were also reported. The fucoidans could be sulfated on C2, 
C3, and/or C4 (He et al., 2020), and they were generally linear but 
sometimes branched with a single or short chain of fucopyranose 
(Ale et al., 2011; Berteau & Mulloy, 2003; Chen et al., 2017). In ad-
dition, fucoidan structures were reported to be variable as a func-
tion of species, seasons, geographical location, climatic conditions, 
extraction methods, and age of seaweeds (Berteau & Mulloy, 2003; 
Li et al., 2017). These structural variances influenced biological ac-
tivities of fucoidans, although the structure/activity relationship re-
mains poorly understood.

Since the main source of fucoidans is the extracellular matrix 
of the Fucales (Ochrophyta, Phaeophyceae), the brown seaweed 
Cystoseira schiffneri Hamel was chosen for the first time as a matrix 
for their extraction. The Mediterranean endemic seaweed C. schiff-
neri is a taxon described in the islands of Djerba and Kerkennah from 
Tunisia, where it forms forests (Tsiamis et al., 2016). The species 
of the genus Cystoseira are perennial species with a monogenetic 
diplobiontic sexual cycle. The annual cycle of the Mediterranean 
Cystoseira passes through a growth period between February and 
May, a breeding period from June–July to August–September then a 
rest period between October and December (Lüning, 1993). Hence, 
the present work aimed to study the effect of annual cycle on the 
structural and chemical properties and antioxidant activities of 
C. schiffneri fucoidan (CSF).

2  | MATERIAL AND METHODS

2.1 | Reagents

1,1-Diphenyl-2-picrylhydrazyl (DPPH•), 3-(2-pyridyl)-5,6-diphe-
nyl-1,2,4-triazine-disulfonic acid monosodium salt hydrate (ferro-
zine), butylated hydroxyanisole (BHA), ethylenediaminetetraacetic 
acid (EDTA), galacturonic acid, gelatin, FeCl2, BaCl2, NaCl, Na2CO3, 
trichloroacetic acid (TCA), H2SO4, HCl, H3BO3, 3,5 dimethylphenol, 
Tween-80, 95% ethanol, absolute ethanol, methanol, chloroform, 
and acetone were purchased from Sigma Chemical Co. (St. Louis, 
MO, USA).

2.2 | Sample collection and preparation

The samples of Cystoseira schiffneri Hamel were collected from 
Kerkennah Islands (Tunisia), more specifically around the point 
(34°39′30.07″N, 11°8′12.27″E) during low tide. Different samples 
were collected in December 2015, and April, July, and September 
2016. The identity of the collected seaweed was validated by Pr. 
Asma HAMZA from the National Institute of Marine Science and 

Technology (Sfax, Tunisia). The seaweed fronds were washed thor-
oughly with seawater to eliminate sand, debris, and epiphytes and 
then transported to the laboratory in a dark plastic bag at a maximum 
of 12 hr. Once arrived, seaweed fronds were washed with distilled 
water to eliminate salts. Afterward, fronds were dried for 20 days 
in the dark at room temperature (25°C) until reaching stable mois-
ture content before being ground using a coffee grinder (Moulinex, 
Mayenne, France) and sieved through a 0.2 mm mesh size. The sea-
weed powder was conserved for a maximum of 12 weeks in the dark 
and in a well-sealed container at room temperature.

2.3 | Fucoidan extraction

The CSF extraction was performed as previously described by 
Sellimi et al. (2014), with slight modifications. The C. schiffneri pow-
der (50 g) was depigmented and defatted by maceration with 0.5 
L acetone:methanol (7:3, v:v) (twice) and followed by 0.3 L chloro-
form (twice) for 24 hr at 30°C under constant stirring (200 rpm). 
Depigmented and defatted powders were air-dried and then treated 
in 1 L 0.1 M HCl (pH = 3) for 2 hr at 60°C under constant stirring 
(250 rpm) for the CSF extraction. Next, the mixture was cooled at 
room temperature and centrifuged for 20 min at 4,000 × g at 4°C in 
a Rotofix 32 centrifuge (Hettich, Tuttlingen, Germany). The recuper-
ated supernatant was mixed with 2 volumes of absolute ethanol and 
then left for 12 hr at 4°C to precipitate the fucoidan. Afterward, the 
fucoidan collected in the pellet by centrifugation (4,000 × g, 20 min, 
4°C) was redissolved in distilled water, dialyzed using 14 kDa cutoff 
dialysis membrane from Sigma-Aldrich (St. Louis, MO, USA), and fi-
nally lyophilized (Christ ALPHA 1–2 LD; Bioblock Scientific, Illkirch-
Cedex, France). The fucoidans extracted from C. schiffneri collected 
in December, April, July, and September were named FD, FA, FJ, and 
FS, respectively.

2.4 | Chemical analyses

The total neutral sugar content was determined using the method 
of DuBois et al. (1956). To a solution of 0.1 g/ml CSF, 1 ml 5% phe-
nol solution and 5 ml 12 N H2SO4 were added. The mixture was 
incubated at 30°C for 20 min, and then, the optical density was 
measured at 490 nm (T70 UV-visible spectrometer; PG Instruments 
Ltd., Lutterworth, England) against a standard curve prepared using 
glucose.

The uronic acid content was determined using the method of 
Scott (1979). To 300 µl of a solution of 0.1 g/ml CSF, 5 ml of 12 N 
H2SO4 and 300 µl of a solution containing 20 g/L NaCl and 30 g/L 
H3BO3 were added. The mixture was incubated for 40 min at 70°C, 
then cooled to room temperature for 1 hr before adding 200 µl 
3,5-dimethylphenol. After 10 min at room temperature, the absor-
bance was measured at 400 and 450 nm against a standard curve of 
galacturonic acid. Uronic acids (%) were calculated using Equation 1.
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where ΔA is the difference in absorbance; V is the total solution vol-
ume (mL); D is the sample dilution; Cs is the standard concentration; 
ΔAs is the difference in the absorbance of the standard (100 μg/ml); m 
is the mass of the test sample (mg); and 0.91 is the constant conversion 
factor of the experimental determination of monosaccharides to poly-
saccharides (Scott, 1979).

The sulfate group content was determined by the BaCl2–gelatin 
method as described by Dodgson (1961). BaCl2–gelatin solution was 
previously prepared by dissolving 2 g gelatin in 400 ml distilled water 
at 70°C. After 12 hr at 4°C, 2 g BaCl2 was added and the mixture was 
left at room temperature for 3 hr. Then, a volume of 0.2 ml of 2 mg/
ml CSF solution was mixed with 3.8 ml 4% (w/v) TCA and 1 ml BaCl2–
gelatine solution. After incubation for 15 min at room temperature, 
the absorbance was measured at 350 nm against a standard curve 
of K2SO4.

The total phenolic content was determined using a slightly 
modified method described by Cicco et al. (2009). A volume 
of 100 µl of 2 mg/ml CSF solution was mixed with 100 µl 2 N 
Folin–Ciocalteu's reagent and 800 µl 5% (w/v) Na2CO3 solution. 
The mixture was incubated at 40°C for 20 min, and then, absor-
bancies were measured at 760 nm against a standard curve of 
phloroglucinol.

2.5 | Elementary analysis

The elementary analysis of CSF was performed using an energy dis-
persive X ray (EDX) analyzer (X-Max N SDD EDX instrument, Oxford, 
UK). Oxford AZTEC software 2011 (Oxford Instruments, Abingdon, 
UK) was used to analyze results. Previous to analysis, the samples 
were metalized by coating with a thin gold layer (5 nm) using a 
Quorum SC7620 metalizer (Quorum Technologies, Brighton, UK) for 
45 s at 12 mA under argon flux.

2.6 | Monosaccharide composition

The monosaccharide composition of CSF was determined using 
the gas chromatography–mass spectroscopy (GC-MS) method. The 
fucoidans were hydrolyzed using 2 M TCA at 100°C for 3 hr. The 
obtained neutral sugars were reduced using 0.5 mM NaBH4 and 
acetylation was done by Ac2O and pyridine. The resulting alditol ac-
etate mixtures were diluted with chloroform prior to analysis.

The GC-MS analysis was realized using (Hewlett Packard 
5980A; CA, USA) gas chromatograph interfaced to a 5970B 
mass selective detector and equipped with Agilent 19091S-433 
capillary column (30 m × 0.25 mm × 0.32 mm). Helium flow rate 
was fixed at 1 ml/min, and temperature of injection was 250°C. 
Oven temperature started at 120°C for 10 min and then raise to 
280°C by 5°C/min. Finally, the temperature was fixed at 280°C for 

30 min. The mass spectrometer temperature was 250°C, and the 
ionization potential was 70 eV.

2.7 | Molecular weight distribution

The weight-average molecular weight (Mw), number-average mo-
lecular weight (Mn), and polydispersity index (PI) of CSF were 
determined using high-performance size-exclusion chromatogra-
phy (HPSEC) Waters Alliance model GPCV2000 (Waters, Milford, 
Massachusetts, USA) equipped with a multi-angle laser light scat-
tering (MALLS) detector from Wyatt (Wyatt technology, Santa 
Barbara, CA, USA). The PI, which represents the ratio Mw/Mn is a 
measure of the heterogeneity of a sample based on size. Before in-
jection, the apparatus was calibrated with toluene and normalized 
with polyethylene oxide (72 kDa) in 0.1 M NaCl, and samples were 
filtered through a 0.45 µm pore size membrane (Merck, Darmstadt, 
Germany). A volume of 100 µl 3 mg/ml sample was injected in a 
(7.8 mm × 300 mm) column TSK-G2000 SWXL (Tosoh Bioscience 
GmbH, Griesheim, Germany). The eluent was 0.1 M NaCl at a flow 
rate of 0.5 ml/min. The adopted specific refractive index increment 
(dn/dc) was 0.155. Data were collected from the refractive index de-
tector (DRI) and MALLS, and evaluated with the ASTRA software 
version 4.72.03 (Wyatt Technology).

2.8 | Spectral analyses

A Fourier transform infrared (FTIR) spectrophotometer (Perkin-
Elmer, Norwalk, CT, USA) equipped with attenuated total reflection 
(ATR) accessory containing a diamond/ZnSe crystal was used to 
study CSF infrared spectra. The FTIR spectra were obtained, using 
30 scans and 4 cm−1 resolution, in the range of 4000–600 cm−1 at 
room temperature and at a scan speed of 0.6 mm/s.

1H-NMR analysis was recorded at 25°C on a Bruker 400 spec-
trometer (Bruker Biospin AG, Fallanden, Switzerland). The results 
were analyzed using MestRe Nova 5.3.0 (Mestrelab Research S.L., 
Santiago de Compostela, Spain) software. The fucoidans were deu-
terium-exchanged by lyophilization with D2O and then examined as 
1% (w/v) solutions in D2O (99.96%) (Euriso-Top, Paris, France).

2.9 | Thermogravimetric analysis

The thermogravimetric analyses (TGA) were monitored using 
thermogravimetric analyzer Q500 instrument (TA Instruments, 
Newcastle, DE, USA). Nitrogen flow rate was fixed at 60 ml/min. 
Samples were heated from 20 to 1,000°C at a heating rate of 20°C/
min, and their mass was constantly measured with an accuracy of 
0.01 mg. Thermograms presenting the weight loss due to sample 
decomposition caused by temperature are obtained with Platinum™ 
Software (TA Instruments).

(1)Uronic acids (% ) = (ΔA × V × D × Cs × 0.91 × 100) ∕ (ΔAs × m )



1554  |     BENSLIMA Et AL.

2.10 | Antioxidant activities

2.10.1 | DPPH• radical scavenging activity

The DPPH• radical scavenging activity of CSF was determined follow-
ing the method of Kirby and Schmidt (1997), with slight modifications. 
Briefly, 500 µl of the sample solution at different final concentrations 
(0.125–1.5 mg/ml) was mixed with 125 µl DPPH• solution (0.02% 
(w/v) in ethanol) and 375 µl absolute ethanol. The mixture was ho-
mogenized vigorously and then kept for 1 hr in the dark; the absorb-
ance was recorded at 517 nm. BHA was used as a positive standard. 
Control (without sample) and blank (without DPPH•) were prepared 
and DPPH• reduction was calculated following Equation (2).

Results of DPPH• scavenging activity are shown by IC50 values 
(µg/mL) defined as the extract concentration needed to scavenge 
50% of DPPH•. Lower IC50 values indicated higher DPPH• radical 
scavenging activity.

2.10.2 | (Fe2+) chelating activity

The CSF capacity to complex the ferric ion was tested by the method of 
Carter (1971). Briefly, 100 µl CSF solution (0.1–1 mg/ml) was mixed with 
50 µl 2 mM FeCl2 and 450 µl distilled water. After 3 min of incubation 
at room temperature, 200 µl 5 mM ferrozine was added. The mixture 

was vigorously shaken and then incubated at room temperature for 
10 min before reading absorbencies at 562 nm. The positive standard 
was EDTA. Blanks without ferrozine and a control without sample were 
prepared and chelating ability was calculated following Equation (3).

Results of (Fe2+) chelating activity are shown by IC50 values 
(µg/ml) defined as the extract concentration needed to chelate 
50% of Fe2+. Lower IC50 values indicated higher (Fe2+) chelating 
activity.

2.10.3 | Ferric ion (Fe3+) reducing antioxidant power 
(FRAP)

The FRAP of CSF was evaluated as described by Yildirim et al. (2001). 
Sample solution (500 µl) prepared at different concentrations ranging 
from 50 to 500 µg/ml was mixed with 1.25 ml 0.2 M sodium phos-
phate buffer (pH = 6.6) and 1.25 ml 1% (w/v) potassium ferrocyanide. 
After incubation for 30 min at 50°C, 1.25 ml 10% (w/v) TCA was 
added and the mixture was then centrifuged at 11,000 × g for 10 min 
(Gyrozen, Gimpo, South Korea). Afterward, a 1.25 ml aliquot of the 
supernatant from each sample mixture was mixed with 1.25 ml Milli-Q 
water prepared by Milli-Q® Advantage A10 Water Purification System 
(Millipore Sigma, MS, USA) and 0.25 ml 0.1% (w/v) ferric chloride so-
lution in a test tube. The absorbance of the resulting solutions was 

(2)
DPPH ∙ radical - scavenging activity (% ) =

((

Acontrol + Ablank − Asample

)

∕Acontrol

)

× 100

(3)
(Fe

2+
) chelating activity (% ) =

((

Acontrol + Ablank − Asample

)

∕Acontrol

)

× 100

TA B L E  1   Extraction yield (g/100 g DM) and chemical composition (g/100 g DM) of the CSF fractions from different seasons

Parameters

Season

FD FA FJ FS

Yield 2.2 ± 0.03a 1.4 ± 0.04b 1 ± 0.03c 1.3 ± 0.05b

Moisture* 4.8 ± 0.1d 5.6 ± 0.2b 7.8 ± 0.3a 4.9 ± 0.2c

Total sugars 73.9 ± 2.4a 69 ± 2.2b 52.8 ± 1.1c 74.9 ± 1.4a

Uronic acids 8.3 ± 0.04a 6.3 ± 0.2b 8.3 ± 0.2a 8.1 ± 0.2a

Total phenolics†  0.4 ± 0.04d 1 ± 0.02a 0.7 ± 0.02b 0.6 ± 0.1c

Ash 11 ± 0.4c 15.8 ± 0.6b 36.5 ± 1a 33.3 ± 1.5a

C 35.6 ± 3b 41.7 ± 2.1a 37.6 ± 1.3b 42.4 ± 3.5a

O 38.3 ± 1.1b 42 ± 1.8b 41.4 ± 1.4b 46.5 ± 1.4a

Na 7.5 ± 0.1a 1.4 ± 0.144b 0.7 ± 0.2c 1.5 ± 0.3b

S 4.5 ± 0.1c 7.8 ± 0.3b 10.4 ± 0.2a 4.6 ± 0.7c

N 0 0 0 0

Mg 0.7 ± 0.1b 2.2 ± 0.04a 0.3 ± 0.1d 0.6 ± 0.03c

K 0.4 ± 0.1c 0.5 ± 0.1b 1.3 ± 0.1a 0.3 ± 0.03d

Cl 8.2 ± 0.4a 0.8 ± 0.3c 4.2 ± 0.9b 0.8 ± 0.5c

Ca 4.8 ± 0.2a 3.6 ± 0.1c 4.1 ± 0.2b 3.5 ± 0.6c

Note: FD, FA, FJ, and FS represent the extracted fucoidans from C. schiffneri collected in December, April, July, and September, respectively.
a,b,c,dDifferent letters within different seasons of harvest (same column) indicate significant differences (p < .05).
*the moisture is expressed as g/100 g lyophilized fucoidan. 
†Total phenolics were expressed as g eq. phloroglucinol/100 g DM; each value represents the mean ± SD (n = 3). 



     |  1555BENSLIMA Et AL.

TA B L E  2   Literature data of some brown seaweed fucoidans

Parameters Species Value References

Extraction yield (%) Saccharina longicruris 1.3 Rioux et al., (2007)

Ascophyllum nodosum 2.2 Rioux et al., (2007)

Padina sp 2.1 Lim et al., (2014)

Cystoseira barbata 5.5 Sellimi et al., (2014)

Turbinaria conoides 8.8 Chattopadhyay et al., (2010)

Laminaria japonica ~16 Zhao et al., (2018)

Total sugars (%) C. barbata 50.8 Qu et al., (2019)

Uronic acids (%) L. japonica 6.8 Chen et al., (2017)

L. japonica 20.3 Zhao et al., (2018)

C. barbata 7.1 Sellimi et al., (2014)

Undaria pinnatifida 4.1 Koh et al., (2019)

Total phenolics (%) C. compressa 1.4 Hentati et al., (2018)

Sulfate content (%) Fucus serratus 34 Fletcher et al., (2017)

F. vesiculosus 19 Fletcher et al., (2017)

A. nodosum 15 Fletcher et al., (2017)

S. sculpera (July) 1.6 Qu et al., (2019)

S. sculpera (Mars) 0.4 Qu et al., (2019)

C. barbata 22.5 Qu et al., (2019)

C. compressa 14.7 Hentati et al., (2018)

U. pinnatifida 22.8 Koh et al., (2019)

S. japonica (sterile) 17 Vishchuk et al., (2012)

S. japonica (fertile) 14 Vishchuk et al., (2012)

Alaria sp. (sterile) 24 Vishchuk et al., (2012)

Alaria sp. (fertile) 29 Vishchuk et al., (2012)

Mannose (%) C. barbata 2.9 Sellimi et al., (2014)

S. japonica (sterile) 47 Vishchuk et al., (2012)

S. japonica (fertile) 5.8 Vishchuk et al., (2012)

Alaria sp. (sterile) 8 Vishchuk et al., (2012)

Alaria sp. (fertile) 1.2 Vishchuk et al., (2012)

Fucose (%) C. barbata 44.6 Sellimi et al., (2014)

C. compressa 62.4 Hentati et al., (2018)

U. pinnatifida ~30 Koh et al., (2019)

S. japonica (sterile) 32 Vishchuk et al., (2012)

S. japonica (fertile) 63 Vishchuk et al., (2012)

Alaria sp. (sterile) 54 Vishchuk et al., (2012)

Alaria sp. (fertile) 48 Vishchuk et al., (2012)

Galactose (%) C. barbata 34.3 Sellimi et al., (2014)

C. compressa 24.2 Hentati et al., (2018)

U. pinnatifida ~23 Koh et al., (2019)

S. japonica (sterile) 9 Vishchuk et al., (2012)

S. japonica (fertile) 22 Vishchuk et al., (2012)

Alaria sp. (sterile) 38 Vishchuk et al., (2012)

Alaria sp. (fertile) 50.4 Vishchuk et al., (2012)

Glucose (%) C. barbata 7.6 Sellimi et al., (2014)

C. compressa 7.7 Hentati et al., (2018)

U. pinnatifida ~3 Koh et al., (2019)

S. japonica (fertile) 7 Vishchuk et al., (2012)

(Continues)
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measured at 700 nm. Blanks without FeCl3 were prepared, and BHA 
was used as a positive standard. The FRAP is shown by the extract 
concentration (EC0.5) providing 0.5 of absorbance at 700 nm.

3  | STATISTIC AL ANALYSIS

Each experience was performed in triplicate, and results were ex-
pressed as mean ± standard deviation. Analysis of variance (ANOVA) 
with one factor was done to compare results using SPSS Windows™ 

(version 17; SPSS Inc., Chicago, IL, USA). Results are considered dif-
ferent at a level of p < .05.

4  | RESULTS AND DISCUSSION

4.1 | Extraction yield

Table 1 shows that the extraction yields of C. schiffneri fucoidans 
ranged from 1% to 2.2% (DM basis). Table 2 presents the extrac-
tion yields reported in the literature for some other brown seaweed 

Parameters Species Value References

Xylose (%) C. barbata 4.2 Sellimi et al., (2014)

C. compressa 4.5 Hentati et al., (2018)

U. pinnatifida ~30 Koh et al., 2(019)

S. japonica (sterile) 8 Vishchuk et al., (2012)

S. japonica (fertile) 2.2 Vishchuk et al., (2012)

Rhamnose (%) S. japonica (sterile) 4 Vishchuk et al., (2012)

Mw (kDa) L. japonica 6.5 Zheng et al., (2018)

F. serratus 1,336–2,024 Fletcher et al., (2017)

F. vesiculosus 1,184–1,789 Fletcher et al., (2017)

A.nodosum 1,274–1,469 Fletcher et al., (2017)

DPPH• scavenging activity (CI50, 
µg/mL)

C. barbata ~650 Sellimi et al., (2014)

Sargassum polycystum 759 Palanisamy et al., (2017)

U. pinnatifida 200 Mak et al., (2013)

FRAP (CE0.5, µg/mL) C. barbata 400 Sellimi et al., (2014)

L. japonica >1,100 Qu et al., (2014)

Lessonia nigrescens >1,100 Qu et al., (2014)

L. trabeculata >1,100 Qu et al., (2014)

A. mackaii ~400 Qu et al., (2014)

Ecklonia maxima ~500 Qu et al., (2014)

(Fe2+) chelating activity (CI50, 
µg/mL)

L. japonica >3,500 Wang et al., (2009)

C. barbata ~300 Sellimi et al., (2014)

TA B L E  2   (Continued)

F I G U R E  1   Sulfate content of the extracted fucoidans from 
C. schiffneri (CSF) collected in December (FD), April (FA), July (FJ), 
and September (FS)
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FD FA FJ FS TA B L E  3   Monosaccharide composition (%) of the CSF fractions 
from different seasons

Season

FD FA FJ FS

Mannose 47.6 38 34.8 36.5

Fucose 25.2 23.8 23.7 28

Galactose 22.7 25.1 23 29.4

Glucose 4.5 5.4 13.5 6.1

Xylose 3.6 2.9

Arabinose 3.2 2.1

Mannitol 0.9

Note: FD, FA, FJ, and FS represent the extracted fucoidans from 
C. schiffneri collected in December, April, July, and September, 
respectively.
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species. The reported extraction yields varied dramatically from 1.3 
to ~16%. The obtained results corresponded well with the range 
of the values previously reported in some other research papers. 
However, some other extraction yields remained higher than the 
measured values.

It is worthy to note that the fucoidan content varied considerably 
according to season. The highest extraction yield was measured for 
FD, while the lowest one was obtained for FJ, which suggests that 
the best period to extract the highest CSF content would be winter. 
Similarly, Fletcher et al. (2017) reported that December is the best 
harvest month in terms of the highest fucoidan yield. In contrast, 
Men’shova et al. (2012) reported for P. pavonica that fucoidan ex-
traction yield was more important in July.

The highest fucoidan extraction yield measured in December 
seems to be related to abiotic factors, such as decrease in tem-
perature, illumination, and salinity. According to Skriptsova (2015), 
abiotic factors, such as water temperature, mineral concentration, 
salinity, and illumination, had an influence on the fucoidan accumu-
lation. It was also reported that C. schiffneri showed seasonal varia-
tion for pigment and lipid contents that were likely to be related to 
abiotic factors (Salem et al., 2017). On the other hand, the variation 
of fucoidan content between seasons may be attributed to the sea-
weed growth cycle. It was reported that fucoidans played a crucial 
role in gamete extrusion and that were released immediately be-
fore spores, which might be the main cause of their decrease in July 
(Skriptsova, 2015).

4.2 | Chemical analysis

The moisture, total sugar, uronic acid, total phenolic, and ash con-
tents were presented in Table 1. The CSF were mainly composed 
of neutral sugars ranging from 52.8% to 74.9%, while uronic acids 
showed comparable levels with respect to the harvest season. Ash 
content varied considerably depending on the season (11%–36.5%), 
while markedly low contents of phenolic compounds were meas-
ured. Literature data for some other brown seaweed species showed 
higher neutral sugar content and a wide range of uronic acid content 
from 4.1% to 20.3%. Similarly, low levels of phenolic compounds 
were also reported (Table 2).

The elementary composition of CSF was also shown in Table 1. 
High levels of carbon and oxygen were measured, while nitrogen was 
not detected that indicated the absence of proteins in the extracted 
CSF. Fletcher et al. (2017) also noted negligible nitrogen levels for the 
extracted fucoidans from Fucus serratus, F. vesiculosus, and A. nodo-
sum. The sulfur content that ranged between 4.5% and 10.4% sug-
gested that CSF was a sulfated polysaccharide. The obtained results 
showed that C:S:O ratios were 1:0.12:1.07 for FD, 1:0.19:1.01 for FA, 
1:0.28:1.10 for FJ, and 1:0.11:1.10 for FS. The relatively higher oxygen 
content as compared to carbon content would be due mainly to sulfate 
groups containing 4 oxygen atoms (SO4

2–) and also to uronic acids con-
taining one more oxygen atom (C6H9O7) as compared to neutral sugars 
(C6H9O6). Fletcher et al. (2017) reported lower C:S ratios for F. serra-
tus (0.2–0.31), F. vesiculosus (0.23–0.42), and A. nodosum (0.25–0.6) as 
compared to the CSF fractions. Table 1 shows that Na, Mg, Cl, K, and 
Ca were present despite the dialysis of CSF fractions, which suggested 
their high chelating ability (Fletcher et al., 2017).

Furthermore, the sulfate content in CSF fractions showed a fluc-
tuation between seasons (Figure 1). The highest sulfate content was 
measured for FJ, while the lowest one was obtained for FD. Similar 
findings were reported in the literature (Table 2), where the sulfate 
content varied remarkably as function of harvest season and there-
fore as function of reproductive cycle. According to Honya et al. (1999) 
and Skriptsova et al. (2010), the sulfate content of fucoidan was 
higher during the reproductive stage similarly to the obtained results. 
However, as it was mentioned in Table 2 for some other brown sea-
weed species, the highest sulfate content was obtained in sterile stage. 

TA B L E  4   Weight-average molecular weight (Mw), number-
average molecular weight (Mn), and polydispersity index (PI) of the 
CSF fractions from different seasons

Season

FD FA FJ FS

Mw (Da) 3,745 6,585 26,390 6,779

Mn 744.6 3,932 1930 2,406

PI 5 1.7 13.7 2.8

Note: FD, FA, FJ, and FS represent the extracted fucoidans from 
C. schiffneri collected in December, April, July, and September, 
respectively.

F I G U R E  2   ATR-FTIR spectroscopy of 
the extracted fucoidans from C. schiffneri 
collected in December (FD), April (FA), 
July (FJ), and September (FS)
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Hence, sulfate content of fucoidans seems to be species-specific. It is 
interesting to note that the fucoidan sulfate content is a crucial charac-
teristic that affects their biological activities. In fact, Haroun-Bouhedja 
et al. (2000) reported that sulfate content less than 20% lead to a com-
plete loss of antiproliferative and anticoagulant activities of fucoidan. 
The obtained results suggested that the summer months were the best 
period for CSF extraction, in terms of the highest sulfate content.

4.3 | Monosaccharide composition

Table 3 shows monosaccharide composition of CSF fractions, which 
presented high levels of mannose, fucose, and galactose. Low con-
tents of xylose, arabinose, and mannitol were measured only for 
FA and/or FJ. In comparison with previous studies, different results 
were obtained, where fucoidans were composed mainly of fucose 
and galactose with lower or no amounts of mannose, glucose, xy-
lose, and rhamnose (Table 2). On the other hand, homogenous 
fucoidan formed only by fucose monomers was also isolated for 
F. distichus (Bilan et al., 2004). According to Ale et al. (2011), brown 
seaweeds contained very complex fucans structures named galacto-
fucans, which had comparable amounts of fucose and galactose. 
These galactofucans consisted mainly of galactose and mannose 
units with a terminal end of glucose or xylose well as branch points 
made up of fucoses and uronic acids. Besides, other structures were 
also highlighted for brown seaweeds, such as Himanthalia lorea and 
A. nodosum fucans composed only of fucose, xylose, and uronic 
acids (Ale et al., 2011). To our knowledge, this is the first report of 
a fucoidan containing mannose as the main monomer. Hence, the 
isolated fucoidan could be named “mannogalactofucan.” However, a 
survey of the literature showed that the monosaccharide composi-
tion of fucoidan isolated from S. japonica was more complicated at 
sterile stage, while no difference was shown between the fucoidans 
of Alaria sp between the sterile and fertile stages (Table 2). The ob-
tained results showed that CSF composition was more complex at 
fertile stage (April and July); thus, the monosaccharide composition 
profile seemed to be species-specific.

4.4 | Molecular weight distribution

Mw, Mn, and PI of CSF were determined, and results are shown in 
Table 4. FJ presented the highest Mw value, while FD had the low-
est one. The isolated fucoidans were polydisperse (PI > 1), and FJ 
presented the highest PI. Comparable results were reported for fu-
coidans extracted from L. japonica. However, Mw of CSF remained 
very low as compared to other brown seaweed species (Table 2). 
Fletcher et al. (2017) reported that Mw fluctuation seems to be 
depending mainly on species rather than the harvest season. The 

F I G U R E  3   1h-NMR spectra of the extracted fucoidans from 
C. schiffneri collected in December (FD), April (FA), July (FJ), and 
September (FS)
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low Mw for CSF seems to be interesting for bioactive effects, since 
fucoidans with low Mw showed many therapeutic potentials (Ale 
et al., 2011).

4.5 | Spectral analyses

The FTIR-ATR spectroscopy analysis was performed to determine 
the specific CSF absorption bands. The CSF spectra showed charac-
teristic bands of fucoidans at 655, 1,046, 1,241, 1,423, 1,632, 2,360, 
3,067, and 3,354 cm−1 (Figure 2). The peaks detected at 3,354 and 
3,067 cm−1 were assigned to O-H and to C-H stretching vibration 
bands, respectively. The signal at 1,046 cm−1 corresponded to C-O-C 
stretch vibration of glycosidic linkage. Moreover, the wavenumbers 
at 1,423 and 1632 cm−1 were assigned to C=O stretching vibration 
of uronic acids residues. Furthermore, the FTIR-ATR profiles con-
firmed the presence of sulfate groups on the CSF fractions. Indeed, 
the absorption band at ~655 cm−1 suggested the presence of a C-O-S 
stretching band of axial sulfate groups and the signal, at 1,241 cm−1, 
suggested the presence of S = O stretching vibration of sulfate es-
ters (Song et al., 2018).

The 1H-NMR spectroscopy was also used to determine the CSF 
configuration. The NMR spectra presented in Figure 3 showed char-
acteristic signals of sulfated fucans for all analyzed CSF fractions, 
which was in concordance with the FTIR-ATR results. The signals 
obtained at 5.64–5.03 ppm were assigned to H1 of fucopyranose 
and to C-H protons of O-substituted carbons (Synytsya et al., 2010). 
Ring protons (H2–H5) showed characteristic resonances between 
3 and 4.5 ppm. Besides, the signals obtained at 1.4 and 1.2 ppm 
were attributed to methyl protons H6 of l-fucopyranose (Synytsya 
et al., 2010). Kariya et al. (2004) reported that signals observed 
at 1.24 ppm were ascribed to fucosyl residues linked in (1–3). 
Furthermore, the signal obtained at 4.3 ppm could be attributed 
to the H4 of 4-O-sulfated residues (Kariya et al., 2004; Pereira 
et al., 1999) and the signals observed at 2.14–2.21 ppm could be 
ascribed to CH3 protons of O-acetyl groups (Synytsya et al., 2010).

4.6 | Thermogravimetric analysis

The mass losses of CSF as a function of temperature were presented 
in Figure 4. According to Idris et al. (2012), three phases of degrada-
tion namely drying, pyrolysis, and char combustion were obtained. 
All the CSF fractions showed almost the same degradation profile. 
The first mass loss, due to humidity removal, was detected at tem-
peratures ranging from 50 to 200°C (Mallick et al., 2018). The main 
CSF degradation (29.18%–49.68%) that was characteristic of the py-
rolysis phase took place in the range of 400–450°C and which was 
assigned to the glycosidic monomers degradation. Depending on the 

F I G U R E  4   Thermogravimetric analysis of the extracted 
fucoidans from C. schiffneri collected in December (FD), April (FA), 
July (FJ), and September (FS)
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harvest season of C. schiffneri, a significant difference in the CSF 
degradation temperature was noted, which may be due to their Mw 
or to the mineral level (Mallick et al., 2018). In fact, a positive correla-
tion between Tmax and Mw was obtained (R2 = 0.48). However, Mw 
seems to be not the only factor affecting the monomers degrada-
tion. According to López-González et al. (2014), alkali metals act as 
catalyzers of combustion process. Finally, the Char combustion step 
started at temperatures above 500°C and it was characterized by 
small and multiple mass losses.

4.7 | Antioxidant potential

Antioxidant activities of the CSF fractions were measured using 
three complementary tests: (i) DPPH• radical scavenging activ-
ity; (ii) (Fe2+) chelating activity, and (iii) ferric ion (Fe3+) reducing 
antioxidant power, which showed variation in a concentration-de-
pending manner (data not shown). Table 5 shows the IC50 and EC0.5 
values of the measured activities. The FA was the most active 
fraction in the DPPH radical-scavenging and (Fe2+) chelating tests, 
while FD and FS were the most active fractions in the FRAP analy-
sis (Table 5). Comparable results for antioxidant activities were 
reported for other species of brown algae (Table 2). According to 
Mak et al. (2013), DPPH• radical scavenging activity was influ-
enced by the Mw of polysaccharide. Additionally, monosaccharide 
composition, glycosidic linkage type, and sulfate group positions 
affected the radical scavenging activity (Li et al., 2008; Skriptsova 
et al., 2010). The (Fe2+) chelating activity seems to be related to 
the fucoidan structure. Van Acker et al. (2013) reported that (Fe2+) 
chelating activity of molecules depends on the presence of some 
functional groups (O-H, C = O, -S-, -O-, COOH), as well as to their 
orientation. In fact, the group (SO4) in ortho position could che-
late ferric ions. According to Raza et al. (2011), the polysaccha-
ride hydroxyl groups were responsible for their reducing ability. 

Moreover, Qu et al. (2014) reported that FRAP of fucoidans was 
related to their sulfate content and Mw.

Overall, the CSF fractions showed interesting antioxidant poten-
tial with different action mechanisms in dependence to the harvest 
season. The Mw, sulfate group type, and monosaccharide distribu-
tion could be considered to be the main factors that influenced the 
CSF antioxidant activities. This leads to the need to match the algae 
harvest season with the desired characteristics of their fucoidans.

5  | CONCLUSIONS

In the present study, a novel fucoidan named mannogalactofucan 
was extracted from the brown seaweed, C. schiffneri collected from 
Kerkennah Islands (Tunisia). The Mw, sulfate content, and monosac-
charide composition of fucoidans varied considerably as function of 
the reproduction cycle. The variability in these parameters seems to 
affect the antioxidant activities. The present study suggested that 
the best time of C. schiffneri harvest could be in July to obtain fu-
coidans with the highest sulfate content, while December was the 
best harvest month allowing low Mw and high extraction yield of 
fucoidan. Thus, further investigations are necessary to better un-
derstand the structure–activity relationship and to investigate other 
potential activities.
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Season Standards

FD FA FJ FS BHA EDTA

DPPH• 
scavenging 
activity

192 ± 3c 104 ± 5d 611 ± 14a 266 ± 10b 14 ± 0.2b

(Fe2+) chelating 
activity

>1,000 96 ± 3c 144 ± 6b 209 ± 12a 10 ± 0.2e

FRAP 71 ± 3c 304 ± 6a 147 ± 5b 63 ± 3c 25 ± 0.1c

Note: FD, FA, FJ, and FS represent the extracted fucoidans from C. schiffneri collected in December, 
April, July, and September, respectively; results of DPPH• scavenging and metal (Fe2+) chelating 
assays are shown as IC50 values (µg/mL), defined as the extract concentration needed to scavenge 
50% of DPPH• and to chelate 50% of Fe2+, respectively. The ferric ion (Fe3+) reducing antioxidant 
power (FRAP) is shown as the extract concentration (EC0.5, µg/mL) providing 0.5 absorbance at 
700 nm; each value represents the mean ± SD (n = 3).
a,b,c,d,eDifferent letters within different seasons of harvest (same row) indicate significant 
differences (p < .05).

TA B L E  5   Antioxidant activities of the 
CSF fractions from different seasons
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